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Abstract: The solution fields of the elliptic boundary value problems may exhibit singularities near
the corners, edges, crack tips, and so forth of the physical domain. The corner singularity theory for
the solutions of elliptic boundary value problems on domains with corners or edges has been well
established in the past century and also in recent years. The corner singularity functions provide an
appropriate mathematical structure to understand the physical trajectories of the fluid particles. It has
been investigated for general elliptic boundary value problems and also extended to some non-elliptic
problems. Currently, the theory has been constructed for compressible viscous Stokes and Navier-
Stokes systems on polygonal and polyhedral domains to analyze the structure of the solution near the
corners and edges. Several interesting results about the regularity of the solution cannot be extended if
one of the following situations appears: The domain has corners, edges and cusp, etc. On the boundary,
change of boundary conditions at some points, discontinuities of the solutions, and singularities of the
coefficients. This article reviewed the structure of the solution and regularity results of the stationary
Stokes and Navier-Stokes equations on polygonal domains with convex or non-convex corners.

Keywords: corner singularities; Stokes problem; Navier-Stokes system; regularity; non-convex
corners
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1. Introduction

The mathematical modeling of natural or real-world phenomena, the partial differential equations
(PDE’s) theory is the core topic of modern mathematics in the past as well as in recent years. Partial
differential equations (PDE’s) provide a quantitative description of various problems arise in
engineering, physical, biological, and social sciences, etc. The understanding of the theoretical
analysis of partial differential equations mainly focuses on the well-posedness and regularity
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(smoothness) of the solution in suitable function spaces.
The elliptic type partial differential equations have been considered as the starting point to study a

class of linear partial differential equations. They arise in every field of science and have been used
in mathematics to understand the solutions of the problems. They have attracted various fields such
as potential theory, functional analysis, variational calculus, differential geometry, algebraic topology,
and so forth. They have a long history and their treatment goes back to the 18th century. In two
or three-dimensional bounded domains, the analysis of elliptic boundary value problems may have a
singular solution. It depends on: the non-smoothness of the domain (domain has corners, edges, etc.
on the boundary), change of the boundary conditions at some points like Dirichlet boundary conditions
to Neumann or vice versa, discontinuities of the solutions (transmission problems), and singularities
of the coefficients.

The corner singularity functions provide an appropriate mathematical structure to understand the
physical trajectories of the fluid particles. The singularities may be associated with the singular
behavior of the motion of boundaries and the geometry of the fluid body. These arise suddenly at free
surfaces due to the viscous stresses. Many researchers have paid attention to the highest order terms
occurs in the elliptic operator which help to determine the singularities in the solutions that come
from a corner of the boundary. Besides, the lowest order terms also have an effect on the singularity
expansion of the solution to the problem.

The discontinuity in a solution of the fluid dynamics problems is a very important issue, where it
arises in fluid flow variables. Particularly, the thermodynamics theory for non-equilibrium states and
the study of cavity flow problems in a singular domain with corners or edges have faced this issue.
Different techniques of mathematical analysis have been used to address this issue [14, 15, 26, 49, 68].
Generally, it depends on a type of flow which is compressible or incompressible, the domain is bounded
or unbounded and the smooth or singular boundaries have corners or edges, etc. Normally, the bounded
domains are considered for solving physical and engineering problems but it requires technical and
complicated calculations. Furthermore, in fluid mechanics, very simple geometry of cavity flows yield
interesting phenomena. The compressible flows display the acoustic instabilities, wave interactions,
and resonant tones [8, 11, 15, 18, 36, 49, 50, 55, 58, 64, 73, 80, 94]. The incompressible flows also show
the flow separations, eddies, internal recirculation, transition, turbulence and discontinuities. These
technical and mathematical important issues are resolved in [16, 26, 28, 30, 32, 39, 59, 86, 91, 92].

Currently, the theory has been constructed for compressible viscous Stokes and Navier-Stokes
systems for the polygonal domain in 2-dimension and the polyhedral domain in 3-dimension. The
mathematical techniques to analyze the singular structure of the solutions near corners, edges and
cusp have discussed in [2, 7, 9, 12, 17, 18, 29, 33, 36, 38, 44, 61, 63, 87]. The key point of this theory is
the decomposition of the solution of the given problem into a singular and regular part. In corner
singularities, the unknown constant coefficients in the decomposition of the solution at a corner of the
boundary are called the stress intensity factors. In 3-dimensional domains, these coefficients are
functions and are called the edge flux intensity factors. In most of the engineering applications to
derive the rigorous formulas for the computation of these coefficients are still of constant interest and
a challenging task. The singular part of the solution is the significant part that does not satisfy the
shift theorem which is obtained near corners or edges in two or three-dimensional non-smooth
domains. It has the lower regularity result that does not belong to H2 for any elliptic boundary value
problem for a given datum f ∈ L2. The remainder part that satisfies the shift theorem is known as the
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regular part and is obtained after removing the singular part from the solution of the given problem. It
has the H2-regularity for any datum f ∈ L2. It is an important aspect for elliptic boundary value
problems that the regularity of the solution depends on the geometry of the problem, the given
conditions, and the regularity of the data.

In singularity expansion theory for the Stokes problem, the spectral problems related to corner
singularities of solutions to elliptic equations are discussed in [18–21]. The regularity issues of the
solution for stationary Stokes system on a polygonal domain with weighted Sobolev spaces are
addressed by [51, 55]. The velocity, vorticity and pressure formulations of the Stokes problem on
smooth domains are discussed in [4, 31, 32], but [77] has modeled this formulation for stationary
Navier-Stokes equations. He has considered a bounded plane polygonal domain with a non-convex
corner. The existence and regularity results are obtained by constructing corner singularity functions
for the Stokes operator in an infinite sector with zero normal velocity and zero vorticity boundary
conditions. The remaining part has increased regularity by removing the leading singularities from
the solution. Finally, the obtained solution is the sum of the coefficients of the singularities and the
remaining smoother part.

[56,66] have considered the zero Dirichlet boundary conditions to investigate the regularity results
of the incompressible Navier-Stokes equations in a non-convex polygonal domain. [67, 79] have
extended these results for a non-convex polyhedral cylinder in R3 with inflow boundary conditions for
compressible Navier-Stokes equations. They found the existence and regularity results for smooth and
non-smooth domains. The interior discontinuities and piecewise regularities of the solutions in a
bounded plane domain with a grazing or non-grazing corners are given in [47, 69, 70, 78]. [71] has
used the suitable Helmholtz decomposition to obtain the regularity results of the compressible Stokes
system in a non-convex polygonal domain with no-slip boundary conditions. In [5, 31, 32, 77], the
authors have used the non-standard or Navier type boundary conditions to find the existence and
regularity results of the compressible Stokes and Navier-Stokes systems in a bounded plane domain.

Hence, the mathematical analysis like well-posedness and regularity results of such type of elliptic
boundary value problems in non-smooth domains have attracted many mathematicians and scientists
to examine the singular behavior of the solution structure near the singular points as discussed earlier.

The organization of this paper is as follows: Section 2 is dedicated to the analytic preliminaries,
functional framework, and the treatment of corner singularities in the Poisson equation. The obtained
results of the corner singularity theory for the Stokes problem on polygonal domains are given in
Section 3. The existence and regularity results of stationary compressible Stokes and Navier-Stokes
systems on polygonal domains are discussed in Section 4. Section 5 addresses the existence and
regularity results related to the stationary incompressible Stokes and Navier-Stokes systems. Some
concluding remarks and future works are given in the last Section.

2. Analytical preliminaries

In what follows, some basic preliminary results, domain description, and the functional frameworks
regarding the corner singularities of the stationary Stokes and Navier-Stokes systems on a bounded
plane polygonal domains are presented. Moreover, the solution operators to construct the solution
structure of the elliptic boundary value problems and to find the regularity results of the solution which
will be used later in the upcoming sections are defined. Furthermore, the problems in plane polygonal
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domains with smooth boundary and the treatment of singularities in Laplace’s equation and the Poisson
equation are discussed.

Many authors have used sufficiently smooth domains for compressible or incompressible Navier-
Stoke equations to find the existence and regularity results. However, a lot of problems exists in
practice whose geometries are simple but not smooth. Some of them are dealing with non-smooth
domains having corners or edges [2, 3, 6, 10, 11, 33, 45, 59, 94]. For two dimensional problems, we
consider the following definition.

Definition 1. A bounded domain Ω ⊂ R2 is called polygonal if its boundary Γ consists of finitely many
straight edges (possibly of infinite length) said sides meeting each other at a point where the angle is
greater than zero and less than 2π.
Additionally, we denote

• Γi, i ∈ X the set of edges, enumerated in counter-clockwise, where X =
{
1, ..., n

}
is the analogous

index set,
• xi, i ∈ X the set of corner points where xi is the intersection of Γi and Γi+1 such that Γn+1 = Γ1.

Let Ω be an open bounded plane domain with polygonal boundary ∂Ω (see Figure 1) and Pm =

(xm, ym) : m = 1, 2, ...n, where n denote the number of vertices of the domain Ω. Let rm is the distance
of a point to Pm and is defined as rm =

√
(x − xm)2 + (y − ym)2. The vertex Pm associate two numbers

ωm, 1 and ωm, 2 with the property ωm, 1 < ωm, 2 < ωm, 1 + 2π. Let Γm, 1 and Γm, 2 denote the two sides
with Γm = Γm, 1 ∪ Γm, 2, and ∂Ω = ∪mΓm is the boundary of Ω. The two sides of the domain Ω at
point Pm lie along the rays (xm + t cosωm, 1, ym + t sinωm, 1) and (xm + t cosωm, 2, ym + t sinωm, 2) where
t ≥ 0. The vector nm, p, p = 1, 2 is the outward unit normal vectors to the sides Γm, p and is defined
as nm, p = (−1)p[−sinωm, p + cosωm, p]t. The interior angle of the domain Ω at the point Pm is written
as ωm = ωm, 2 − ωm, 1, and taken α = π

ωm
. The geometry of the convex and the non-convex bounded

domains are shown in (Figure 2).

Now, let we considered the function spaces and their norms from [1, 35, 38]. For any 1 ≤ p < ∞,
the space of all measurable functions v defined on Ω is denoted by Lp(Ω) and equipped the norm∥∥∥v

∥∥∥
p,Ω

=
( ∫

Ω
|v(x)|pdx

) 1
p < ∞. If p = 2, then ‖v‖o,Ω is the norm of L2(Ω) and for p = ∞, the norm

of L∞(Ω) is defined by
∥∥∥v

∥∥∥
∞

= ess sup
{
|v(x)| : x ∈ Ω}. In particular, one can write L2(Ω) = H0(Ω).

Let α be a multi-index of order |α| = α1 + α2 + ... + αn, and Dα v be the αth order weak derivative of v.
Let H s(Ω) for any s ≥ 0 denote the Sobolev spaces of fractional order and is equipped with the norm
‖v‖s,Ω. Generally, one can take H s = H s(Ω), L2

0 =
{
q ∈ L2 :

∫
Ω

q dx = 0
}

and H1
0 denote the function in

H1 with zero boundary values. For s ∈ (0, 1), H s
0 denote the closure of C∞0 in the topology of H s where

C∞0 (Ω) is the space of all C∞0 functions with compact support in Ω. When s ≥ 1, H s
0 = H s ∩ H1

0 . The

dual space of H s
0 is denoted by H−s and is endowed the norm ‖ f ‖−s = sup

0,v∈Hs
0

〈
f , v

〉
‖v‖s

, where the notation〈
,
〉

denotes the duality pairing. For the vector spaces, we can write Hs = H s × H s, Ls = Ls × Ls, etc.
Let C represent a generic constant which can have different values in different places and depends on
certain quantities.
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Figure 1. A polygonal domain.
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Figure 2. Schematic illustrations of bounded domains with convex and non-convex corners.

2.1. The problems of polygonal domains

It is recognized from the regularity theory of elliptic boundary value problems that the regularity of
the solution depends on the geometry of the problem, regularity of the boundary data, and the assign
boundary conditions. Let Ω be a plane bounded domain with smooth boundary Γ or ∂Ω and L is
a second-order elliptic operator of the domain Ω. Moreover, if the coefficients of L are sufficiently
smooth, then the solution v of the following boundary value problem

Lv = f in Ω,

v = 0 on ∂Ω,
(2.1)

satisfies the inequality
‖v‖k 6 C‖f‖k−2. (2.2)

Therefore, the norm ‖v‖k measure the size of the kth order derivatives of v in different ways (Hölder, Lp)
and C is a constant that has different values. Sometimes, the smoothness properties are not satisfied
then the inequality (2.2) does not hold and it provides important information about the behavior of
the solution structure of the problem. For example, if the boundary ∂Ω of the domain Ω is not more
smooth, then one cannot attain as much as possible regularity of the solution v. There are different
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conditions which are reasons for the failure of the inequality (2.2) but in this article, we will address
some of them. Each of these types of failure gives distinctive features of the solution to the problem
that has been comprehensively studied by [56]. The principal purpose of this paper is to investigate
those types of problems that present this type of failure.

2.2. Singularities in Laplace equation

This subsection defines the singularities in Laplace’s equation near the vicinity of corners. It has
been observed that the problems of corner singularities are very interesting in their lot of applications
in practice and in research fields. Usually, three types of singularities arise in elliptic type problems:
i. the angular type singularity, ii. the interface, iii. the infinity type singularities in unbounded solution
domains.

Many researchers have discussed them in [10, 34, 37, 81–84, 95]. There are several approaches
to find and describe the characteristics of the corner singularities in Laplace’s equation based on the
requirement of the knowledge about the subject. Some of them are discussed here:
Singular elements, local refinements and infinite elements. They used when the origin is the singular
point, for known location and the asymptotic behavior of the singular point. Usually, use to analyze
the singular structure of the solution of the polygonal domains [22, 29, 39].
Singular function methods and the Dual singular function. In these methods, the known leading
singular solution can be defined as

us ≈

N∑
i=1

ci φi(r, θ) as r → 0, (2.3)

where the unknown constant coefficients ci are called the expansion coefficients or the stress intensity
factors, the functions φi are the singularity functions for the elliptic operator. The singular functions of
the Laplace’s equation can be found in [13, 46].
Combine methods. In these methods, the total solution depends on the analytic solution and the local
singular solution. It defined as

u = us + ua =

∞∑
i=1

ci φi(r, θ) +

∞∑
i=1

di ψi(r, θ) as r ≤ r0, (2.4)

where ua is the analytic part and us is the singular part of the solution u. The analytic functions are
denoted by ψi, and di are known as the expansion coefficients. For the applications of these methods,
we refer [23, 38, 52, 53, 61, 62, 65, 68, 76]. The corner singularity functions for the Laplace operator
with a different type of boundary conditions are discussed in [40–43, 45, 48, 54, 96].

2.3. The Poisson equation

Let us consider the boundary value problem for the Poisson equation with the mixed homogeneous
boundary conditions 

−∆v = f in Ω,

v = 0 on ΓD,

∂v
∂ν

= 0 on ΓN ,

(2.5)
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where f ∈ L2(Ω). Let Ω ⊂ R2 is a bounded domain with boundary Γ = Γ̄D ∪ Γ̄N and ΓD ∩ ΓN = ∅ with
meas(ΓD) > 0 (Lebesgue measure), and ν is the unit outward normal on Γ.

Henceforth, we suppose that Ω is a bounded plane polygonal domain with sides Γi : i = 1, 2, ...,N
and has only one corner point O with the interior angle ω ∈ (0 , 2π], where ω = 2π is used for the case
of a crack. In some neighborhood of the corner point O, the boundary Γ is a straight line and outside
of O it is sufficiently smooth. Let S̃ ⊂ Ω is a small circular sector neighborhood of O with angle ω and
radius ŕ0, i.e.,

S̃ =
{
(x1, x2) ∈ R2 : x1 = r cos θ, x2 = r sin θ, 0 < r < ŕ0, 0 < θ < ω

}
,

where (r, θ) are the local polar coordinates with respect to the corner point O. Let ∂S̃ is the boundary
of S̃ and is denoted as ∂S̃ = ΓS̃ 0 ∪ ΓS̃ i ∪ ΓS̃ i+1, where

ΓS̃ i =
{
(x1, x2) ∈ R2 : 0 < r < ŕ0, θ = ω

}
,

ΓS̃ i+1 =
{
(x1, x2) ∈ R2 : 0 < r < ŕ0, θ = 0

}
,

ΓS̃ 0 =
{
(x1, x2) ∈ R2 : r = ŕ0, 0 < θ < ω

}
.

Let ΓD denote the Dirichlet boundary condition and ΓN the Neumann boundary condition of the
boundary ∂S̃ , such that ∂S̃ = ΓD ∪ ΓN with ΓD ∪ ΓN = ∅. Let χ ∈ C∞[0,∞) is a smooth truncation
function as defined under

χ(r) =


1 for 0 ≤ r ≤ ŕ0/3,

0 ≤ χ(r) ≤ 1 for ŕ0/3 ≤ r ≤ 2ŕ0/3,

0 for r ≥ 2ŕ0/3,

(2.6)

it depends only on the distance r with respect to O and supp(χ) ⊂ S̃ . Suppose that v ∈ V0(Ω) ={
v ∈ H1(Ω) : v = 0 on ΓD

}
is the unique weak solution of (2.5). Now, multiplying the truncation

function χ on both-sides of (2.5), we get the function vχ = χv. The function vχ is nonzero only in the
circular sector neighborhood S̃ . Therefore, the functions v and vχ have the same singular structure near
the vertex O. It is recognized for elliptic boundary value problems that the regularity of the solutions
is a local problem. So that, the characteristics of the solution v can be obtained to study the regularity
properties of the function vχ. The subsequent lemma is helpful to understand this argument.

Lemma 1. Let v ∈ V0(Ω) is the uniquely determine weak solution of (2.5) for any f ∈ L2(Ω). Then the
function vχ ∈ V0(S̃ ) is the uniquely determined weak solution of the subsequent problem

−∆vχ = fχ in S̃ ,
vχ = 0 on ΓS̃ 0,

vχ = 0 on ΓS̃ i if Γi ⊂ ΓD, i = 1, 2,
∂vχ
∂ν

= 0 on ΓS̃ i if Γi ⊂ ΓN , i = 1, 2,

(2.7)

where fχ ∈ L2(S̃ ) is described as
fχ = χf − 2∇v · ∇χ − v∆χ,

and satisfies the following inequality

‖fχ‖L2(S̃ ) ≤ C‖f‖L2(Ω). (2.8)
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2.3.1. The singular decomposition of the solution

To determine the solution of the problem (2.5), the Fourier method of separation of variables is
used. The eigenvalues

{
αl, l ∈ N

}
and the corresponding eigenfunctions are depends on the boundary

conditions.
A system of an orthogonal and complete set of basis functions in L2(0, ω) is introduced as

Φl(θ) =



sinαlθ, αl = lπ
ω
, l ∈ N i f Γ1 ∪ Γ2 ⊂ ΓD,

cosαlθ, αl = (l − 1
2 ) π

ω
, l ∈ N i f Γ1 ⊂ ΓD, Γ2 ⊂ ΓN ,

sinαlθ, αl = (l − 1
2 ) π

ω
, l ∈ N i f Γ1 ⊂ ΓN ,Γ2 ⊂ ΓD,

cosαlθ, αl = (l − 1) π
ω
, l ∈ N \ 1 i f Γ1 ∪ Γ2 ⊂ ΓN ,

1, αl = 0, l = 1 i f Γ1 ∪ Γ2 ⊂ ΓN .

(2.9)

Consequently, the functions fχ and vχ introduced in (2.7) can be signified in the form of Fourier series

vχ(x, y) = vχ(r, θ) =

∞∑
l=1

vl(r) Φl(θ), fχ(x, y) = fχ(r, θ) =

∞∑
l=1

fl(r) Φl(θ), (2.10)

with the fourier coefficients
{
vl : l ∈ N

}
and

{
fl : l ∈ N

}
are usually defined as

vl(r) =
2
ω

∫ ω

0
vχ(r, θ) Φl(θ) dθ, fl(r) =

2
ω

∫ ω

0
fχ(r, θ) Φl(θ) dθ. (2.11)

The most important consideration of this section is the condition when the eigenvalues αl are 0 < αl < 1
for some l ∈ N. This situation is addressed in the subsequent theorem.

Theorem 1. Let v ∈ V0(Ω) be the uniquely determine weak solution of the problem (2.5) for any
f ∈ L2(Ω), and the domain Ω has only one vertex O with an angle ω. Let the real numbers

{
αl : l ∈ N

}
and the functions

{
Φl : l ∈ N

}
are defined in (2.9). If 0 < αl < 1 for some l ∈ N, then the weak solution

v ∈ V0(Ω) of the problem (2.5). Additionally, the solution v can be decomposed into a regular part
w(x, y) ∈ H2(Ω) and a singular part s(x, y) with lower regularity

v(x, y) = s(x, y) + w(x, y),

=
∑

0<αl<1

cl sl + w(x, y), (2.12)

and the stress intensity factors cl are defined as

cl =
1
ωαl

∫
S̃

fχ s−l dx for 0 < αl < 1, (2.13)

where
sl = rαl Φl(θ), s−l = r−αl Φl(θ).

Moreover, there exists a constant C > 0 independent of f and the following estimate holds

|cl| + ‖w‖H2(Ω) ≤ C‖f‖L2(Ω). (2.14)
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Proof. The main strategy used to get the proof of Theorem 1 is summarized in [10,89,90]. The Poisson
equation with the nonhomogeneous boundary conditions is discussed by [88]. �

Remark 1. It is noted that the stress intensity factors formula (2.13) are agreed with the formula given
in [10] for Dirichlet boundary condition, and it is independent of the precise form of the smooth cutoff
function χ.

3. The theory of corner singularity for the Stokes system on polygonal domains

In this section, some basic results related to the corner singularity theory of the Stokes system on
a bounded plane polygonal domains are described. The results of corner singularities and regularity
for the stationary Stokes system on polygonal domains have been developed by [24, 25, 40, 62, 65, 66].
A particular type of singular function is introduced to describe the singular solution structure of the
considered problem near the singular points of the boundary. The obtained results for the singular
behavior of the solution are important for numerical schemes. It is observed that the obtained lowest
order corner singularity results for the compressible stationary Stokes system on a polygonal domain
with inflow boundary conditions are the same as Laplacian near each non-convex vertices.

The velocity and pressure formulation of the stationary Stokes system on a domain Ω with zero
Dirichlet boundary condition is described as

−µ∆v + ∇p = f in Ω,

divv = g in Ω,

v = 0 on ∂Ω,

(3.1)

where f, g are given data functions and the constant µ is known as the viscosity of the fluid flow. For
Stokes operator, a formula for the corner singularity is defined as L[v, p] = [f, g], where the operator
L is written as

L
[
v, p

]
=

[
− µ∆v + ∇p, −divv

]
.

The singular functions of the Stokes operator L are obtained by solving the eigenvalue problem in an
infinite sector domain having a corner by considering zero Dirichlet boundary condition. The more
detail about the eigenvalues and the corresponding eigenfunctions can be seen in [62].

To describe the formulas and to give the eigenvalues and the corresponding eigenvectors, the
following algebraic equation is considered from [39, 60]

sin2(λωm) = λ2 sin2(ωm).

Let λm, j : j = 1, 2, ... be a nondecreasing sequence of numbers and ordering these solutions in a
non-decreasing real part, as follows

1
2
< λm, 1 <

π

ωm
< Re λm, 2 < λm, 3 <

2π
ωm

< Reλm, 4 < ...

The number sm, j are given by
sm, j = Re λm, j + 1, j = 1, 2, ...,
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which is sometimes known as the order of the regularity of the solution space and depends on the
corner singularity. Let [Φm, j, φm, j] be the singular functions relative to the velocity and pressure with
the singular exponents λm, j, and defined as

Φm, j = χm rλm, j
m τm, j(θ), φm, j = χm rλm, j−1

m ξm, j(θ). (3.2)

The functions ξm, j(θ) and τm, j(θ) are the definite trigonometric eigenfunctions for the pressure and
velocity relative to the eigenvalues λm, j, j = 1, 2, ... and χm is a smooth cutoff function. Further
information about the number λm, j can be found in [60, 62].

(1) For the non-convex case that is ωm ∈ (π, 2π), the first 3 leading eigenvalues λm, j, j = 1, 2, 3 are
real and holds the property

1
2
< λm, 1 <

π

ωm
< λm, 2 = 1 < λm, 3 <

2π
ωm

, ωm ∈ (π, ω∗], (3.3)

1
2
< λm, 1 <

π

ωm
< λm, 2 < λm, 3 = 1 <

2π
ωm

, ωm ∈ (ω∗, 2π). (3.4)

In particular, ω∗ ≈ 1.4303π is the unique solution of the equation tanω − ω = 0 for an angle
ω ∈ [0, 2π).

(2) For a convex case ωm ∈ (0, π), then λm, 1 is a simple and unique eigenvalue that lie in the strip
0 < Reλm, 1 <

π
ωm

. For this, the relative pressure eigenfunction ξm, j(θ) has a constant value and the
velocity eigenfunction τm, j(θ) is zero.

Similarly, the dual singular functions for the velocity vector and the pressure function are{(
Φ−m, j, φ

−
m, j

)
, for j ≥ 1

}
and defined by

Φ−m, j = χm r−λm, j
m τ−m, j(θ),

φ−m, j = χm r−λm, j−1
m ξ−m, j(θ).

(3.5)

Hence, the functions
{
τ−m, j(θ), ξ

−
m, j(θ)

}
can be attained by replacing λ = −λm, j into the eigenfunctions{

τm, j(θ), ξm, j(θ)
}
.

4. Compressible Stokes and Navier-Stokes problems on polygonal domains

This section is devoted to stationary compressible Stokes and Navier-Stokes systems on a bounded
plane polygonal domains that have convex or non-convex corners.

A complete mathematical analysis of the solution of the boundary value problems for compressible
Stokes and Navier-Stokes equations have not been achieved yet. Various questions are still open for
domains with singular boundaries like a complete existence and the regularity analysis for the
3-dimensional compressible Stokes and Navier-Stokes equations in polyhedral domains. To solve the
3-dimensional problem for the polyhedral domain, the solution has both the edge and vertex
singularities. The edges of the domain generate edge singularities and where these edges meet vertex
singularities are generated. A limited number of known results exist in the literature to find the corner
singularities of the solutions of the compressible Stokes system and the Navier-Stokes system in
polygonal or polyhedral domains. Maybe one of the reasons is the mixed type equations.
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In high-speed flow problems, like hypersonic or supersonic, the flow properties change their
behavior significantly near the corners or edges. The shift theorem holds for general elliptic equations
for a smooth domain. For example, we consider the Poisson problem in a bounded domain Ω with the
homogeneous Dirichlet boundary condition

−∆v = f in Ω,

v = 0 on ∂Ω.
(4.1)

Suppose that if the given right-hand side function f ∈ H s−2, ∀s ≥ 0, then the solution v ∈ Hs, which
shows that Ω is the sufficiently smooth domain. Thus, the non-smooth domains do not satisfy the shift
theorem.

For a bounded domain with non-convex corner positioned at the origin, it is recognized from [26,
45, 60–62] that the solution v ∈ H1

0(Ω) of the problem (4.1). Let us considered if f ∈ H s−2 and Λ is
known as the continuous linear functional on H s−2, s > 1 + α, then

v = Λ(f) χ rα sin[α (θ − ω)] + w, w ∈ Hs(Ω), (4.2)

and also satisfy the following regularity estimate

‖w‖s + |Λ(f)| ≤ C‖f‖s−2, (4.3)

where C is a constant. In [73, 74], the authors have extended these results for stationary barotropic
compressible viscous Navier-Stokes system by considering inflow boundary conditions for pressure
and also generalized it for whole compressible Navier-Stokes system. The consider boundary value
problem is described as 

−µ∆v − ν∇divv + ρ(v · ∇)v + ∇p = f in Ω,

ρdivv + ρ′(p)v · ∇p = g in Ω,

v = 0 on ∂Ω.

(4.4)

After linearizing (4.4) around the ambient flow and dropping the convective term yield the
compressible Stokes system 

−µ∆v + ∇p = f in Ω,

div v + V · ∇p = g in Ω,

v = 0 on ∂Ω,

p = 0 on Γin.

(4.5)

The vector V = [1, 0]t is known as a convective vector or the horizontal vector. Let Γin and Γout denote
the inflow and the outflow boundary and defined as

Γin =
{
(x, y) ∈ ∂Ω : V · n < 0

}
, Γout =

{
(x, y) ∈ ∂Ω : V · n ≥ 0

}
,

and n =
[
n1, n2

]
is known as the unit outward pointing normal to the boundary. The boundary condition

for pressure function occurs due to the hyperbolic behavior of the continuity equation. The ambient
flow field V , 0 on the boundary ∂Ω. The system (4.5) is a combination of three equations, the first
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two represent the momentum equations and the third one is the continuity equation. The derivative of
the term V · ∇p in the continuity equation represents the convection and the system is not permitted
from being elliptic. Consequently, the theory of corner singularities cannot be applied directly. In the
Stokes system, the singularities in the solution can occur only at the vertices of the domain. But in
a compressible Stokes system, the singularities in the pressure and the density are resultant from the
streamlines that emanating from the corners of the domain.

Some existence and regularity results of the system (4.5) in smooth and in a polygonal domain with
corners are defined as follows. For a smooth domain Ω, the subsequent result can be seen in [72, 73].

Theorem 2. Let q ∈ (2, 3) and suppose that the boundary ∂Ω is sufficiently smooth, if f ∈ Lq(Ω)
and g ∈ H1, q(Ω), then a pair

[
v, p

]
∈ H1

0(Ω)2 × L2(Ω) is the unique weak solution of problem (4.5).
Furthermore, if the viscosity µ is adequately large then the following estimate holds

‖v‖H2, q(Ω) + ‖p‖H1, q(Ω) ≤ C1(‖f‖Lq(Ω) + ‖g‖H1, q(Ω)), (4.6)

and the constant C1 = C1(µ, Ω).

Several mathematicians have studied the singular structure of the solutions of the boundary value
problems in domains having piecewise smooth boundaries. The following theorems defined the results
regarding the corner singularity and the regularity issues for a plane bounded domains with convex and
non-convex corners.

Theorem 3. Let Ω be a plane polygonal domain with non-convex corner and suppose that the viscosity
µ is adequately large. If

[
f, g

]
∈ L2(Ω)2 × H1(Ω), then (4.5) has a unique weak solution

[
v, p

]
. Thus

the velocity vector v can be split near the vertex into a singular part vs and a regular part vr, that
is, v = vr + vs, with the property

[
vr, p] ∈ H2(Ω)2 × H1(Ω) and the singular solution near the each

non-convex vertex with interior angle ω > π is vs = C rα sin
[
α (θ −ω1)

]
, where r is the distance to the

vertex, C is an unknown constant vector and α = π
ω
< 1. Furthermore, if µ is sufficiently large then a

constant C1 = C1(µ, Ω) exists and the following inequality is satisfied

‖vr‖2,Ω + ‖p‖1,Ω ≤ C1(‖f‖0,Ω + ‖g‖1,Ω). (4.7)

Remark 2. The main idea and the strategy used to obtain the proof of Theorem 3 is summarized
by [73]. Firstly, split the solution into a regular and a singular part, then apply the known results
of a Poisson problem for polygonal domains to problem (4.5). To construct the singular part vs of
the solution, choose a suitable vector function whose each component is a multiple of the harmonic
function near the corner points which belongs to H1 but not H2. Hence, the two solution operators
are defined as follows. Let B : H−1 (or L2) → H1 be given as BG = z, where z is the solution of the
following boundary value problem  −∆z = G in Ω,

z = 0 on Γ.
(4.8)

The second operator is A : L2 → L2, where q = A F, and q is the solution of the following equation qx = F in Ω,

q = 0 on Γin,
(4.9)
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where
Γin =

{
(x, y) ∈ Γ : V. n < 0

}
.

The solution of (4.9) can be obtained by integrating it in the x-direction and described as

q(x, y) =

∫ x

δ(y)
F(s, y) ds. (4.10)

The solution operator A gives the solution of the continuity equation, and some manipulations yield
the reformulation form of (4.5). The required form can also be obtained by applying the basic theory
of corner singularity for Laplacian and splitting the velocity vector into a regular and a singular part.

The next theorem describes the regularity result of the system (4.5) for a convex polygon.

Theorem 4. Let Ω be a convex polygon and assume that the viscosity µ is adequately large. If f ∈
L2(Ω)2, g ∈ H1(Ω) and a pair

[
v, p

]
be a unique weak solution of (4.5), then

[
v, p

]
∈ H2(Ω)2 ×H1(Ω).

Moreover, a constant C1 = C1(µ, Ω) exists such that the subsequent estimate holds

‖v‖2,Ω + ‖p‖1,Ω ≤ C1
(
‖f‖0,Ω + ‖g‖1,Ω

)
. (4.11)

Proof. For the proof, we refer [45, 59]. �

Recently, the system (4.5) is considered for a rectangular domain Ω in [47]. The interior jump
discontinuity of the solution, piecewise regularity, and Rankine-Hugoniot conditions with inflow jump
datum have shown. The interface curve preserved a discontinuity along the ambient vector field. The
main difficulty is to find the solution and its regularity to handle the gradient of pressure function
at the jump point. To resolve this issue, a vector function is constructed for an interior jump of the
pressure function. Splitting this vector function from the velocity vector and the remainder formulate
a boundary value problem. The subsequent theorem states the main result.

Theorem 5. Let Ω be a rectangular domain and q ≥ 2 be any number. Let p0 be an inflow datum that
has jump across y = 0, and also satisfies the conditions p0 , 0 for y > 0 and is 0 for y < 0. Suppose
that the viscosity µ is adequately large and there exists a constant C1 = C1(µ, q) such that if the pair[
f, g

]
∈ Hs−2 × H s−1 for s ∈

[
1, 1 + 2

q

)
and p0 ∈ H s−1, q(0, 1), then

[
v, p

]
the solution of the problem

(4.5) belongs to the space Hs, q(Ω j) × H s−1, q(Ω j) and the subsequent inequality is satisfied

2∑
j=1

(
‖v‖s, q,Ω j + ‖p‖s−1, q,Ω j

)
≤ C1

(
‖f‖s−2, q + ‖g‖s−1, q + ‖p0‖s−1, q, (0, 1)

)
. (4.12)

In fact, if s < 1 + 1
q , then one has the following inequality

‖v‖s, q + ‖p‖s−1, q ≤ C1
(
‖f‖s−2, q + ‖g‖s−1, q + ‖p0‖s−1, q, (0, 1)

)
. (4.13)

On the other hand, let K and J be the vector functions formulated as{
K = κg on Ω2, for g = −µ−1 [

p
]
n,

J = A
[
K∗0, K∗1] on Ω2, for K∗i = K∗(i, y),

(4.14)
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where K∗ is the extension by zero to Ω1 of K. Let we set pK∗ = −B div K∗ and pJ = −Bdiv J. Suppose[
f, g

]
∈ Lq×H1, q and p0 ∈ H1, q(0, 1), then there exists a unique vector vR ∈ H2, q and a scalar function

pR = B
(
g − div vR

)
∈ H1, q. Such that the velocity vector v and pressure function p can be represented

as
v = K∗ + J + vR, p = p0 + pR + pK∗ + pJ, (4.15)

where K∗ ∈ H2, q(Ω j), J ∈ Hs, q for s < 1 + 2
q , pK∗ ∈ H1, q(Ω j) and pJ ∈ H1, q. Furthermore, for a

constant C1 = C1(µ, q) the following estimate holds

‖vR‖2, q + ‖K‖2, q,Ω2 + ‖J‖s, q + ‖pR‖1, q + ‖pK‖1, q,Ω2 + ‖pJ‖1, q

≤ C1
(
‖v‖0, q + ‖g‖1, q + ‖p0‖1, q, (0,1)

)
.

(4.16)

Proof. The proof can be found in [47]. �

In [71], a new idea has been used to demonstrate the best regularity results of the compressible
Stokes system on a polygonal domain. An appropriate Helmholtz decomposition v = u + ∇ϕr has
been considered to find the best regularity result without subtracting the corner singularities from the
solution, and the vector u be the solution of the incompressible Stoke system with div u = 0 and a
potential function ϕr. The potential ϕr is attained by subtracting the two leading corner singularities of
the solution at non-convex vertices of the domain from the obtained solution of the Neumann boundary
value problem. So that the direct Helmholtz decomposition cannot be apply because one has to consider
v = u + ∇ϕ with ∇ · u = 0. So, the potential ϕ solve the problem ∆ϕ = div u ∈ L2 with boundary
condition ∂ϕ

∂n = 0 and its corner singularities are denoted by r jα cos
(
jα θ

)
, j = 1, 2, ... where α = π

ω
.

That are not in H2 for j = 1, 2, ... and so ∇ϕ < H1. But for a convex polygon domain rα cos
[
α θ

]
∈ H2

for an interior angle ω < π.

The system to be considered is
−µ∆v − ν∇div v + ∇ P(ρ) = f in Ω,

div v + div(ρV) = g in Ω,

v = 0 on ∂Ω,

(4.17)

with
∫

Ω
ρ dx = 0. Let Ω be a bounded plane polygon with a non-convex corner on the boundary ∂Ω

and the pressure P is a strictly increasing function in ρ. Therefore, ν and µ are the viscous coefficients
having the property µ > 0, µ1 = µ + ν > 0, and µ2 = µ + |ν|. The derivation of the system (4.17) can
be seen in [94]. The subsequent theorem states the main result of (4.17) and shows the best regularity
result.

Theorem 6. Let V be a vector field which belongs to V ∈ H1
0(Ω) ∩ L∞(Ω) and assume that |∇V|∞,Ω is

small enough. Let a pair
[
f, g

]
∈ H−1(Ω)× L2

0(Ω), then a unique weak solution
[
v, ρ

]
∈ H1

0(Ω)× L2
0(Ω)

of system (4.17) exists that satisfies the inequality

‖v‖1,Ω + ‖ρ‖0,Ω ≤ C
(
‖f‖−1,Ω + ‖g‖0,Ω

)
, (4.18)

and the constant C = C(Ω, µ1). On contrary, let L be a Stoke operator and λ1,m be its leading singular
eigenvalues, that is, 1

2 < λ1, m <
π
ωm

< 1. Let there exist a vector u ∈ Hs with

divu = 0, u · n|∂Ω = 0,
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for a real number s with 1 < s < minm
{
3αm, λ1,m + 1

}
and a potential ϕr ∈ H s+1 with ∂ϕr

∂n

∣∣∣
∂Ω

= 0.
Therefore, the Helmholtz decomposition v = u + ∇ϕr holds and the potential ϕr can be described
as ϕr = −Φ + ϕ, where the function ϕ is the solution of the Neumann boundary value problem and
Φ =

∑
n∈τ

(
C1,m φ1,m + C2,m φ2,m

)
for some numbers C j,m = µ−1

1 Λ j(σ − ρ), where Λ j is defined by

Λ j( f ) =

∫
Ω

f u j d x, (4.19)

for some u j ∈ H2−s. Also u is the solution of the subsequent stationary incompressible Stokes system
−µ∆u + ∇(σ + µ1∆ Φ) = f in Ω,

div u = 0 in Ω,

u = −∇ϕr on ∂Ω,

(4.20)

with
∫

Ω
σ dx = 0. Finally, if

[
f, g

]
∈ H s−2(Ω) × H s−1

0 (Ω) and the viscosity µ is sufficiently large, then[
v, ρ

]
the solution of (4.17) holds the subsequent inequality

‖v‖s,Ω + ‖ρ‖s−1,Ω ≤ C1
(
‖f‖s−2,Ω + ‖g‖s−1,Ω

)
, (4.21)

and the constant C1 = C1(µ, |∇V|∞,Ω).

Proof. The proof has shown by [71]. �

5. Incompressible Stokes and Navier-Stokes systems on polygonal domains

This section contains some known results relating to the existence and regularity of the solutions of
the stationary incompressible Stokes and Navier-Stokes systems on polygonal domains with corners.

Let the domain Ω be bounded in R2 with polygonal boundary ∂Ω. The stationary Navier-Sokes
equations of incompressible flow with no-slip boundary condition are defined as

−µ∆v + (v · ∇)v + ∇p = f in Ω,

divv = g in Ω,

v = 0 on ∂Ω,

(5.1)

where v and p are known as the unknown velocity vector and unknown pressure function; µ > 0
is known as the viscous coefficient. Let f and g are given functions with the property

∫
Ω

g d x = 0.
Generally, for incompressible flows to satisfy the incompressibility condition the function g is set
equal to zero. If g is non-zero then a particular regularity of g is required for arising a regularity of the
pressure function or to handle non-zero boundary data.

In [57], a convex polygon is considered to obtain the H2×H1 regularity of the problem (5.1). The Hs

regularity of the stationary Stokes problem on a convex polygon and also for a convex polyhedron has
been discussed by [27]. The corner singularities and regularity results of the Stoke system for corner
domains with the applications of weighted Sobolev spaces have constructed in [62]. The 3-dimensional
stationary Navier-Stokes equations with arbitrary boundary conditions have considered by [85]. The
non-stationary Navier-Stokes equations for polygonal domains have been discussed by [75].

In the subsequent theorems, we state some known results relating to the existence and regularity of
the problem (5.1) in a bounded plane polygonal domains.
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Theorem 7. (i) Let the domain Ω be a plane bounded Lipschitz domain. Suppose that if
[
f, g

]
∈

H−1
0 (Ω) × L2

0(Ω), then the pair
[
v, p

]
is the unique weak solution of (5.1) which belongs to the space

H1
0(Ω) × L2

0(Ω).
(ii) Let Ω be a plane bounded domain with smooth boundary ∂Ω belong to C2. If the pair [f, g] ∈
L2(Ω) × H̄1(Ω), then their exists a unique weak solution

[
v, p

]
∈ H2

0(Ω) × H̄1(Ω).
(iii) If the domain Ω is a convex polygon and [f, g] ∈ L2(Ω) × H̄1(Ω), then [v, p] ∈ H2

0(Ω) × H̄1(Ω).

Proof. The assertions (i)-(ii) have been proved in [93] and (iii) has proved by [57]. �

The extended regularity results of assertions (ii)-(iii) of Theorem 7 for generalized polygonal
domains with non-convex corners have proved by [19].

Let λm, 1 and λm, 2 be less than 1 are two eigenvalues of the Stokes problem for angle ωm ∈ (ω∗, 2π).
Let τ = τ1 ∪ τ2 where τ1 =

{
m : 1

2 < λm, 1 < λm, 2 = 1
}

and τ2 =
{
m : 1

2 < λm, 1 < λm, 2 < 1
}
. The number

sm, i be define by sm, i = Reλm, i + 1 for all integers m, i. Let s1 = maxm∈τ1 sm, 1 and s2 = maxm∈τ2 sm, 2.

Set s? = max{s1, s2}.

Theorem 8. Let the domain Ω be a planar polygonal domain and Pm : m ∈ τ are its non-convex
vertices. If f ∈ H−1(Ω), g ∈ L2

0(Ω), then a unique weak solution v ∈ H1
0(Ω) and p ∈ L2

0(Ω) of the
problem (5.1) exists and satisfies the inequality for a positive constant C1

‖v‖1,Ω + ‖p‖0,Ω ≤ C1
(
‖f‖−1,Ω + ‖g‖0,Ω

)
. (5.2)

On contrary, for any number s with s? < s ≤ 2, if we presume that f ∈ Hs−2(Ω) and g ∈ H̄ s−1(Ω)
with the property that g is zero at the non-convex vertex g(Pm = 0) for m ∈ τ, then there exists some
constants Cm, j for j = 1, 2 : m ∈ τ, and a regular part [vr, pr] ∈ Hs

0(Ω) × H s−1(Ω). Therefore, the
solution [v, p] can be written as[

v, p
]

=
∑
m∈τ1

Cm, 1
[
Φm, 1, φm, 1

]
+

∑
m∈τ2

(
Cm, 1 [Φm, 1, φm, 1

]
+ Cm, 2

[
Φm, 2, φm, 2

])
+

[
vr, pr

]
,

(5.3)

where the pair [vr, pr] solves the generalized Stokes system and satisfies the following inequality for
any s ∈ (s?, 2]

‖vr‖s,Ω + ‖pr‖s−1,Ω +
∑
m∈τ1

|Cm, 1| +
∑
m∈τ2

(
|Cm, 1| + |Cm, 2|

)
≤ C1

(
‖f‖s−2,Ω + ‖g‖s−1,Ω

)
, (5.4)

such that the constant C1 = C1(Ω).

Finally, if f ∈ Hs−2(Ω), and g ∈ H̄ s−1(Ω) for 1 < s < minm∈τ sm, 1, then for some constant C1 the
solution [v, p] of the problem (5.1) holds the following regularity result

‖v‖s,Ω + ‖p‖s−1,Ω ≤ C1
(
‖f‖s−2,Ω + ‖g‖s−1,Ω

)
. (5.5)

Proof. For the proof, we refer [19]. But some clues are discussed here. First, one has to display the
regularity results of the stationary Stokes problem on a particular domain Ω, then have to extend these
results to generalized polygonal domains. Lastly, use the fixed point theory to obtain the regularity of
the problem (5.1). �
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As an application of Theorem 8, [20] has used the decomposition (5.3) to formulate the discrete
form of the Stokes system. [39] has developed the error estimates for the stress intensity factors
(unknown coefficients) and for the regular part, which based on the regularity result of (5.4). The
numerical examples for the convergence rates can be found in [20].

The next theorem represents the regular and singular decomposition of the solution and also the
H2 × H1 regularity of the stationary Stokes system. A specific bounded domain Ω (see Figure 3) is
considered whose boundary ∂Ω has only one non-convex vertex at the point O = (0, 0). Assume that
the opening angle ω ∈ (ω?, 2π) and analogous for the case of ω ∈ (π, ω?].

1 

2  


0

Figure 3. The bounded domain.

Theorem 9. Let Ω be a bounded domain as shown in (Figure 3). Let f ∈ H−1(Ω), g ∈ L2
0(Ω) are

given functions and the pair [v, p] ∈ H1
0(Ω) × L2

0(Ω) be the unique weak solution of the generalized
Stokes equation L[v, p] = [f, g] in Ω. Let [v, p] belongs to (H1

0 ∩ H2
loc) × (L2

0 ∩ H1
loc) for the pair

[f, g] ∈ L2 × (L2
0 ∩ H1

loc). Suppose that for a number r0 for 0 < r0 < r, the pair [v, p] = [0, 0] and the
solution can be defined as follows. Let s?4 = min{s4, 3}. For any s ∈ (s2, s?4 ], there exists two numbers
C01, C02 and a pair [vr, pr] ∈ Hs

0 × H s−1 for [f, g] ∈ Hs−2 × H̄ s−1 with g(O) = 0, then the solution can
be decomposed near the non-convex vertex O as

[v, p] = C01[Φ1, φ1] + C02[Φ2, φ2] + [vr, pr]. (5.6)

Let for angle ω ∈ (π, ω?], we can set C02 = 0. The coefficients C0 j : j = 1, 2, and the regular part
[vr, pr] in (5.6) are estimated by ∀ s ∈ (s2, s?4 ), and for a constant C1

‖vR‖s + ‖pR‖s−1 + |C01| + |C02| ≤ C1
(
‖f‖s−2 + ‖g‖s−1

)
. (5.7)

In specifically, we can set f0 = f, g0 = g and for i ≥ 1,

fi = f +

i∑
j=1

C0 j f s
j , gi = g +

i∑
j=1

C0 j gs
j,

where f s
j = µ∆Φ j − ∇φ j and gs

j = div Φ j. For j = 1, 2 the coefficients C0 j are written as

C0 j = Λ j[f, g] =

∫
Ω

f j−1 · u j + g j−1 q jdx. (5.8)
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Moreover, q j ∈ H1−s and u j ∈ H2−s, and are expressed as q j = γ j (φ−j +ψ j) and u j = γ j (Φ−j + Ψ j). Thus
the number γ j is defined as

1
γ j

=

∫ ω2

ω1

2λ j τ j(θ) · τ−j (θ) +
[
− ξ j(θ) τ−j (θ) + ξ−j (θ) τ j(θ)

]
· er dθ. (5.9)

The functions ψ j and Ψ j satisfies the equations L[Ψ j, ψ j] = [f−j , g−j ] in Ω,

Ψ j = −Φ−j on ∂Ω,
(5.10)

excepting the origin point O where [f−j , g−j ] = −L[Φ−j , φ
−
j ]. From (5.6)–(5.7), it is recognized that if

f ∈ Hs−2 and g ∈ H̄ s−1 for 1 ≤ s < s1, then the subsequent estimate holds for a some constant C1

‖v‖s + ‖p‖s−1 ≤ C1
(
‖f‖s−2 + ‖g‖s−1

)
. (5.11)

Proof. This theorem has been proved in five steps for s ∈ (s2, s?4 ] when the opening angle ω have
values ω ∈ (ω?, 2π) and the analogous for the case of opening angle ω ∈ (π, ω?]. The complete proof
can be seen in [19]. �

Remark 3. The mapping Λ j defined by equation (5.8) is a continuous linear functional on Hs−2 ×

H s−1, s ≥ s j and the following approximation holds

|Λ j [f, g]| ≤ C
(
‖f‖s−2 + ‖g‖s−1

)
.

In the next theorem, the stationary Navier-Stokes equations with the formulation of fluid variables
vorticity, velocity, and pressure are considered and the existence and regularity results have shown.
The construction of these fluid variables can be found in [4, 31, 32]. The results have been found in a
bounded plane polygonal domain and the non-standard or Stokes type boundary conditions have been
considered with convex and concave corners. To construct the corner singularity functions, Stokes
operator has considered in an infinite sector domain with zero normal velocity and zero vorticity
boundary conditions. The solution is obtained by splitting the leading singularities and has increased
the regularity of the remainder.

The velocity, vorticity, and pressure formulation of the Navier-Stokes equations with non-standard
boundary conditions are considered as

ν curlω + ∇(p + 1
2 |v|

2) − ωv⊥ = f in Ω,

ω = curl v, ∇ · v = 0 in Ω,

v · n = v0 · n, ω = ω0 on Γa,

v · t = v0 · t, p0 = p + 1
2 |v|

2 on Γb,

v = v0 on Γc,

(5.12)

where ω, v and p is known as scalar vorticity, velocity vector and pressure function. Let v⊥ = [v, −u]t

is the perpendicular velocity. The number ν is known as viscosity, i.e., ν > 0, n is the unit normal
vector and t is the unit tangential vectors on the boundary. Let v0, p0, ω0 are given functions and Ω

be a bounded domain whose boundary has non-convex and convex vertices. The boundary Γ = ∂Ω is
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formed by disjoint and open subsets Γ = Γa∪Γb∪Γc. The physical meaning of the boundary conditions
can be seen in [5, 8, 59, 77].

The main goal is to examine the singular behavior of the solution structure near the non-convex
vertex. Before going to describe the main results of this problem, some information about the corner
singularity theory is given for the later use.

Let Φi be define the corner singularity functions, m is the number of corner singularities, and si be
the order of the regularity. Let the number m? be defined via m? = max{i : d1 ∈ Hs−2, s > si} where
d1 = Φ⊥1 curl Φ2 for β ∈ (π, 3π

2 ] and d1 = Φ⊥1 curl Φ3 for β ∈ (3π
2 , 2π). Let m? = 2 for β = 3π

2 and m = m?

when β , 3π
2 . Let us consider the following Hilbert spaces

H(div, curl,Ω) = {u ∈ L2(Ω)2 : curl u ∈ L2(Ω), ∇ · u ∈ L2(Ω)},

M = {u ∈ H(div, curl,Ω) : u · t|Γb∪Γc = u · n|Γa∪Γc = 0},

Mb = {u ∈ H(div, curl,Ω) : u · n|Γb∪Γc = u0 · t, u · n|Γa∪Γc = u0 · n},

and
N = {u ∈ L2(Ω)2 : ∇u ∈ M′},

where ′ means the dual space and the norm is defined as

‖u‖M = (‖u‖20 + ‖∇ · u‖20 + ‖curl u‖20)
1
2 .

Theorem 10. Suppose that if f ∈ L2(Ω), [v0, p0] ∈ H2 × H1, then there exists a unique weak solution
[ω, v, p] ∈ L2 ×Mb × L2 of problem (5.12). For any constant K1 > 0, a constant K2 > 0 exists such
that the following estimates holds

‖f‖0 + ‖p0‖1 + ‖v0‖2 ≤ K1, (5.13)

and
‖f − ∇p0‖0 + ‖∇ · v0‖1 + ‖curl v0‖1 + ‖v0‖2 ≤ K2. (5.14)

Then there exists a pair [vr, pr] ∈ (H2 ∩M) ×H1 and a pair [Ψ, ψ] ∈ (Hs ∩M) ×H s−1 for s ∈ (sm?
, 2)

and a constant Ci ∈ R
m, i = 1, 2, ...m, such that

v = χ

m∑
i=1

CiΦi + Ψ + vr + v0,

p +
1
2
|v|2 = χ

m∑
i=2

Ciφi + ψ + pr + p0,

(5.15)

where the coefficients C1 = Λ1 [f(v, v), ∇ · v0] and C2, ...,Cm are defined by[
f̂, ĝ

]
= [∆v0 − ∇p0 + f, ∇ · v0],

Ci = C?i + Λi [f̂, ĝ], (i = 1, ...m),
(5.16)

and the auxiliary singular functions [Ψ, ψ] are defined as

[
Ψ, ψ

]
= S[b1, 0] − χ

m?∑
i=1

Λi [b1, 0][Φi, φi]. (5.17)
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Thus, the following regularity result holds

‖vr‖2 + ‖pr‖1 + |Ψ|s + |ψ|s−1 +

m∑
i=1

|Ci| ≤ k3, (5.18)

where the constant k3 = C(K1,K2). The vorticity ω = curl v can be defined by the vector function v
given in (5.15).

Proof. For the proof, we refer to the readers [77]. �

6. Conclusion and future work

It is known from the theory of elliptic boundary value problems in domains with boundary
irregularities, like corners, conic vertices, edges, and cracks, etc., the solution may exhibit
singularities. Generally, the flows over corners usually change their behaviors and properties as a
result of an abrupt geometrical change in the shape. In this article, we have provided a historical
review of the treatment of corner singularity expansion and regularity of the solution of the stationary
Stokes and Navier-Stokes equations on polygonal domains with non-convex or convex corners. It
covers the recent developments in this field and also presents some future directions which can be
explored.

Several interesting results about the regularity of the solution of the boundary value problems
cannot be extended if one of the following situations appears: Domain has corners or edges on the
boundary, change of the boundary conditions at some points, discontinuity of the solution and
singularities of the coefficients. The general theory on H2-regularity for linear elliptic boundary value
problems states that the generalized solution of the stationary Stokes problem for the velocity field
and pressure for two or three-dimensional domain Ω with corner or edge singularities and for any
right-hand side function f ∈ L2(Ω) can be decomposed into sum of a singular and a regular part. The
corners or edges in the domain Ω do not affect the behavior of the regular part, where the singular part
is expressed by a linear combination of explicit model singular solutions sm for the Stokes operator
and the unknown coefficients cm. The special singular functions sm rely on the geometry of the model
problem, the differential operator and the characteristic boundary conditions. The derivation of the
rigorous formulas for the estimation of the unknown coefficients cm is of constant interest and a
challenging task. In two-dimensional domains with corners or the polyhedral vertices and the case
with conical points, the space of the singularity solutions is finite-dimensional. The asymptotic
expansion of the solution of the boundary value problems on a (non-convex) polygon plays an
important role to describe the regularity behavior of the solution accurately. The information about
the singularity functions in non-smooth domains can help to improve the rate of convergence of the
numerical methods for approximations.

At present, the Navier-Stokes equations with the Navier-slip boundary conditions and the
free-boundary problems in domains with corners have very interesting phenomena. The issues
regarding their existence and regularity are considered for smooth domains but the theoretical results
for the corner singularity decomposition are still not achieved. Therefore, these issues are numerically
interesting and important in future works to show the unique existence of the approximations for the
regular parts and the coefficients, and derive their error estimates.
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On the other hand, it is also observed that a complete mathematical analysis of the existence and
regularity results of the compressible Stokes and Navier-Stokes equations on polygonal or polyhedral
domains with corners or edges have not been given yet. Various questions are still open for domains
with singular boundaries like a complete existence and the regularity analysis for the 3D compressible
Stokes and Navier-Stokes equations in polyhedral domains. The solution of the 3D problem for the
polyhedral domain has both the edge and vertex singularities. The edges of the domain generate edge
singularities and where these edges meet vertex singularities are generated. Likewise, the
non-stationary compressible Stokes and Navier-Stokes equations on polygonal domains could be
considered. In this case, the corner singularity corresponds to each time, and so the corner singularity
involved space is infinite-dimensional. Further, as the distance to the vertices increases, the
coefficients of the singularities at corners decay exponentially. As a result, the derivatives of the flow
variables can blow up along the trajectory curves starting near each non-convex vertices. Therefore,
the dynamical behaviors will be abruptly changed there.

Additionally, the jump discontinuities and its piecewise regularity in the initial jump data for linear
problems have been constructed in rectangular domains. The major difficulty is to find the solution
and its regularity to controlling the gradient of pressure function around the interior curve starting
at the jump point that the inflow datum has. To resolve this issue, a vector function is constructed
for an interior jump of the pressure function. Splitting this vector function from the velocity vector
and the remainder formulates a boundary value problem. However, the issues regarding the jump
discontinuities and piecewise regularity for nonlinear problems with the domains such as rectangular
domain containing an interior cut, cavity region (T-shaped cavity), and a vertex (cone-like) circulation,
etc., are challenging tasks for future works. As the driven cavity flows display all phenomena that
can probably arise in compressible or incompressible flows. The most important trigger of them is the
corner. Moreover, the important mathematical issues for handling the flow behaviors mainly depends
on the corner singularity behaviors at the front and rear corners, the differences (jump discontinuities)
between the exterior and interior flows of the domain. These issues can be resolved by determining
the singular behaviors at the corners and establishing the piecewise regularities for the continuity and
momentum equations.
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32. F. Dubois, M. Saläun, S. Salmon, Vorticity-velocity-pressure and stream function-vorticity
formulations for the Stokes problem, J. Math. Pure. Appl., 82 (2003), 1395–1451.

33. M. Durand, Singularities in elliptic problems, In: Singularities and Constructive Methods for
Their Treatment, Berlin: Springer, 1985, 104–112.

34. M. Elliotis, G. Georgiou, C. Xenophontos, The solution of Laplacian problems over L-shaped
domains with a singular function boundary integral method, Commun. Num. Meth. Eng., 18
(2002), 213–222.

35. L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 2010.

36. M. Feistauer, Mathematical Methods in Fluid Dynamics, Chapman and Hall/CRC, 1993.

37. G. Georgiou, A. Boudouvis, A. Poullikkas, Comparison of two methods for the computation of
singular solutions in elliptic problems, J. Comput. Appl. Maths., 79 (1997), 277–287.

38. D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer,
2015.

39. V. Girault, P. A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and
Algorithms, Springer Science and Business Media, 2012.

AIMS Mathematics Volume 5, Issue 1, 440–466.



463
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