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1. Introduction

Let A denote the class of all functions f which are analytic in the open unit disk
U={z:z€eC and |7<1}
and normalized by the following condition:

fO)=0=f(0)-1,
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that is, a function f € A has the following Taylor-Maclaurin series representation:
f(z)=z+2anz" (ze ). (1.1)
n=2

Let S be the subclass of A consisting of all univalent functions in U.
We denote the class of starlike functions by S*, which is the usual subclass of the normalized
univalent function class S. That is, S* consists of functions f € A that satisfy the following inequality:

zf’ ()
y\(f(z))>0 (z € U).

We now recall some basic definitions and concept details of the g-calculus, which are used in this
paper. We suppose throughout the paper that 0 < g < 1 and that

N={1,2,3,...} =Ny \ {0} (Np=1{0,1,2,...}).

Definition 1.1. Let g € (0, 1) and define the g-number [1], by

l—q’l

(1eC)
l-¢g
[1], =
n—1
Sg=1+g+¢@+..+¢"" (A=neN).
k=0
Definition 1.2. Let g € (0, 1) and define the g-factorial [n],! by
1 n=0
(7! =4 .
[1 [k, n e N.
k=1

Definition 1.3. Let g € (0, 1) and define g-generalized Pochhammer symbol by

1 (n=0)
([t]q)n = n
[1[z+k], (n € N).
k=0
We note that
([t]q)n = 1], (It + 1]q)n_1 (n € N) (1.2)
and .
(1), 2(11,) (e (13)

Definition 1.4. For 7 > 0, let the g-gamma function be defined by
r,e+1)=[,I[,®» ad TI,(1)=1
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Definition 1.5. (see [9] and [10]; see also [1,20] and [27]) The g-derivative (or the g-difference)
operator D, for a function f € A in given subset of C is defined by

f((zl):f)(qZ) 20
D,f (2) = < (1.4)
£ (z=0),

provided that f” (0) exists.
We deduce from Definition 1.5 that

hm( qf) @) = ;]_(f(Z) - f(q2)

I-9z

for a differentiable function f in a given subset of C. It can be easily seen from (1.1) and (1.4) that

)=f'(z)

(Df) @ =1+ ) [l a2 (1.5)

n=2

In geometric function theory, the operator D, (see Definition 1.5) provides an important tool that has
been used in order to investigate various subclasses of the class S of normalized univalent functions.
Historically speaking, Ismail et al. (see [8]) were the first who introduced a g-analogue of the class
S* of normalized starlike functions in U (see Definition 1.6 below). However, an important usage of
the g-calculus in the context of geometric function theory was actually provided and the basic (or g-)
hypergeometric functions were first used in geometric function theory in a book chapter by Srivastava
(see, for details, [22, pp. 347 et seq.] (see also some more recent works [13,24].

Definition 1.6. (see [8] and [27]) A function f € A is said to belong to the class S; if

fO)=0=f0)-1 (1.6)
and
( qf)(z)——‘ S, e (1.7)
It is readily observed that, as ¢ — 1—, the closed disk
‘ 1 < 1
! el gy

becomes the right-half complex plane and the class S; reduces to the above-mentioned well-known
class S* of normalized starlike functions in U.

We note that the notation S; was first used by Sahoo and Sharma (see [19]).

We now recall the familiar Mittag-Lefller function E,(z) (see [14]) and its two-parameter extension
E, (z) having similar properties to those of the Mittag-Leffler function E,(z) (see [28] and [29]), which
are defined (as usual) by means of the following series:

p— N Zn .
E.(2) = ZO Fasy @€Ca>0 (1.8)
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and

E,p5(z) = zeCya>0;, p>0), (1.9)

s I'(an +pB)
respectively. For a detailed account of the properties, generalizations and applications of the functions

in (1.8) and (1.9), one may refer to [6,7,17,25].
The above-defined Mittag-Leffler functions E,(z) and E, s(z) can be normalized as follows:

I (ﬁ) n+l

n+,8) (zeU; a>0; >0).

Eop(2) = & (B) Eap(2) = Z Fa

We note that
(E“ﬁ)o @)=z

(1.10)
(Eop) @ =2+ z] W, (jEN),
where F(,B)
F(cm+,8) (>0; >0neN).

Geometric properties including starlikeness, convexity and close-to-convexity for the Mittag-Leffler
function E,z(z) were investigated by Bansal and Prajapat in [3] and, more recently, by Srivastava
and Bansal (see [24]). In fact, the generalized Mittag-Lefller function E,(z) and its extensions and
generalizations continue to be used in many different contexts in geometric function theory (see, for
details, [23]).

The g-Mittag-Leffler function 9, 5 (z; ¢) is normalized as follows (see, for example, [21]):

N B
Mo p (9) = 20, (B) Ea L 7, 1.11
2GD =L BB = ) (111)
(ZEC; al>0a ﬁeC\{ s ’_2’-"})~
Some special cases of the normalized g-Mittag-Leffler function M, g (z; ) are listed below:
Mog (2:9) = 1=
My (z39) = zeg,
Mip(zg) =€, -1
(1.12)
(€ -z-1)1+q)
M5 (z9) =
(1+q)(1+q+4)
Mia(z59) = 2 (e —Z—l—ﬁzq)
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where e is one of the g-analogues of the exponential function e°, which is given by
(see [25, p. 488, Eq. 6.3 (7)])

< N Zn
S P an— 113
“ Z:; T,(n+1) (119

Recently, several results were given such as those related to partial sums of special functions, such
as the Struve function [30], meromorphic functions (see [11] and [2]), the Bessel function [15], the
Lommel function [4] and the Wright functions [5]. Several other works dealing with partial sums
of various subclasses of the analytic function class A, the interested reader may refer (for example)
to [12,16] and [26].

Motivated by the above-mentioned results, in this paper we investigate the ratio of the normalized
g-Mittag-Lefller function I, 5 (z; ¢) defined by (1.11) to its sequence of partial sums:

(Map), (z9) = 2
. (1.14)
(Mg) @) =2+ 5 K™ (e,

n=1
where
Iy, (B)

”:Fq(an+,8) (>0, B>0ne€N).

We obtain the lower bounds on such ratios as those given below:
M5 (23 q) (Ema,/s)j (z:9)
R{— =2 o w7
(gﬁa,ﬁ)j (z:9) Mo (z:9)

%{ DM (2:9) } N {Dq(ima,ﬁ)j(z;q)}.

Dy (o) @ DM p (2 q)

2. Main results

The following lemma will be required in order to derive our main results.

Lemma 2.1. Let g € (0,1), @ 2 1 and 2 1. Then the function M, g (z; q) satisfies the following

inequalities:

l+(qB+q—3)qﬁ+1
(1-¢*¢q

Mg (23 9)| < 2.1)

and

6+ g%+ 3¢ -5 +2¢° - 1q

DM (5 )| < =)

(2.2)

Proof. It is well-known that
Lye+p) T (an+p).
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Therefore, we have

r r 1
. B p B (_ ) ' 2.3)
I,(an+pB) ~ T'y(@+p) [,B]q .
By making use of (1.3), (2.3) and well-known triangle inequality for (z € U), we find that
E}Jta q n+1
Vs )] = ZF(an+ﬁ) ZF(a/n+,B)
<2l
00 00 n—1
1 1 1 1
= — —_— <1+
“mlE), 2l
- ( 1 ) +(¢ +q- 3)(1‘“‘
= 1 + — Z =
18], =\ B+ 1], (1-¢*¢q
Hence, the inequality (2.1) is proved. Similarly, we can prove the inequality (2.2). O

Let w(z) denote an analytic function in U. In the proof of our main results, the following well-known

result will be used frequently:
1+w(z)
RI——+ >0
{ 1-w (z)}

w@|<1 (ze€U).

if and only if

Theorem 2.2. Let g € (0,1), @ 2 1 and B 2 5. Then

. P -qg-1)+2¢g-1
w] Busio) | @7 2)+ T e 2.4)
(Mep) @ 0) (1-¢* q
and ( ) ,
gﬁa,ﬁ (Z,CI) (l—qﬂ) q
J
‘R{ TR }Z o — (zeU). (2.5)
Proof. From the inequality (2.1), we obtain
00 1 _ 3 +1
1+ZK§ +(qﬁ+q 2)QH , whereKn:rq—(ﬂ) (n € N),
= (1-¢")q Iy (an + )

which is equivalent to
2
1-¢°) q
(1-4) Z K<l
1 — q- q,B+1 + qﬂ+2
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In order to prove the inequality (2.4), we set

(1_qﬁ)2q My p(259) _C]ﬁ+1(qﬁ—q—1)+2q—l
1 —gq—gb+! + gP*2 (Emw)j @ q) (- ¢fPq

J 1- 2 R
[IRED ) LN G DK ) %

n=1 n=j+1

J
1+ > K,z

n=1

3 1+w(2)
T 20

where

(l_qﬁ)zq o n
l—q—qﬁﬂ +qﬁ+2 n:%:_H KnZ

w(z) = .
) ; (-#)a =
2423 K, 2"+ ——51—5 ., K,Z"

1—g—gBtl +gP+2
n=1 9~ +q n=j+1

and
(-¢)'q

——t— 2. K
1—g— B+1 B+2 n
¢+ n=j+1

w () < —
2—2éKn—M Y K,
n=1

1—g— L+1 B+2
O

The inequality [w (z)| < 1 holds true if and only if

(1-¢)q

e Z Knﬁl—ZK

n=j+1 n=1

or, equivalently,

! 1-¢) q
ZK”+1_( q,8+? qﬁ+ZZK"§1 2.7)

n= n=j+1

To prove (2.7), it suffices to show that its left-hand side is bounded above by

(1-4)a <

E K
_ _ 1 2 ny
1-q-¢*" + ¢ &=

which is equivalent to

P (F-q-1)+2q-1Y

1 - q- q,B+1 qﬂ+2

Z K, 2 0. (2.8)

We see that the inequality (2.8) holds true for 5 = %3
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We next use the same method to prove the inequality (2.5). Consider the function w(z) given by

L e [ Eo (=)

1—g—¢ + ¢ | Mup@q) L+¢ (¢ +q-3)

/ (SO
1+ ) K" ———F5t—>5 >, K.Z"
by B I=q-g g2 n=j+1 "
= (o)
1+ > K,z
n=1
_1+w(2) (2.9)
1-w()’ ’
where
1+¢# 1 (FP+q-3) &
TP :%1 K,7"
w(z) = ; =
n q2ﬁ+1_qﬁ+2_qﬁ+l+2q_1 n
2+2 ngl K,z 1—q—gP* +¢P+2 n:%:+l Kz
and
1+¢# 1 (FP+q-3) &
T o K

n=j+1

w (@) <

2 _ 2 é Kn _ q2ﬁ+1_q/3+2_qﬁ+1+2q_1 i Kn

n=1 I-q-g™l+gt o S
Therefore, we get |w (z)| < 1 if and only if

(1-4)a

bl J
1 —g— gt + g2 Z Kn+an§1.

n=j+1 n=1

As the left-hand side of the last inequality is bounded above by

(1-4) 4

K
—g— 1 22 "
1-g-¢*" + ¢+ &

we are led immediately to the assertion (2.5) of Theorem 2.2. Now we have completed the proof of
Theorem 2.2. O

In its special case, if we let ¢ — 1—, Theorem 2.2 yields the following corollary.

Corollary 2.3. (see [18]) Leta > 1 and B = “T‘B Then

2 _ 3
x| Les > P '/j L cew
(Eas), @ B

Eap) )
%{( ﬁ)ﬂ}> P vew

and

E.3(@) |~ B +B+1
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We next turn to the ratios involving derivatives.

Theorem 2.4. Let g € (0,1), @ 2 1 and B2 ¥V Then

DM, 5 (z: 2B _ 3B+ —2* +7g -4
R eMap (23q) > 4 ¢+ 2q+q el
D, (Emaﬁ)j (z;9) (1-4¢°)
and 5
% Dq(”a,ﬁ)j(z;q) N (1-¢%) q -
DM,s(z5q) |~ 6+¢% +3¢°" —5¢° +2¢*> - 1q (el

Proof. From the inequality (2.2), we have

1+i[n+1] K L O0+aP 3¢ 54+ 247 - T
q n = ’

5 (1 - ¢y’
where r. ()
= m (n € N).
Equivalently, we can rewrite the condition in (2.12) as follows:
(1-4) .

Z[n+1]qK,,§l.

n=1

54 3¢ - 3¢8 +2¢%* - Tq

In order to prove the inequality (2.10), we consider the function w (z) defined by

(1-9)

54 3¢ = 3¢8 + 2¢%> - Tq

quta,ﬁ (Z; Q)
Dq (gﬁaﬂ)j (Z; Q)
_qzﬁ -3¢ + ¢ -2¢° + g —4]

(1-¢)

J
1+ 3 [n+1], K, 72" +
n=1

(1-¢) s ,
53 34247 —1q n:al [+ 1], Knz

J
L+ X [n+1],K,2"

n=1

_1+w(z)
T l-w()

From (2.13), we have

D) S 1, K
1

54381 -3¢P+242-7q ept

w =
(2) (l—q/’)z o Ko
5+3¢P1 -3¢ +2¢%-1q n:§+l [ + ]q n<

j
2+2 % [n+1], K, 2" +

n=1

(2.10)

(2.11)

(2.12)

(2.13)
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or, equivalently

(1-¢)° s
SRP 3Py _%1 [n+ 1], K,

w(z) = )
1—
- 543¢P+1-3gP+2¢%*-7q

S [n+1],K,

n=j+1

J
2-2% n+1],K,

n=1

The inequality |w (z)| < 1 holds true if and only if

. 2
f (I
Z[n+l]qKn+5+3qﬁ+l_3qﬁ+2q2_7q > n+11,K, S 1.

n=1 n=j+1

The left-hand side of the above inequality is bounded above by

(-a)

5+ 3¢5+ —=3¢F +2¢% - Tq Z 4 1 Ko

n=1

which is equivalent to

g -3¢ + ¢ - 24> + g - 4
5+43¢°" - 3¢8 +2¢%> - Tq

J
D n+11,K,20. (2.14)
n=1

The inequality in (2.14) holds true for g = %ﬁ
We next use the same method to prove the inequality (2.5). Consider the function w(z) given by

D, (Mo p) [@a)
DM,z (z;q)

(1-4) ]

6+ g% +3¢°" - 5¢° + 24> - 1q
54 3¢5 = 3¢8 +24%> - g

6+ g8 + 3¢ = 5¢F +2¢> - Tq

L4 3 It 11,K2 — e 5 s 1], K,
= q Bl T 53 38057 ey q B’nZ

143 [+ 1], K2

n=1
_1+w(z)

= 1——W(Z) (2.15)

By using Eq. (2.15), we obtain

6+¢%8 4351 5427~ 1g < n
5+3PH 3P +247—1q n—%:+1 [n+ l]q K,z

w(z) = ,

J B o prl oo
q —3q6 +qP-2q2+7q—4
2 + 2 ng] [I’l + l]q anl’l - 5+3q/3_3q5+2q2_7q n§+1 [n + l]q ann
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which is equivalent to

6+ +3¢5 =540 424214 E’: n+1], K,

5431 -3¢P+242-1q e

w(2)| < I — =
2223 [n+ 1], K, — L2l te2nad 5y 4 ) K,

3 B+1_3 B 2_
= 5+3¢ 3¢P+2q°-Tq el

The inequality |w (z)| < 1 holds true if and only if

2(1-¢) S

j
5+ 345 — 34 + 24— 1q Z [”+1]qKn§2—ZZ[n+1]qKn

n=j+1 n=1

or, equivalently,

(1-¢) S

J
D I+ 11K, + ST 3T D In+11,K, < 1.

n=1 l’l:j+1

It now suffices to show that the left-hand side of (2.16) is bounded above by

(1-¢) <
5+3q,8+1 _3q5+2q2_7q Z [l’l+1]qKn,

n=j+1

which is equivalent to

g =3¢ +F -2 +7g—-4
54 3¢ - 3¢8 +2¢%> - g

D In+11,K,20.

n=j+1

This last inequality holds true for 5 = 3++E Hence we complete the proof of Theorem 2.4.

Upon letting ¢ — 1—, Theorem 2.4 yields the following known result.

Corollary 2.5. (see [18]) Leta > 1 and B = “T‘B Then

E, ;) B-33-2
(Ea,ﬁ); (Z) ’82

1\

(zeU)

and

(Eag) @ 5
E,,@ |~p+36+2

\%

(ze€U).

(2.16)
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