http://www.aimspress.com/journal/Math

AIMS Mathematics, 5(1): 408-420.

DOI:10.3934/math.2020028 Received: 04 October 2019

Accepted: 25 November 2019 Published: 02 December 2019

Research article

Partial sums of generalized q-Mittag-Leffler functions

Muhammad Sabil Ur Rehman¹, Qazi Zahoor Ahmad^{1,*}, Hari M. Srivastava^{2,3,4}, Bilal Khan⁵ and Nazar Khan¹

- ¹ Department of Mathematics, Abbottabad University of Science and Technology, Abbottabad, Pakistan
- Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada
- ³ Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan, Republic of China
- ⁴ Department of Mathematics and Informatics, Azerbaijan University, 71 Jeyhun Hajibeyli Street, AZ1007 Baku, Azerbaijan
- School of Mathematical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
- * Correspondence: Email: zahoorqazi5@gmail.com; Tel: +923349660162.

Abstract: In the present investigation, our main aim is to give lower bounds for the ratio of some normalized q-Mittag-Leffler function and their sequences of partial sums. We consider various corollaries and consequences of our main results.

Keywords: univalent functions; analytic functions; partial sums; q-derivative (or q-difference) operator; normalized q-Mittag-Leffler function

Mathematics Subject Classification: Primary 05A30, 30C45; Secondary 11B65, 47B38

1. Introduction

Let \mathcal{A} denote the class of all functions f which are analytic in the open unit disk

$$\mathbb{U} = \{ z : z \in \mathbb{C} \quad \text{and} \quad |z| < 1 \}$$

and normalized by the following condition:

$$f(0) = 0 = f'(0) - 1,$$

that is, a function $f \in \mathcal{A}$ has the following Taylor-Maclaurin series representation:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \qquad (z \in \mathbb{U}).$$
 (1.1)

Let S be the subclass of \mathcal{A} consisting of all univalent functions in \mathbb{U} .

We denote the class of starlike functions by S^* , which is the usual subclass of the normalized univalent function class S. That is, S^* consists of functions $f \in \mathcal{A}$ that satisfy the following inequality:

$$\Re\left(\frac{zf'(z)}{f(z)}\right) > 0 \qquad (z \in \mathbb{U}).$$

We now recall some basic definitions and concept details of the q-calculus, which are used in this paper. We suppose throughout the paper that 0 < q < 1 and that

$$\mathbb{N} = \{1, 2, 3, ...\} = \mathbb{N}_0 \setminus \{0\}$$
 $(\mathbb{N}_0 = \{0, 1, 2, ...\})$.

Definition 1.1. Let $q \in (0, 1)$ and define the q-number $[\lambda]_q$ by

$$[\lambda]_q = \begin{cases} \frac{1-q^{\lambda}}{1-q} & (\lambda \in \mathbb{C}) \\ \sum\limits_{k=0}^{n-1} q^k = 1 + q + q^2 + \dots + q^{n-1} & (\lambda = n \in \mathbb{N}). \end{cases}$$

Definition 1.2. Let $q \in (0, 1)$ and define the q-factorial $[n]_q!$ by

$$[n]_q! = \begin{cases} 1 & n = 0 \\ \prod_{k=1}^n [k]_q & n \in \mathbb{N}. \end{cases}$$

Definition 1.3. Let $q \in (0, 1)$ and define q-generalized Pochhammer symbol by

$$\left([t]_q\right)_n = \begin{cases} 1 & (n=0) \\ \prod\limits_{k=0}^n [t+k]_q & (n\in\mathbb{N}). \end{cases}$$

We note that

$$\left([t]_q\right)_n = [t]_q \left([t+1]_q\right)_{n-1} \qquad (n \in \mathbb{N})$$
(1.2)

and

$$([t]_q)_n \ge ([t]_q)^n \qquad (n \in \mathbb{N}). \tag{1.3}$$

Definition 1.4. For t > 0, let the *q*-gamma function be defined by

$$\Gamma_q(t+1) = [t]_q \Gamma_q(t)$$
 and $\Gamma_q(1) = 1$.

Definition 1.5. (see [9] and [10]; see also [1,20] and [27]) The q-derivative (or the q-difference) operator D_q for a function $f \in \mathcal{H}$ in given subset of \mathbb{C} is defined by

$$D_{q}f(z) = \begin{cases} \frac{f(z) - f(qz)}{(1 - q)z} & (z \neq 0) \\ f'(0) & (z = 0), \end{cases}$$
 (1.4)

provided that f'(0) exists.

We deduce from Definition 1.5 that

$$\lim_{q \to 1^{-}} \left(D_q f \right)(z) = \lim_{q \to 1^{-}} \left(\frac{f(z) - f(qz)}{(1 - q)z} \right) = f'(z)$$

for a differentiable function f in a given subset of \mathbb{C} . It can be easily seen from (1.1) and (1.4) that

$$(D_q f)(z) = 1 + \sum_{n=2}^{\infty} [n]_q a_n z^{n-1}.$$
 (1.5)

In geometric function theory, the operator D_q (see Definition 1.5) provides an important tool that has been used in order to investigate various subclasses of the class S of normalized univalent functions. Historically speaking, Ismail et al. (see [8]) were the first who introduced a q-analogue of the class S^* of normalized starlike functions in \mathbb{U} (see Definition 1.6 below). However, an important usage of the q-calculus in the context of geometric function theory was actually provided and the basic (or q-) hypergeometric functions were first used in geometric function theory in a book chapter by Srivastava (see, for details, [22, pp. 347 et seq.] (see also some more recent works [13, 24].

Definition 1.6. (see [8] and [27]) A function $f \in \mathcal{H}$ is said to belong to the class \mathcal{S}_q^* if

$$f(0) = 0 = f'(0) - 1 \tag{1.6}$$

and

$$\left| \frac{z}{f(z)} \left(D_q f \right) (z) - \frac{1}{1 - q} \right| \le \frac{1}{1 - q} \qquad (z \in \mathbb{U}). \tag{1.7}$$

It is readily observed that, as $q \to 1$ -, the closed disk

$$\left| w - \frac{1}{1 - q} \right| \le \frac{1}{1 - q}$$

becomes the right-half complex plane and the class S_q^* reduces to the above-mentioned well-known class S^* of normalized starlike functions in \mathbb{U} .

We note that the notation S_q^* was first used by Sahoo and Sharma (see [19]).

We now recall the familiar Mittag-Leffler function $E_{\alpha}(z)$ (see [14]) and its two-parameter extension $E_{\alpha,\beta}(z)$ having similar properties to those of the Mittag-Leffler function $E_{\alpha}(z)$ (see [28] and [29]), which are defined (as usual) by means of the following series:

$$E_{\alpha}(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(\alpha n + 1)} \qquad (z \in \mathbb{C}; \ \alpha > 0)$$
 (1.8)

and

$$E_{\alpha,\beta}(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(\alpha n + \beta)} \qquad (z \in \mathbb{C}; \ \alpha > 0; \ \beta > 0),$$
(1.9)

respectively. For a detailed account of the properties, generalizations and applications of the functions in (1.8) and (1.9), one may refer to [6,7,17,25].

The above-defined Mittag-Leffler functions $E_{\alpha}(z)$ and $E_{\alpha,\beta}(z)$ can be normalized as follows:

$$\mathbf{E}_{\alpha,\beta}(z) = z\Gamma(\beta)\,E_{\alpha,\beta}(z) = \sum_{n=0}^{\infty} \frac{\Gamma(\beta)}{\Gamma(\alpha n + \beta)} z^{n+1} \qquad (z \in \mathbb{U}; \ \alpha > 0; \ \beta > 0)\,.$$

We note that

$$\begin{cases}
\left(\mathbf{E}_{\alpha\beta}\right)_{0}(z) = z \\
\left(\mathbf{E}_{\alpha\beta}\right)_{j}(z) = z + \sum_{n=1}^{j} \omega_{n} z^{n+1} \quad (j \in \mathbb{N}),
\end{cases}$$
(1.10)

where

$$\omega_n = \frac{\Gamma(\beta)}{\Gamma(\alpha n + \beta)}$$
 $(\alpha > 0; \beta > 0 \ n \in \mathbb{N}).$

Geometric properties including starlikeness, convexity and close-to-convexity for the Mittag-Leffler function $E_{\alpha,\beta}(z)$ were investigated by Bansal and Prajapat in [3] and, more recently, by Srivastava and Bansal (see [24]). In fact, the generalized Mittag-Leffler function $E_{\alpha,\beta}(z)$ and its extensions and generalizations continue to be used in many different contexts in geometric function theory (see, for details, [23]).

The q-Mittag-Leffler function $\mathfrak{M}_{\alpha,\beta}(z;q)$ is normalized as follows (see, for example, [21]):

$$\mathfrak{M}_{\alpha,\beta}(z;q) = z\Gamma_q(\beta) E_{\alpha,\beta}(z) = \sum_{n=0}^{\infty} \frac{\Gamma_q(\beta)}{\Gamma_q(\alpha n + \beta)} z^{n+1},$$

$$(z \in \mathbb{C}; \ \alpha > 0; \ \beta \in \mathbb{C} \setminus \{0, -1, -2, ...\}).$$
(1.11)

Some special cases of the normalized q-Mittag-Leffler function $\mathfrak{M}_{\alpha,\beta}(z;q)$ are listed below:

$$\mathfrak{M}_{0,\beta}(z;q) = \frac{z}{1-z}
\mathfrak{M}_{1,1}(z;q) = ze_q^z
\mathfrak{M}_{1,2}(z;q) = e_q^z - 1
\mathfrak{M}_{1,3}(z;q) = \frac{\left(e_q^z - z - 1\right)(1+q)}{z}
\mathfrak{M}_{1,4}(z;q) = \frac{(1+q)\left(1+q+q^2\right)}{z^2} \left(e_q^z - z - 1 - \frac{z^2}{1+q}\right),$$
(1.12)

where e_q^z is one of the q-analogues of the exponential function e^z , which is given by (see [25, p. 488, Eq. 6.3 (7)])

$$e_q^z = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma_q (n+1)}.$$
 (1.13)

Recently, several results were given such as those related to partial sums of special functions, such as the Struve function [30], meromorphic functions (see [11] and [2]), the Bessel function [15], the Lommel function [4] and the Wright functions [5]. Several other works dealing with partial sums of various subclasses of the analytic function class \mathcal{A} , the interested reader may refer (for example) to [12, 16] and [26].

Motivated by the above-mentioned results, in this paper we investigate the ratio of the normalized q-Mittag-Leffler function $\mathfrak{M}_{\alpha\beta}(z;q)$ defined by (1.11) to its sequence of partial sums:

$$\begin{cases}
\left(\mathfrak{M}_{\alpha,\beta}\right)_{0}(z;q) = z \\
\left(\mathfrak{M}_{\alpha,\beta}\right)_{j}(z;q) = z + \sum_{n=1}^{j} K_{n} z^{n+1} \quad (j \in \mathbb{N}),
\end{cases}$$
(1.14)

where

$$K_n = \frac{\Gamma_q(\beta)}{\Gamma_q(\alpha n + \beta)} \qquad (\alpha > 0, \ \beta > 0 \ n \in \mathbb{N}).$$

We obtain the lower bounds on such ratios as those given below:

$$\mathfrak{R}\left\{\frac{\mathfrak{M}_{\alpha\beta}(z;q)}{\left(\mathfrak{M}_{\alpha\beta}\right)_{j}(z;q)}\right\}, \quad \mathfrak{R}\left\{\frac{\left(\mathfrak{M}_{\alpha\beta}\right)_{j}(z;q)}{\mathfrak{M}_{\alpha\beta}(z;q)}\right\}$$

$$\mathfrak{R}\left\{\frac{D_{q}\mathfrak{M}_{\alpha\beta}(z;q)}{D_{q}\left(\mathfrak{M}_{\alpha\beta}\right)_{j}(z;q)}\right\}, \quad \mathfrak{R}\left\{\frac{D_{q}\left(\mathfrak{M}_{\alpha\beta}\right)_{j}(z;q)}{D_{q}\mathfrak{M}_{\alpha\beta}(z;q)}\right\}.$$

2. Main results

The following lemma will be required in order to derive our main results.

Lemma 2.1. Let $q \in (0,1)$, $\alpha \ge 1$ and $\beta \ge 1$. Then the function $\mathfrak{M}_{\alpha,\beta}(z;q)$ satisfies the following inequalities:

$$\left| \mathfrak{M}_{\alpha,\beta}(z;q) \right| \le \frac{1 + \left(q^{\beta} + q - 3 \right) q^{\beta+1}}{\left(1 - q^{\beta} \right)^2 q}$$
 (2.1)

and

$$\left| D_q \mathfrak{M}_{\alpha,\beta}(z;q) \right| \le \frac{6 + q^{2\beta} + 3q^{\beta+1} - 5q^{\beta} + 2q^2 - 7q}{\left(1 - q^{\beta}\right)^2}.$$
 (2.2)

Proof. It is well-known that

$$\Gamma_a(\alpha + \beta) \leq \Gamma_a(\alpha n + \beta)$$
.

Therefore, we have

$$\frac{\Gamma_q(\beta)}{\Gamma_q(\alpha n + \beta)} \le \frac{\Gamma_q(\beta)}{\Gamma_q(\alpha + \beta)} = \left(\frac{1}{[\beta]_q}\right)_n. \tag{2.3}$$

By making use of (1.3), (2.3) and well-known triangle inequality for $(z \in \mathbb{U})$, we find that

$$\begin{split} \left| \mathfrak{M}_{\alpha,\beta} \left(z; q \right) \right| &= \left| z + \sum_{n=1}^{\infty} \frac{\Gamma_{q} \left(\beta \right)}{\Gamma_{q} \left(\alpha n + \beta \right)} z^{n+1} \right| < 1 + \sum_{n=1}^{\infty} \frac{\Gamma_{q} \left(\beta \right)}{\Gamma_{q} \left(\alpha n + \beta \right)} \\ &< 1 + \sum_{n=1}^{\infty} \left(\frac{1}{\left[\beta \right]_{q}} \right)_{n} \\ &= 1 + \frac{1}{\left[\beta \right]_{q}} \sum_{n=1}^{\infty} \left(\frac{1}{\left[\beta + 1 \right]_{q}} \right)_{n-1} < 1 + \frac{1}{\left[\beta \right]_{q}} \sum_{n=1}^{\infty} \left(\frac{1}{\left[\beta + 1 \right]_{q}} \right)^{n-1} \\ &= 1 + \frac{1}{\left[\beta \right]_{q}} \sum_{n=0}^{\infty} \left(\frac{1}{\left[\beta + 1 \right]_{q}} \right)^{n} = \frac{1 + \left(q^{\beta} + q - 3 \right) q^{\beta + 1}}{\left(1 - q^{\beta} \right)^{2} q}. \end{split}$$

Hence, the inequality (2.1) is proved. Similarly, we can prove the inequality (2.2).

Let w(z) denote an analytic function in \mathbb{U} . In the proof of our main results, the following well-known result will be used frequently:

$$\Re\left\{\frac{1+w(z)}{1-w(z)}\right\} > 0$$

if and only if

$$|w(z)| < 1 \quad (z \in \mathbb{U}).$$

Theorem 2.2. Let $q \in (0,1)$, $\alpha \ge 1$ and $\beta \ge \frac{1+\sqrt{5}}{2}$. Then

$$\Re\left\{\frac{\mathfrak{M}_{\alpha,\beta}(z;q)}{\left(\mathfrak{M}_{\alpha,\beta}\right)_{i}(z;q)}\right\} \ge \frac{q^{\beta+1}\left(q^{\beta}-q-1\right)+2q-1}{\left(1-q^{\beta}\right)^{2}q} \qquad (z \in \mathbb{U})$$

$$(2.4)$$

and

$$\Re\left\{\frac{\left(\mathfrak{M}_{\alpha,\beta}\right)_{j}(z;q)}{\mathfrak{M}_{\alpha,\beta}(z;q)}\right\} \ge \frac{\left(1-q^{\beta}\right)^{2}q}{1+q^{\beta+1}\left(q^{\beta}+q-3\right)} \quad (z \in \mathbb{U}). \tag{2.5}$$

Proof. From the inequality (2.1), we obtain

$$1 + \sum_{n=1}^{\infty} K_n \le \frac{1 + (q^{\beta} + q - 3) q^{\beta + 1}}{(1 - q^{\beta})^2 q}, \quad \text{where } K_n = \frac{\Gamma_q(\beta)}{\Gamma_q(\alpha n + \beta)} \quad (n \in \mathbb{N}),$$

which is equivalent to

$$\frac{\left(1 - q^{\beta}\right)^{2} q}{1 - q - q^{\beta+1} + q^{\beta+2}} \sum_{n=1}^{\infty} K_{n} \le 1.$$

In order to prove the inequality (2.4), we set

$$\frac{\left(1-q^{\beta}\right)^{2}q}{1-q-q^{\beta+1}+q^{\beta+2}}\left[\frac{\mathfrak{M}_{\alpha,\beta}(z;q)}{\left(\mathfrak{M}_{\alpha,\beta}\right)_{j}(z;q)} - \frac{q^{\beta+1}\left(q^{\beta}-q-1\right)+2q-1}{(1-q^{\beta})^{2}q}\right]$$

$$=\frac{1+\sum_{n=1}^{j}K_{n}z^{n}+\frac{\left(1-q^{\beta}\right)^{2}q}{1-q-q^{\beta+1}+q^{\beta+2}}\sum_{n=j+1}^{\infty}K_{n}z^{n}}{1+\sum_{n=1}^{j}K_{n}z^{n}}$$

$$=\frac{1+w(z)}{1-w(z)},$$
(2.6)

where

$$w(z) = \frac{\frac{(1-q^{\beta})^{2}q}{1-q-q^{\beta+1}+q^{\beta+2}} \sum_{n=j+1}^{\infty} K_{n}z^{n}}{2+2\sum_{n=1}^{j} K_{n}z^{n} + \frac{(1-q^{\beta})^{2}q}{1-q-q^{\beta+1}+q^{\beta+2}} \sum_{n=j+1}^{\infty} K_{n}z^{n}}$$

and

$$|w(z)| < \frac{\frac{\left(1 - q^{\beta}\right)^{2} q}{1 - q - q^{\beta + 1} + q^{\beta + 2}} \sum_{n = j+1}^{\infty} K_{n}}{2 - 2 \sum_{n=1}^{j} K_{n} - \frac{\left(1 - q^{\beta}\right)^{2} q}{1 - q - q^{\beta + 1} + q^{\beta + 2}} \sum_{n = j+1}^{\infty} K_{n}}.$$

The inequality |w(z)| < 1 holds true if and only if

$$\frac{\left(1 - q^{\beta}\right)^{2} q}{1 - q - q^{\beta + 1} + q^{\beta + 2}} \sum_{n = j+1}^{\infty} K_{n} \le 1 - \sum_{n=1}^{j} K_{n}$$

or, equivalently,

$$\sum_{n=1}^{j} K_n + \frac{\left(1 - q^{\beta}\right)^2 q}{1 - q - q^{\beta+1} + q^{\beta+2}} \sum_{n=j+1}^{\infty} K_n \le 1.$$
 (2.7)

To prove (2.7), it suffices to show that its left-hand side is bounded above by

$$\frac{\left(1-q^{\beta}\right)^{2}q}{1-q-q^{\beta+1}+q^{\beta+2}}\sum_{n=1}^{\infty}K_{n},$$

which is equivalent to

$$\frac{q^{\beta+1}(q^{\beta}-q-1)+2q-1}{1-q-q^{\beta+1}+q^{\beta+2}}\sum_{n=1}^{j}K_n \ge 0.$$
 (2.8)

We see that the inequality (2.8) holds true for $\beta \ge \frac{1+\sqrt{5}}{2}$.

We next use the same method to prove the inequality (2.5). Consider the function w(z) given by

$$\frac{1+q^{\beta+1}\left(q^{\beta}+q-3\right)}{1-q-q^{\beta+1}+q^{\beta+2}} \left[\frac{\left(\mathfrak{M}_{\alpha,\beta}\right)_{j}(z;q)}{\mathfrak{M}_{\alpha,\beta}(z;q)} - \frac{\left(1-q^{\beta}\right)^{2}q}{1+q^{\beta+1}\left(q^{\beta}+q-3\right)} \right]
= \frac{1+\sum_{n=1}^{j}K_{n}z^{n} - \frac{\left(1-q^{\beta}\right)^{2}q}{1-q-q^{\beta+1}+q^{\beta+2}}\sum_{n=j+1}^{\infty}K_{n}z^{n}}{1+\sum_{n=1}^{\infty}K_{n}z^{n}}
= \frac{1+w\left(z\right)}{1-w\left(z\right)},$$
(2.9)

where

$$w(z) = \frac{-\frac{1+q^{\beta+1}(q^{\beta}+q-3)}{1-q-q^{\beta+1}+q^{\beta+2}} \sum_{n=j+1}^{\infty} K_n z^n}{2+2\sum_{n=1}^{j} K_n z^n - \frac{q^{2\beta+1}-q^{\beta+2}-q^{\beta+1}+2q-1}{1-q-q^{\beta+1}+q^{\beta+2}} \sum_{n=j+1}^{\infty} K_n z^n}$$

and

$$|w(z)| < \frac{\frac{1+q^{\beta+1}(q^{\beta}+q-3)}{1-q-q^{\beta+1}+q^{\beta+2}} \sum_{n=j+1}^{\infty} K_n}{2-2\sum_{n=1}^{j} K_n - \frac{q^{2\beta+1}-q^{\beta+2}-q^{\beta+1}+2q-1}{1-q-q^{\beta+1}+q^{\beta+2}} \sum_{n=j+1}^{\infty} K_n}.$$

Therefore, we get |w(z)| < 1 if and only if

$$\frac{\left(1 - q^{\beta}\right)^{2} q}{1 - q - q^{\beta+1} + q^{\beta+2}} \sum_{n=j+1}^{\infty} K_{n} + \sum_{n=1}^{j} K_{n} \le 1.$$

As the left-hand side of the last inequality is bounded above by

$$\frac{\left(1-q^{\beta}\right)^{2}q}{1-q-q^{\beta+1}+q^{\beta+2}}\sum_{n=1}^{\infty}K_{n},$$

we are led immediately to the assertion (2.5) of Theorem 2.2. Now we have completed the proof of Theorem 2.2.

In its special case, if we let $q \to 1$ –, Theorem 2.2 yields the following corollary.

Corollary 2.3. (see [18]) Let $\alpha \ge 1$ and $\beta \ge \frac{1+\sqrt{5}}{2}$. Then

$$\Re\left\{\frac{E_{\alpha,\beta}(z)}{\left(E_{\alpha,\beta}\right)_{j}(z)}\right\} \ge \frac{\beta^{2} - \beta - 1}{\beta^{2}} \qquad (z \in \mathbb{U})$$

and

$$\Re\left\{\frac{\left(E_{\alpha\beta}\right)_{j}(z)}{E_{\alpha\beta}(z)}\right\} \ge \frac{\beta^{2}}{\beta^{2} + \beta + 1} \quad (z \in \mathbb{U}).$$

We next turn to the ratios involving derivatives.

Theorem 2.4. Let $q \in (0,1)$, $\alpha \ge 1$ and $\beta \ge \frac{3+\sqrt{17}}{2}$. Then

$$\Re\left\{\frac{D_{q}\mathfrak{M}_{\alpha,\beta}(z;q)}{D_{q}\left(\mathfrak{M}_{\alpha,\beta}\right)_{i}(z;q)}\right\} \ge \frac{q^{2\beta} - 3q^{\beta+1} + q^{\beta} - 2q^{2} + 7q - 4}{(1 - q^{\beta})^{2}} \qquad (z \in \mathbb{U})$$
(2.10)

and

$$\Re\left\{\frac{D_{q}\left(\mathfrak{M}_{\alpha,\beta}\right)_{j}(z;q)}{D_{q}\mathfrak{M}_{\alpha,\beta}(z;q)}\right\} \ge \frac{\left(1-q^{\beta}\right)^{2}q}{6+q^{2\beta}+3q^{\beta+1}-5q^{\beta}+2q^{2}-7q} \quad (z \in \mathbb{U}). \tag{2.11}$$

Proof. From the inequality (2.2), we have

$$1 + \sum_{n=1}^{\infty} [n+1]_q K_n \le \frac{6 + q^{2\beta} + 3q^{\beta+1} - 5q^{\beta} + 2q^2 - 7q}{(1 - q^{\beta})^2},$$
 (2.12)

where

$$K_n = \frac{\Gamma_q(\beta)}{\Gamma_q(\alpha n + \beta)}$$
 $(n \in \mathbb{N}).$

Equivalently, we can rewrite the condition in (2.12) as follows:

$$\frac{\left(1-q^{\beta}\right)^{2}}{5+3q^{\beta+1}-3q^{\beta}+2q^{2}-7q}\sum_{n=1}^{\infty}\left[n+1\right]_{q}K_{n}\leq 1.$$

In order to prove the inequality (2.10), we consider the function w(z) defined by

$$\frac{\left(1-q^{\beta}\right)^{2}}{5+3q^{\beta+1}-3q^{\beta}+2q^{2}-7q} \left[\frac{D_{q}\mathfrak{M}_{\alpha,\beta}(z;q)}{D_{q}\left(\mathfrak{M}_{\alpha,\beta}\right)_{j}(z;q)} - \frac{q^{2\beta}-3q^{\beta+1}+q^{\beta}-2q^{2}+7q-4}{\left(1-q^{\beta}\right)^{2}} \right] \\
= \frac{1+\sum_{n=1}^{j}\left[n+1\right]_{q}K_{n}z^{n}+\frac{\left(1-q^{\beta}\right)^{2}}{5+3q^{\beta+1}-3q^{\beta}+2q^{2}-7q}\sum_{n=j+1}^{\infty}\left[n+1\right]_{q}K_{n}z^{n}}{1+\sum_{n=1}^{j}\left[n+1\right]_{q}K_{n}z^{n}} \\
= \frac{1+w(z)}{1-w(z)}.$$
(2.13)

From (2.13), we have

$$w(z) = \frac{\frac{\left(1 - q^{\beta}\right)^{2}}{5 + 3q^{\beta + 1} - 3q^{\beta} + 2q^{2} - 7q} \sum_{n = j+1}^{\infty} [n+1]_{q} K_{n} z^{n}}{2 + 2 \sum_{n=1}^{j} [n+1]_{q} K_{n} z^{n} + \frac{\left(1 - q^{\beta}\right)^{2}}{5 + 3q^{\beta + 1} - 3q^{\beta} + 2q^{2} - 7q} \sum_{n = j+1}^{\infty} [n+1]_{q} K_{n} z^{n}}$$

or, equivalently

$$w\left(z\right) = \frac{\frac{\left(1-q^{\beta}\right)^{2}}{5+3q^{\beta+1}-3q^{\beta}+2q^{2}-7q}\sum_{n=j+1}^{\infty}\left[n+1\right]_{q}K_{n}}{2-2\sum_{n=1}^{j}\left[n+1\right]_{q}K_{n} - \frac{\left(1-q^{\beta}\right)^{2}}{5+3q^{\beta+1}-3q^{\beta}+2q^{2}-7q}\sum_{n=j+1}^{\infty}\left[n+1\right]_{q}K_{n}}.$$

The inequality |w(z)| < 1 holds true if and only if

$$\sum_{n=1}^{j} [n+1]_q K_n + \frac{\left(1-q^{\beta}\right)^2}{5+3q^{\beta+1}-3q^{\beta}+2q^2-7q} \sum_{n=j+1}^{\infty} [n+1]_q K_n \le 1.$$

The left-hand side of the above inequality is bounded above by

$$\frac{\left(1-q^{\beta}\right)^{2}}{5+3q^{\beta+1}-3q^{\beta}+2q^{2}-7q}\sum_{n=1}^{\infty}\left[n+1\right]_{q}K_{n},$$

which is equivalent to

$$\frac{q^{2\beta} - 3q^{\beta+1} + q^{\beta} - 2q^2 + 7q - 4}{5 + 3q^{\beta+1} - 3q^{\beta} + 2q^2 - 7q} \sum_{n=1}^{j} [n+1]_q K_n \ge 0.$$
 (2.14)

The inequality in (2.14) holds true for $\beta \ge \frac{3+\sqrt{17}}{2}$. We next use the same method to prove the inequality (2.5). Consider the function w(z) given by

$$\frac{6 + q^{2\beta} + 3q^{\beta+1} - 5q^{\beta} + 2q^{2} - 7q}{5 + 3q^{\beta+1} - 3q^{\beta} + 2q^{2} - 7q} \left[\frac{D_{q} (\mathfrak{M}_{\alpha,\beta})_{j}(z;q)}{D_{q} \mathfrak{M}_{\alpha,\beta}(z;q)} - \frac{\left(1 - q^{\beta}\right)^{2}}{6 + q^{2\beta} + 3q^{\beta+1} - 5q^{\beta} + 2q^{2} - 7q} \right] \\
= \frac{1 + \sum_{n=1}^{j} [n+1]_{q} K_{n} z^{n} - \frac{\left(1 - q^{\beta}\right)^{2}}{5 + 3q^{\beta+1} - 3q^{\beta} + 2q^{2} - 7q} \sum_{n=j+1}^{\infty} [n+1]_{q} K_{n} z^{n}}{1 + \sum_{n=1}^{\infty} [n+1]_{q} K_{n} z^{n}} \\
= \frac{1 + w(z)}{1 - w(z)}.$$
(2.15)

By using Eq. (2.15), we obtain

$$w(z) = \frac{-\frac{6+q^{2\beta}+3q^{\beta+1}-5q^{\beta}+2q^2-7q}{5+3q^{\beta+1}-3q^{\beta}+2q^2-7q} \sum_{n=j+1}^{\infty} [n+1]_q K_n z^n}{2+2\sum_{n=1}^{j} [n+1]_q K_n z^n - \frac{q^{2\beta}-3q^{\beta+1}+q^{\beta}-2q^2+7q-4}{5+3q^{\beta}-3q^{\beta}+2q^2-7q} \sum_{n=j+1}^{\infty} [n+1]_q K_n z^n},$$

which is equivalent to

$$|w\left(z\right)| < \frac{\frac{6+q^{2\beta}+3q^{\beta+1}-5q^{\beta}+2q^2-7q}{5+3q^{\beta+1}-3q^{\beta}+2q^2-7q}}{2-2\sum\limits_{n=1}^{\infty}\left[n+1\right]_{q}K_{n}} \frac{\sum\limits_{n=j+1}^{\infty}\left[n+1\right]_{q}K_{n}}{2-2\sum\limits_{n=1}^{j}\left[n+1\right]_{q}K_{n} - \frac{q^{2\beta}-3q^{\beta+1}+q^{\beta}-2q^2+7q-4}{5+3q^{\beta+1}-3q^{\beta}+2q^2-7q}\sum\limits_{n=j+1}^{\infty}\left[n+1\right]_{q}K_{n}}$$

The inequality |w(z)| < 1 holds true if and only if

$$\frac{2\left(1-q^{\beta}\right)^{2}}{5+3q^{\beta+1}-3q^{\beta}+2q^{2}-7q}\sum_{n=j+1}^{\infty}\left[n+1\right]_{q}K_{n} \leq 2-2\sum_{n=1}^{j}\left[n+1\right]_{q}K_{n}$$

or, equivalently,

$$\sum_{n=1}^{j} [n+1]_q K_n + \frac{\left(1-q^{\beta}\right)^2}{5+3q^{\beta+1}-3q^{\beta}+2q^2-7q} \sum_{n=j+1}^{\infty} [n+1]_q K_n \le 1.$$
 (2.16)

It now suffices to show that the left-hand side of (2.16) is bounded above by

$$\frac{\left(1-q^{\beta}\right)^{2}}{5+3q^{\beta+1}-3q^{\beta}+2q^{2}-7q}\sum_{n=i+1}^{\infty}\left[n+1\right]_{q}K_{n},$$

which is equivalent to

$$\frac{q^{2\beta} - 3q^{\beta+1} + q^{\beta} - 2q^2 + 7q - 4}{5 + 3q^{\beta+1} - 3q^{\beta} + 2q^2 - 7q} \sum_{n=i+1}^{\infty} [n+1]_q K_n \ge 0.$$

This last inequality holds true for $\beta \ge \frac{3+\sqrt{17}}{2}$. Hence we complete the proof of Theorem 2.4.

Upon letting $q \rightarrow 1$ –, Theorem 2.4 yields the following known result.

Corollary 2.5. (see [18]) Let $\alpha \ge 1$ and $\beta \ge \frac{1+\sqrt{5}}{2}$. Then

$$\Re\left\{\frac{E'_{\alpha,\beta}(z)}{\left(E_{\alpha,\beta}\right)'_{j}(z)}\right\} \ge \frac{\beta^{2} - 3\beta - 2}{\beta^{2}} \quad (z \in \mathbb{U})$$

and

$$\Re\left\{\frac{\left(E_{\alpha\beta}\right)_{j}'(z)}{E_{\alpha\beta}'(z)}\right\} \ge \frac{\beta^{2}}{\beta^{2} + 3\beta + 2} \quad (z \in \mathbb{U}).$$

Conflicts of interest

The authors declare no conflicts of interest.

References

- 1. M. K. Aouf, T. M. Seoudy, Convolution properties of certain classes of analytic functions with complex order defined by q-derivative operator, RACSAM, **113** (2019), 1279–1288.
- 2. O. Altintas, Ö. Özkan, H. M. Srivastava, *Neighborhoods of a class of analytic functions with negative coefficients*, Appl. Math. Lett., **13** (2000), 63–67.
- 3. D. Bansal, J. K. Prajapat, *Certain geometric properties of the Mittag-Leffler functions*, Complex Var. Elliptic, **61** (2016), 338–350.
- 4. M. Çağlar, E. Deniz, *Partial sums of the normalized Lommel functions*, Math. Inequal. Appl., **18** (2015), 1189–1199.
- 5. M. Din, M. Raza, N. Yağmur, *Partial sums of normalized Wright functions*, arXiv:1606.02750, 2016.
- 6. R. Gorenflo, F. Mainardi, S. V. Rogosin, *On the generalized Mittag-Leffler type function*, Integr. Transf. Spec. F., **7** (1998), 215–224.
- 7. I. S. Gupta, L. Debnath, *Some properties of the Mittag-Leffler functions*, Integr. Transf. Spec. F., **18** (2007), 329–336.
- 8. M. E. H. Ismail, E. Merkes, D. Styer, *A generalization of starlike functions*, Complex Var. Theor. Appl., **14** (1990), 77–84.
- 9. F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203.
- 10. F. H. Jackson, *q-Difference equations*, Am. J. Math., **32** (1910), 305–314.
- 11. J. L. Liu, H. M. Srivastava, *Subclasses of meromorphically multivalent functions associated with a certain linear operator*, Math. Comput. Model., **39** (2004), 35–44.
- 12. S. Maharana, J. K. Prajapat, H. M. Srivastava, *The radius of convexity of partial sums of convex functions in one direction*, P. Natl. A. Sci. India Sect. A Phys. Sci., **87** (2017), 215–219.
- 13. S. Mahmood, N. Raza, E. S. A. Abujarad, et al. *Geometric properties of certain classes of analytic functions associated with a q-integral operator*, Symmetry, **11** (2019), 719.
- 14. G. M. Mittag-Leffler, Sur la nouvelle fonction $E_{\alpha}(x)$, CR. Acad. Sci. Paris, 137 (1903), 554–558.
- 15. H. Orhan, N. Yağmur, *Partial sums of generalized Bessel functions*, J. Math. Inequal., **8** (2014), 863–877.
- 16. S. Owa, H. M. Srivastava, N. Saito, *Partial sums of certain classes of analytic functions*, Int. J. Comput. Math., **81** (2004), 1239–1256.
- 17. T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1997), 7–15.
- 18. D. Răducanu, *On partial sums of normalized Mittag-Leffler functions*, An. U. Ovid. Co. Mat., **25** (2017), 123–133.

- 19. S. K. Sahoo, N. L. Sharma, *On a generalization of close-to-convex functions*, Ann. Polon. Math., **113** (2015), 93–108.
- 20. T. M. Seoudy, M. K. Aouf, Coefficient estimates of new class of q-starlike and q-convex functions of complex order, J. Math. Inequal., 10 (2016), 135–145.
- 21. S. K. Sharma, R. Jain, *On some properties of generalized q-Mittag Leffler function*, Math. Aeterna, **4** (2014), 613–619.
- 22. H. M. Srivastava, *Univalent functions, fractional calculus, and associated generalized hypergeometric functions*, In: *Univalent Functions, Fractional Calculus and Their Applications*, New York: Halsted Press, (1989), 329–354.
- 23. H. M. Srivastava, *Some Fox-Wright generalized hypergeometric functions and associated families of convolution operators*, Appl. Anal. Discrete Math., **1** (2007), 56–71.
- 24. H. M. Srivastava, D. Bansal, *Close-to-convexity of a certain family of q-Mittag-Leffer functions*, J. Nonlinear Var. Anal., **1** (2017), 61–69.
- 25. H. M. Srivastava, J. Choi, *Zeta and q-Zeta Functions and Associated Series and Integrals*, Amsterdam: Elsevier Science Publishers, 2012.
- 26. H. M. Srivastava, S. Gaboury, F. Ghanim, *Partial sums of certain classes of meromorphic functions related to the Hurwitz-Lerch zeta function*, Moroccan J. Pure Appl. Anal., 1 (2015), 38–50.
- 27. H. M. Srivastava, A. O. Mostafa, M. K. Aouf, et al. *Basic and fractional q-calculus and associated Fekete-Szego problem for p-valent q-starlike functions and p-valently q-convex functions of complex order*, Miskolc Math. Notes, **20** (2019), 489–509.
- 28. A. Wiman, Über den Fundamentalsatz in der Theorie der Funcktionen $E_{\alpha}(x)$, Acta Math., **29** (1905), 191–201.
- 29. A. Wiman, Über die Nullstellen der Funktionen $E_{\alpha}(x)$, Acta Math., **29** (1905), 217–234.
- 30. N. Yağmur, H. Orhan, *Partial sums of generalized Struve functions*, Miskolc Math. Notes, **17** (2016), 657–670.

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)