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1. Introduction

Consider the following system of equations

∂

∂x
u(x, y) + ADβ

0yu(x, y) = Bu(x, y) + f (x, y), 0 < β < 1, (1.1)

in the domain Ω = {(x, y) : l1 < x < l2, 0 < y < T }, where u(x, y) and f (x, y) are unknown and given
n-vectors, respectively; A and B are the given constant n × n matrices, Dβ

0y is the Riemann – Liouville
fracional integro-differentiation operator of order β [1, p. 9].

Let us review the papers associated with the investigation of the systems with fractional partial
derivatives of order that is not higher than one including the scalar case n = 1. In paper [2] for the
equation

Dα
0x(u − h1(y)) + Dβ

0y(u − h2(x)) = f , 0 < α, β < 1, x, y > 0, (1.2)

the solvability of the boundary value problem with the initial conditions u(0, y) = h1(y), u(x, 0) = h2(x)
is studied in a class of Hölder’s continuous functions. The authors obtained a fundamental solution of
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Eq. (1.2) in the form

ψα,β(x, y) =

∞∫
0

τ−
1
α−

1
βϕα

(
xτ−

1
α

)
ϕβ

(
yτ−

1
β

)
dτ, (1.3)

where

ϕµ(t) =
1
π

∞∑
k=1

(−1)k+1

k!
sin(πµk)Γ(µk + 1)t−µk−1.

Note that the function ψα,β(x, y) can be represented (it is shown in [3] ) as

ψα,β(x, y) =
1
xy

∞∫
0

φ(−α, 0;−τx−α)φ(−β, 0;−τy−β)dτ.

Paper [4] was devoted to study of Hölder’s smoothness of solution for the following equation

Dα
0x(u(x, y) − u0(y)) + c(x, y)uy(x, y) = f (x, y), x, y > 0,

satisfying the boundary conditions u(0, y) = u0(y) and u(x, 0) = u1(x).
The uniqueness and existence theorems for a boundary value problem regular solution for the

equation

Dα
0xu(x, y) + λDβ

0yu(x, y) + µu(x, y) = f (x, y), 0 < α, β < 1, λ > 0, x, y > 0 (1.4)

are proved in papers [5, 6]. The fundamental solution has the form

w(x, y) =
1
xy

∞∫
0

e−µτφ(−α, 0;−τx−α)φ(−β, 0;−τy−β)dτ,

in the case when λ = 1, and, when µ = 0 it has the form

w(x, y) =
xα−1

y
eα,0α,β

(
−λ

xα

yβ

)
,

where

eµ,να,β(z) =

∞∑
k=0

zk

Γ(µ + αk)Γ(ν − βk)

is the Wright type function [6]. In addition a boundary value problem with negative coefficient λ < 0
was studied for Eq. (1.4) in the case α = 1, µ = 0.

Equation (1.4) with variable coefficients λ ≡ λ(x) and µ ≡ µ(x), where α = 1 and the function λ(x)
may have a zero of order m ≥ 0 at the point x = 0, was investigated in the papers [7–9]. In that case
the fundamental solution

w(x, y; t, s) =
exp(Λ(x, t))

y − s
φ
(
−β, 0;−M(x, t)(y − s)−β

)
,
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was constructed. In the last expression Λ(x, t) =
x∫

t
λ(ξ)dξ, M(x, t) =

x∫
t
µ(ξ)dξ. The existence and

uniqueness theorems for a boundary value problem and the Cauchy problem were proved.

We also note the papers [10] and [11], where the equation

∂αu(x, t)
∂xα

= λ
∂βu(x, t)
∂tβ

was studied. The fractional derivatives are understood in the sense of Caputo and Riesz in paper [10],
and in the sense of Caputo, Riemann–Liouville and Riesz in paper [11].

For the system

Dα
0xu(x, y) + ADβ

0yu(x, y) = Bu(x, y) + f (x, y), (1.5)

the boundary value problem was solved explicitly in [12] when A was an identity matrix, and in [13]
when A was positive defined matrix. The fundamental solution of system (1.5) was constructed in
terms of the introduced Wright function of the matrix argument in paper [13]. Article [3] used a
similar approach to solve the problem with the boundary conditions in the multidimensional case.

Among the works devoted to the study of systems of equations with fractional partial derivatives,
we also distinguish papers [14–16]. In [16] A. N. Kochubei described a class of first order systems
of equations with constant coefficients containing a fractional derivative with respect to one of the
independent variables, for which the Cauchy problem is solvable, and the fundamental solutions of
which grow exponentially outside the set {|x|y−β ≤ 1}. Such systems were called fractional hyperbolic
systems. System (1.1) also belongs to this class of systems.

Note that, the systems of type (1.1) are differ significantly at the formulations of initial and
boundary-value problems, depending on the sign-determinacy or sign-indeterminacy of the
eigenvalues of the matrix coefficient in the main part of the system.

In papers [12, 13, 17] boundary value problems in rectangular domains were studied for systems
with sign-determined eigenvalues, including systems with partial derivatives, of order strictly lower
than one. For such systems the formulation of boundary value problems is similar to the case with a
single equation. We call this type of systems the type I systems.

In papers [18–23] the Cauchy problem, mixed and non-local problems were investigated for a
system of the type II, i.e., for the systems, where the matrix coefficient in the main part has an
eigenvalues of the different signs.

In this paper, we first solve in explicit form an auxiliary problem for system (1.1) with B = 0. To
do this, we use the properties of the Wright function of the matrix argument, which are studied in [13].
Next we investigate a non-local boundary value problem for system (1.1) by reducing to the auxiliary
problem by using a system of integral equations. We prove the existence and uniqueness theorem. At
the end, we give an example of the non-local boundary value problem and construct the graphs of its
solution.

AIMS Mathematics Volume 5, Issue 1, 185–203.



188

2. Preliminaries

The Riemann-Liouville fractional integro-differentiation operator Dν
ay of order ν is defined as [1, p.

9]:

Dν
ayg(y) =

sgn(y − a)
Γ(−ν)

y∫
a

g(s)ds
|y − s|ν+1 ,

for ν < 0, and for ν ≥ 0 the operator Dν
ay can be determined by recursive relation

Dν
ayg(y) = sgn(y − a)

d
dy

Dν−1
ay g(y), ν ≥ 0,

where Γ(z) is the Euler gamma-function.
The symbol ∂ν0y denotes the Caputo fractional differentiation operator of order ν, [1, p. 11]:

∂νayg(y) = sgnn(y − a)Dν−n
ay g(n)(y), n − 1 < ν ≤ n, n ∈ N.

The Wright function [24,25] is called an entire function, which is depended from two parameters ρ
and µ, and represented by the series

φ(ρ, µ; z) =

∞∑
k=0

zk

k!Γ(ρk + µ)
, ρ > −1, µ ∈ C.

Here we present the determination and some properties of the Wright function of the matrix
argument, which are studied in [13].

Let A be a square matrix of order n. In view of the function φ(ρ, µ; z) is analytic everywhere in C,
following series

φ(ρ, µ; A) =

∞∑
k=0

Ak

k!Γ(ρk + µ)
, ρ > −1, µ ∈ C

is converges for any matrix A given over the field of complex numbers C, and determine the Wright
function of the matrix argument.

The following equality holds

φ(ρ, µ; Az)
∣∣∣
z=0

=
1

Γ(µ)
I, (2.1)

here I is an identity matrix of order n.
Following differentiation formula holds

d
dz
φ(ρ, µ; Az) = Aφ(ρ, ρ + µ; Az). (2.2)

Now and further we assume that all of the eigenvalues of the matrix A are positive.
The next fractional integro-differentiation formula holds:

Dδ
0yy

µ−1φ(−β, µ;−Axy−β) = yµ−δ−1φ(−β, µ − δ;−Axy−β). (2.3)
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It follows from (2.2) and (2.3) that(
∂

∂x
+ ADβ

0y

)
yµ−1φ(−β, µ;−Axy−β) = 0. (2.4)

The following equality holds

∞∫
0

φ(−β, µ;−Az)dz =
1

Γ(µ + β)
A−1. (2.5)

We denote by |A(x, y)|∗ the scalar function that takes at each point (x, y) the largest of the values
of the moduli of the elements of the matrix A(x, y) = ‖ai j(x, y)‖, that is |A(x, y)|∗ = max

i, j
|ai j(x, y)|.

Similarly, for the vector b(x, y) with components bi(x, y) we denote |b(x, y)|∗ = max
i
|bi(x, y)|.

Following estimates are hold:

|yµ−1φ(−β, µ;−Axy−β)|∗ ≤ Cx−θyµ+βθ−1, x > 0, y > 0, (2.6)

where β ∈ (0, 1); and θ ≥ 0 for µ , 0,−1,−2, ..., and θ ≥ −1 for µ = 0,−1,−2, ... ; and

|φ(−β, µ;−Az)|∗ ≤ C exp
(
−σz

1
1−β

)
, z ≥ 0, (2.7)

where β ∈ (0, 1), µ ∈ R, σ < (1 − β)
(
λββ

) 1
1−β
, λ = min

1≤i≤p
{λi}, λ1, ..., λp are eigenvalues of the matrix A.

3. Auxiliary problem

A regular solution of system (1.1) in the domain Ω is defined as the vector function u = u(x, y)
satisfying system (1.1) at all points x ∈ Ω, such that ∂u

∂x , Dβ
0yu ∈ C(Ω), y1−βu(x, y) ∈ C(Ω̄).

Before turning to the presentation of the main results, we solve the following auxiliary problem for
the case of system (1.1) with B = 0.
Problem 1. In the domain Ω find a solution of the system

∂

∂x
u(x, y) + ADβ

0yu(x, y) = f (x, y), 0 < β < 1, (3.1)

with the conditions
lim
y→0

Dβ−1
0y u(x, y) = ϕ(x), l1 ≤ x ≤ l2, (3.2)

u(l1, y) = ψ(y), 0 < y < T, (3.3)

where ϕ(x) and ψ(y) are given n-vectors.
Theorem 1. Let all the eigenvalues of the matrix A be positive, ϕ(x) ∈ C[l1, l2], y1−βψ(y) ∈ C[0,T ],

y1−β f (x, y) ∈ C(Ω), f (x, y) satisfies the Hölder condition with respect to y, and the matching condition

lim
y→0

Dβ−1
0y ψ(y) = ϕ(l1) (3.4)
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holds. Then there exists a unique regular in the domain Ω, solution of Problem 1. Solution can be
represented as

u(x, y) =

x∫
l1

G(x − t, y)Aϕ(t)dt +

y∫
0

G(x − l1, y − s)ψ(s)ds+

+

y∫
0

x∫
l1

G(x − t, y − s) f (t, s)dtds, (3.5)

where
G(x, y) = y−1φ(−β, 0;−Axy−β).

Remark 1. Without loss of generality, we prove Theorem 1 for the domain Ω with l1 = 0 and l2 = l.
A more general case reduces to this case by replacing the independent variables x = ξ + l1, y = η.

To prove Theorem 1, we need the following assertions.
Lemma 1. Any regular in the domain Ω solution u(x, y) of Problem 1 can be represented in form (3.5).
Proof. Let u(x, y) be a solution of Problem 1. The function V(x, y) is the solution of the equation

∂

∂x
V(x, y) + ∂

β
0yV(x, y)A = I, (3.6)

with the conditions
V(0, y) = 0, V(x, 0) = 0, (3.7)

where I is the identity matrix.
Using (2.2), (2.3), (2.1), (2.7) and the relation

Dα
0y

yβ

Γ(1 + β)
=

yβ−α

Γ(1 + β − α)
,

it is easy to see that

V(x, y) = −A−1yβφ
(
−β, 1 + β;−Axy−β

)
+

A−1

Γ(1 + β)
yβ

is the solution of problems (3.6), (3.7).
From (2.2) and (2.3) it follows that

Vxy(x, y) = G(x, y). (3.8)

Let ε > 0. Integration by parts taking into account Eqs. (2.1), (2.7) and (3.7) leads to

x∫
ε

y∫
ε

V(x − t, y − s)
∂

∂t
u(t, s)dsdt =

=

x∫
ε

y∫
ε

∂

∂t
V(x − t, y − s)u(t, s)dtds −

y∫
ε

V(x − t, y − s)u(t, s)
∣∣∣
t=ε

ds,
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x∫
ε

y∫
ε

V(x − t, y − s)ADβ
0su(t, s)dsdt =

=

x∫
ε

y∫
ε

∂

∂s
V(x − t, y − s)ADβ−1

0s u(t, s)dtds −

x∫
ε

V(x − t, y − s)ADβ−1
0s u(t, s)

∣∣∣
s=ε

dt.

From the last two relations we get

x∫
ε

y∫
ε

V(x − t, y − s)
(
∂

∂t
+ ADβ

0s

)
u(t, s)dsdt =

=

x∫
ε

y∫
ε

(
∂

∂t
V(x − t, y − s)u(t, s) +

∂

∂s
V(x − t, y − s)ADβ−1

0s u(t, s)
)

dsdt−

−

y∫
ε

V(x − t, y − s)u(t, s)
∣∣∣
t=ε

ds −

x∫
ε

V(x − t, y − s)ADβ−1
0s u(t, s)

∣∣∣
s=ε

dt.

Passing to the limit as ε→ 0, by using (3.1), (3.2), (3.3), (3.6) and analogue of the integration by parts
formula in fractional calculus [1, p. 34]

y∫
0

g(y − s)Dν
0yh(s)ds =

y∫
0

h(s)Dν
ysg(y − s)ds, v < 0,

we obtain
x∫

0

y∫
0

u(t, s)dsdt =

x∫
0

y∫
0

V(x − t, y − s) f (t, s)dsdt+

+

y∫
0

V(x, y − s)ϕ(s)ds +

x∫
0

V(x − t, y)Aψ(t)dt. (3.9)

Differentiating (3.9) by x and by y, with (3.7) and (3.8), we get (3.5). Lemma 1 is proved.
Lemma 2. Following estimates

|G(x, y)|∗ ≤ Cx−θyβθ−1, θ ≥ −1, (3.10)∣∣∣∣Dβ−1
0y G(x, y)

∣∣∣∣
∗
≤ Cx−θyβθ−β, θ ≥ 0, (3.11)∣∣∣∣∣ ∂∂x

G(x, y)
∣∣∣∣∣
∗

≤ Cx−θyβθ−β−1, θ ≥ 0, (3.12)∣∣∣∣Dβ
0yG(x, y)

∣∣∣∣
∗
≤ Cx−θyβθ−β−1, θ ≥ 0, (3.13)

are hold, here C is a positive constant.
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The validity of Lemma 2 follows from the relations (2.2), (2.3) and (2.6).
Lemma 3. Let all the eigenvalues of the matrix A be positive, ϕ(x) ∈ C[0, l], y1−βψ(y) ∈ C[0,T ], then

the relations

lim
x→0

x∫
0

G(x − t, y)Aψ(t)dt = 0, y > ε > 0, (3.14)

lim
y→0

Dβ−1
0y

y∫
0

G(x, y − s)ϕ(s)ds = 0, x > ε > 0, (3.15)

lim
y→0

Dβ−1
0y

x∫
0

G(x − t, y)Aψ(t)dt = ψ(x), x > ε > 0, (3.16)

lim
x→0

y∫
0

G(x, y − s)ϕ(s)ds = ϕ(y), y > ε > 0 (3.17)

are valid, and limits (3.15) and (3.16) are uniform on any closed subset of (0; l), and limits (3.14) and
(3.17) on any closed subset of (0; T ).
Proof. The validity of relations (3.14) and (3.15) follows from estimates (3.10), (3.11), |ψ(x)|∗ ≤ C

and |ϕ(y)|∗ ≤ Cyβ−1.

Let us transform the following integral

Dβ−1
0y

x∫
0

G(x − t, y)Aψ(t)dt =


ε∫

0

+

x∫
ε

 Dβ−1
0y G(t, y)Aψ(x − t)dt. (3.18)

The limit of the second integral in the right-hand side of (3.18) with y→ 0, due to estimate (3.11) and
the boundedness of the function ψ(x), is zero for x > ε > 0. Denote by I1(x, y) the first integral in the
right-hand side of (3.18), then

I1(x, y) =

ε∫
0

Dβ−1
0y G(t, y)A[ψ(x − t) − ψ(x)]dt +


ε∫

0

Dβ−1
0y G(t, y)dt

 Aψ(x). (3.19)

Taking advantage of the fact that, by virtue of (2.2),

Ay−βφ(−β, 1 − β;−Axy−β) = −
∂

∂x
φ(−β, 1;−Axy−β),

we obtain that

A

ε∫
0

Dβ−1
0y G(t, y)dt = I − φ(−β, 1;−Aεy−β). (3.20)

Passing to the limit at y→ 0, taking into account formula (2.7), we get

lim
y→0

A

ε∫
0

Dβ−1
0y G(t, y)dt = I. (3.21)
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The function ψ(t) is continuous on [x − ε, x], therefore ω(ε) = sup |ψ(x − t) − ψ(x)| → 0 with ε → 0.
Since ε can be chosen arbitrary, then the first term in (3.19) is arbitrarily small for any fixed y, that is,
tends to zero, with y→ 0.

The second term, by virtue of (3.21), tends to ψ(x). Thus lim
y→0

I1(x, y) = ψ(x). From the latter, together

with (3.18) follows (3.16). The relation (3.17) can be proved similarly. Lemma 3 is proved.
Lemma 4. Under the conditions of Theorem 1, function (3.5) is a solution of system (3.1), such that
∂
∂xu,Dβ

0yu ∈ C(Ω).
Proof. It follows from (3.12), (3.13) that the estimates∣∣∣∣∣ ∂∂x

G(x, y)
∣∣∣∣∣
∗

< Cx−θ−1, |Dβ
0yG(x, y)|∗ < Cx−θ−1, θ ≥ −1,

are valid for any fixed y > ε > 0 and the estimates∣∣∣∣∣ ∂∂x
G(x, y)

∣∣∣∣∣
∗

< Cyβθ−1, |Dβ
0yG(x, y)|∗ < Cyβθ−1, θ ≥ 0,

for x > ε > 0. From these estimates, taking into account relations (2.4), we can see that the first
two terms (we denote their sum u0(x, y)) on the right-hand side of (3.5) there are solutions of the
homogeneous system

∂

∂x
u0(x, y) + ADβ

0yu0(x, y) = 0,

at that ∂
∂xu0, Dβ

0yu0 ∈ C(Ω).
Denote by u f (x, y) the third term on the right-hand side of (3.5). Under the condition of Theorem 1,

the function f (x, y) satisfies the Hölder condition in the variable y, that is,

| f (x, y) − f (x, s)|∗ ≤ K|y − s|q, 0 < q < 1, (3.22)

here K is positive number. Then

∂

∂x
u f (x, y) =

∂

∂x

x∫
0

dt

y∫
0

G(x − t, y − s) f (t, s)ds = lim
t→x

y∫
0

G(x − t, y − s) f (t, s)ds+

+

x∫
0

dt

y∫
0

∂

∂x
G(x − t, y − s)[ f (t, s) − f (t, y)]ds +

x∫
0

dt

y∫
0

∂

∂x
G(x − t, y − s) f (t, y)ds. (3.23)

Taking into account estimate (3.12) and condition (3.22), we obtain the estimate for the integrand
in the second term of (3.23)∣∣∣∣∣ ∂∂x

G(x − t, y − s)[ f (t, s) − f (t, y)]
∣∣∣∣∣
∗

≤ nMC(x − t)−θ−1(y − s)βθ−1+q, (3.24)

choosing θ ∈ [−1; 0) with q > β and θ ∈ (−q/β; 0) with q ≤ β, it is easy to see that the integral
converges uniformly over all x and y for any q ∈ (0, 1). Transforming the last term of (3.23) with (2.4),
we get

∂

∂x
u f (x, y) = f (x, y) +

x∫
0

dt

y∫
0

∂

∂x
G(x − t, y − s)[ f (t, s) − f (t, y)]ds−
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− A

x∫
0

Dβ−1
0y G(x − t, y) f (t, y)dt. (3.25)

From (3.10), (3.11), (3.24) and (3.25) it follows that ∂
∂xu f ∈ C(Ω).

Consider the function Fε(x, y) =
x∫

0
dt

y−ε∫
0

Dβ−1
ys G(x − t, y − s) f (t, s)ds. From estimate (3.11) we see

that lim
ε→0

Fε(x, y) = Dβ−1
0y u f (x, y) ∈ C(Ω). In view of (3.11) and∣∣∣Dβ
ysG(x − t, y − s)[ f (t, s) − f (t, y)]

∣∣∣
∗
≤ nCK(x − t)−θ−1(y − s)βθ−1+q, (3.26)

we get that the derivative

∂

∂y
Fε(x, y) =

x∫
0

Dβ−1
0ε G(x − t, ε) f (t, y − ε)dt −

x∫
0

Dβ−1
0ε G(x − t, ε) f (t, y)dt+

+

x∫
0

dt

y−ε∫
0

Dβ
ysG(x − t, y − s)[ f (t, s) − f (t, y)]ds +

x∫
0

Dβ−1
0s G(x − t, y) f (t, y)dt

is continuous in Ω for ε→ 0. Therefore

lim
ε→0

∂

∂y
Fε(x, y) =

∂

∂y
lim
ε→0

Fε(x, y) = Dβ
0yu f (x, y),

that is

Dβ
0yu f (x, y) =

x∫
0

dt

y∫
0

Dβ
ysG(x − t, y − s)[ f (t, s) − f (t, y)]ds+

+

x∫
0

Dβ−1
0y G(x − t, y) f (t, y)dt. (3.27)

From (2.4), (3.25) and (3.27) we get(
∂

∂x
+ ADβ

0y

)
u f (x, y) = f (x, y).

Lemma 4 is proved.

3.1. Proof of Theorem 1

Using estimates (3.10) and | f (x, y)| ≤ Cyβ−1, we get

|u f (x, y)|∗ ≤ Cx1−θyβθ+β−1, θ ∈ (0; 1), (3.28)

where u f (x, y) is the third term on the right-hand side of equality (3.5). From (3.28) follow relations

lim
x→0

u f (x, y) = 0, lim
y→0

Dβ−1
0y u f (x, y) = 0, (3.29)
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and the inclusion y1−βu f ∈ C(Ω). Relations (3.14) – (3.17) and (3.29) imply the fulfillment of boundary
conditions (3.2) and (3.3).

Denote by uψ(x, y) and uϕ(x, y), respectively, the first and second term on the right-hand side of Eq.
(3.5). Using estimate (3.10) and the conditions of Theorem 1 on the functions ψ(x) and ϕ(y), we get
estimates

|uψ(x, y)|∗ ≤ Cx1−θyβθ−1, θ ∈ [−1, 1),

|uϕ(x, y)|∗ ≤ Cx−θyβθ+β−1, θ ∈ (0, 2).

From the last two inequalities we get that y1−β(uψ + uϕ) ∈ C(Ω).
Let us show the validity of the inclusion y1−β(uψ+uϕ) ∈ C(Ω). For this purpose we represent uψ(x, y)

in the form

uψ(x, y) = A

x∫
0

G(x − t, y)ψ(t)dt = A

x∫
0

G(t, y)ψ(x − t)dt =

= A

x∫
0

G(t, y)[ψ(x − t) − ψ(x)]dt + A


x∫

0

G(t, y)dt

ψ(x). (3.30)

In view of (2.2) and (2.1) we obtain

A

x∫
0

G(t, y)dt = A

x∫
0

y−1φ
(
−β, 0;−Aty−β

)
dt = −

x∫
0

yβ−1 ∂

∂t
φ
(
−β, β;−Aty−β

)
dt =

=
yβ−1

Γ(β)
I − yβ−1φ

(
−β, β;−Axy−β

)
. (3.31)

Similarly we get

uϕ(x, y) =

y∫
0

G(x, s)ϕ(y − s)ds =

=

y∫
0

G(x, s)(y − s)β−1[ϕ∗(y − s) − ϕ∗(y)]ds +


y∫

0

G(x, s)(y − s)β−1ds

ϕ∗(y), (3.32)

where ϕ∗(y) = y1−βϕ(y), and

y∫
0

G(x, s)(y − s)β−1ds = Γ(β)D−β0y y−1φ
(
−β, 0;−Axy−β

)
dt =

= Γ(β)yβ−1φ
(
−β, β;−Axy−β

)
. (3.33)

Using (3.30)–(3.33), (2.1), (2.5), (2.7), we get

lim
x→0

y1−βuψ(x, y) = 0, lim
y→0

y1−βuψ(x, y) =
1

Γ(β)
ψ(x), (3.34)
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lim
x→0

y1−βuϕ(x, y) =
1

Γ(β)
ϕ∗(y), lim

y→0
y1−βuϕ(x, y) = 0. (3.35)

Relations (3.34) and (3.35) imply that y1−β(uψ + uϕ) ∈ C(Ω \ {(0, 0)}).
Let lim

x→0
y→0

xy−β = c, 0 ≤ c ≤ ∞. Then from relation (3.31) we obtain

lim
x→0
y→0

y1−βuψ(x, y) =
[
I − φ (−β, β;−Ac)

]
ψ(0), (3.36)

lim
x→0
y→0

y1−βuϕ(x, y) = Γ(β)φ (−β, β;−Ac)ϕ∗(0). (3.37)

In view of (3.36) and (3.37) we obtain

lim
x→0
y→0

y1−β[uψ(x, y) + uϕ(x, y)] = ψ(0) + [Γ(β)ϕ∗(0) − ψ(0)]φ (−β, β;−Ac) .

This limit does not depend on c, if

lim
x→0

ψ(x) = Γ(β) lim
y→0

y1−βϕ(y),

that is, under condition (3.4).
The above together with Lemma 4 proves the existence of the solution to problems (3.1), (3.2),

(3.3) from the class specified in Theorem 1. The uniqueness of the solution to Problem 1 follows from
Lemma 1. Theorem 1 is proved.

4. Non-local boundary value problem

In this section, we investigate the following non-local boundary value problem in a rectangular
domain for system (1.1) of the type I.
Problem 2. Find a solution of system (1.1) in the domain Ω with conditions (3.2) and

Mu(l1, y) + Nu(l2, y) = ρ(y), 0 < y < T, (4.1)

where ϕ(x) and ρ(y) are given n-vectors, M and N are the given constant n × n matrix,
Theorem 2. Let all the eigenvalues of the matrix A be positive, ϕ(x) ∈ C[l1, l2], y1−βρ(y) ∈ C[0,T ],

y1−β f (x, y) ∈ C(Ω), f (x, y) satisfies the Hölder condition with respect to y, and the matching condition

lim
y→0

Dβ−1
0y ρ(y) = Mϕ(l1) + Nϕ(l2), (4.2)

holds, matrix M is nonsingular. Then there exists a unique regular in the domain Ω, solution of Problem
2.
Proof. By virtue of Theorem 1, the solution to Problem 1 for system (1.1) is a solution to the system

of the integral equations

u(x, y) −

y∫
0

x∫
l1

G(x − t, y − s)Bu(t, s)dtds = F(x, y), (4.3)
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where

F(x, y) =

y∫
0

G(x − l1, y − s)ψ(s)ds + Φ(x, y),

Φ(x, y) =

x∫
l1

G(x − t, y)Aϕ(t)dt +

y∫
0

x∫
l1

G(x − t, y − s) f (t, s)dtds.

Due to estimate (3.10) we get the inclusion y1−βF(x, y) ∈ C(Ω).
The solution of the system of integral Eqs. (4.3) can be obtained by an iterative method. This

solution has the form

u(x, y) = F(x, y) +

y∫
0

x∫
l1

R(x − t, y − s)F(t, s)dtds, (4.4)

where

R(x, y) =

∞∑
n=1

Kn(x, y), (4.5)

K1(x, y) = K(x, y) = G(x, y)B,

Kn(x, y) =

y∫
0

x∫
l1

Kn−1(x − t, y − s)K1(t, s)dtds.

For iterated kernels, in view of (3.10), the estimate

|Km(x, y)|∗ ≤ Cm|B|m∗
Γm(ε)Γm(δ)
Γ(mε)Γ(mδ)

xmε−1ymδ−1, ε = 1 − θ, δ = βθ, 0 < θ < 1.

is valid. Using this estimate, we obtain the convergence of series (4.5) and the estimate for the resolvent

|R(x, y)|∗ ≤
∞∑

m=1

[C|B|∗Γ(ε)Γ(δ)]m

Γ(mε)Γ(mδ)
xmε−1ymδ−1 = xε−1yδ−1

∞∑
m=0

[C1xεyδ]m

Γ(mε + ε)Γ(mδ + δ)
≤

≤ Cxε−1yδ−1
∞∑

m=0

[C1xεyδ]m

m!Γ(mδ + δ)
= Cxε−1yδ−1φ(δ, δ; C1xεyδ),

where C1 = C|B|∗Γ(ε)Γ(δ), and C is a large enough number. Due to the continuity of the function
φ(δ, δ; z), the following estimate is valid

|R(x, y)|∗ ≤ Cx−θyβθ−1, 0 < θ < 1. (4.6)

Thus, solution (4.4) can be represented as

u(x, y) = Ψ(x, y) +

y∫
0

R1(x, y − s)u(l1, s)ds, (4.7)
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where

Ψ(x, y) = Φ(x, y) +

y∫
0

x∫
l1

R(x − t, y − s)Φ(t, s)dtds,

R1(x, y − s) = G(x − l1, y − s) +

y∫
s

x∫
l1

R(x − ξ, y − η)G(ξ − l1, η)dξdη.

It is easy to show that function (4.4) is the solution to Problem 2. Now let u(x, y) be a regular solution
of Problem 1 in the domain Ω, then equality (4.7) also holds. Using representation (4.7), we express
the boundary value:

u(l2, y) = Ψ(y) +

y∫
0

K(y − s)u(l1, s)ds, (4.8)

where Ψ(y) = Ψ(l2, y), K(y − s) = R1(l2, y − s).
Since the matrix M is invertible, condition (4.2) can be rewritten as

u(l1, y) + M−1Nu(l2, y) = M−1ρ(y), 0 < y < T.

Using (4.8), from the last equality we get

u(l1, y) +

y∫
0

K̃(y − s)u(l1, s)ds = P(y), (4.9)

where
K̃(y) = M−1NK(y), P(y) = M−1ρ(y) + M−1NΨ(y).

From (3.10) and (4.5) follow the estimate

|R1(x, y − s)|∗ ≤ C(x − l1)−θ(y − s)βθ−1, 0 < θ < 1,

and the following inclusions
y1−βΨ(y), y1−βK̃(y) ∈ C[0,T ]. (4.10)

It follows from (4.10) and the conditions of Theorem 2 on the function ρ(y), that y1−βP(y) ∈ C[0,T ].
From relations (4.9) and (4.10), it follows that system (4.8) is a system of the Volterra integral

equations of the second kind with a weak singularity in the kernel, and has the unique solution u(l1, y)
such that y1−βu(l1, y) ∈ C[0,T ]. After the value of u(l1, y) is found, the solution to Problem 2 can be
obtained from representation (4.7).

From Theorem 1 it follows that for the inclusion y1−βu(x, y) ∈ C(Ω) the condition

lim
y→0

Dβ−1
0y u(l1, y) = ϕ(l1) (4.11)

should be met. Taking into account equality (4.9), we rewrite condition (4.11) as

lim
y→0

Dβ−1
0y u(l1, y) = lim

y→0

y∫
0

K̃(y − s)Dβ−1
0s u(l1, s)ds+
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+ M−1 lim
y→0

Dβ−1
0y ρ(y) + M−1N lim

y→0
Dβ−1

0y Ψ(y) = ϕ(l1). (4.12)

From inclusions (4.10), estimates (3.10), (4.5) and |u(l1, y)|∗ ≤ Cyβ−1 we obtain the relations

lim
y→0

y∫
0

K̃(y − s)Dβ−1
0s u(l1, s)ds = 0, (4.13)

|Φ(x, y)|∗ ≤ Cyβ−1,∣∣∣∣∣∣∣∣∣Dβ−1
0s

y∫
0

x∫
l1

R(x − t, y − s)Φ(t, s)dtds

∣∣∣∣∣∣∣∣∣
∗

≤ Cyβθ, 0 < θ < 1. (4.14)

By virtue of (4.14) and the relation

lim
y→0

Dβ−1
0y

x∫
l1

G(x − t, y)Aϕ(t)dt = ϕ(x),

which follows from (3.16) and Remark 1, we obtain

lim
y→0

Dβ−1
0y Ψ(y) = lim

y→0
Dβ−1

0y Φ(l2, y) = lim
y→0

Dβ−1
0y

l2∫
l1

G(l2 − t, y)Aϕ(t)dt = ϕ(l2). (4.15)

In view of (4.13) and (4.15), equality (4.12) takes the form

M−1 lim
y→0

Dβ−1
0y ρ(y) − M−1Nϕ(l2) = ϕ(l1).

Therefore, condition (4.2) is sufficient for y1−βu(x, y) ∈ C(Ω). Theorem 2 is proved.
Remark 2. The case when all the eigenvalues of the matrix are negative, is reduced to the case with

positive eigenvalues by changing the variables ξ = x− l1, η = y, and the function u(x, y) = u(ξ+ l1, η) =

w(ξ, η). Moreover, for the solvability of Problem 2, the matrix N must be nonsingular.

5. Illustration

As example consider Problem 2 with n = 2, AB = BA, l1 = 0, l2 = 1, T = 1, M = N = I, f (x, y) ≡ 0,

ϕ(x) ≡ 0, ρ(y) =
yβ−1

Γ(β)

(
1
2

)
, i.e., the system

∂

∂x
u(x, y) +

(
2 1
3 4

)
Dβ

0yu(x, y) =

(
1 2
6 5

)
u(x, y), (5.1)

with the conditions

lim
y→0

Dβ−1
0y u(x, y) =

(
0
0

)
, 0 ≤ x ≤ 1, (5.2)
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u(0, y) + u(1, y) = ρ(y), 0 < y < 1. (5.3)

Solution of problem (5.1)–(5.3) satisfies the following relation

u(x, y) =

y∫
0

G(x, y − s)u(0, s)ds, (5.4)

where

G(x, y) =
1
y

H

 e−xφ
(
−β, 0;−xy−β

)
0

0 e7xφ
(
−β, 0;−5xy−β

)  H−1,

H =

(
1 1
−1 3

)
, H−1 =

1
4

(
3 −1
1 1

)
.

From (5.4) we get

u(1, y) =

y∫
0

G(1, y − s)u(0, s)ds. (5.5)

Substituting (5.5) into (5.4) we obtain following system of integral equations with respect to u(0, y)

u(0, y) +

y∫
0

K1(y − s)u(0, s)ds = ρ(y), (5.6)

where
K1(y) = G(1, y).

Using the Wright functions convolution formula, we calculate the iterative kernels

Kn(y) =

∫ y

0
Kn−1(y − s)K1(s)ds,

Kn(y) =
1
y

H

 e−nφ
(
−β, 0;−ny−β

)
0

0 e7nφ
(
−β, 0;−5ny−β

)  H−1,

and find the following solution of integral Eq. (5.5)

u(0, y) = ρ(y) +

y∫
0

R(y − s)ρ(s)ds, (5.7)

where

R(y) =

∞∑
n=1

(−1)nKn(y) =

=
1
y

H
∞∑

n=1

(−1)n

 e−nφ
(
−β, 0;−ny−β

)
0

0 e7nφ
(
−β, 0;−5ny−β

)  H−1.
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Put (5.7) into (5.5) we obtain the solution to problems (5.1)–(5.3) in the form

u(x, y) =

y∫
0

G(x, y − s)ρ(s)ds +

y∫
0


y∫

s

G(x, y − ξ)R(ξ − s)dξ

 ρ(s)ds =

=

y∫
0

G0(x, y − s)ρ(s)ds, (5.8)

where

G0(x, y) =
1
y

H
∞∑

n=0

(−1)n

 e−(x+n)φ
(
−β, 0;−(x + n)y−β

)
0

0 e7(x+n)φ
(
−β, 0;−5(x + n)y−β

)  H−1.

After calculating the integrals, we write equality (5.8) in the form

u1(x, y) = yβ−1
∞∑

n=1

(−1)n
[
e−(x+n)φ

(
−β, β;−(x + n)y−β

)
+ 2e7(x+n)φ

(
−β, β;−5(x + n)y−β

)]
,

u2(x, y) = yβ−1
∞∑

n=1

(−1)n
[
−e−(x+n)φ

(
−β, β;−(x + n)y−β

)
+ 9e7(x+n)φ

(
−β, β;−5(x + n)y−β

)]
.

Figures 1 and 2 illustrate the solutions of problems (5.1)–(5.3) in cases β = 0.4 and β = 0.6.

Figure 1. Surface solution of problems (5.1)–(5.3), with β = 0.4.

Figure 2. Surface solution of problems (5.1)–(5.3), with β = 0.6.
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6. Conclusion

We investigated the non-local boundary value Problem 2 for system (1.1). For this, we have written
out an explicit solution of auxiliary Problem 1 for system (1.1) with the matrix B = 0 in terms of the
matrix Wright function. Then, using the integral equations method, we reduced Problem 2 to Problem
1. Our approach is schematically illustrated by a particular example described in section 5. The system
under study is of the type I. We previously studied some problems for a system of the type II, including
Problem 2, which generalizes them. Comparing the results of [23] and the present work, we see that
the conditions on the matrices M and N, for which Problem 2 is correct, depend on the distribution of
the eigenvalues of the matrix A, that is, they are differ for systems of the type I and II.

Further research will be aimed at expanding the classes of systems and generalizing the described
results.
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