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Abstract: Implicit methods for the numerical solution of initial-value problems may admit multiple
solutions at any given time step. Accordingly, their nonlinear solvers may converge to any of these
solutions. Below a critical timestep, exactly one of the solutions (the consistent solution) occurs on a
solution branch (the principal branch) that can be continuously and monotonically continued back to
zero timestep.
Standard step-size control can promote convergence to consistent solutions by adjusting the timestep
to maintain an error estimate below a given tolerance. However, simulations for symplectic systems
or large physical systems are often run with constant timesteps and are thus more susceptible
to convergence to inconsistent solutions. Because simulations cannot be reliably continued from
inconsistent solutions, the critical timestep is a theoretical upper bound for valid timesteps.
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1. Introduction

Many mathematical models take the form of a system of ordinary differential equations (ODEs) for
a vector of unknowns q(t) ∈ Rm subject to boundary data:

q̇(t) = f (q(t)), t ∈ (t0, t f ),
0 = gi(q(τi)), τi ∈ {t0, t f }, i = 1, 2, . . . ,m.

Standard transformations reduce systems that are higher order, non-autonomous, or subject to interior-
point data to this first-order autonomous form with boundary data at the cost of increased system
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dimension [9]. When τi ≡ τ0, i = 1, 2, . . . ,m, we have an initial-value problem (IVP); otherwise, we
have a two-point boundary-value problem (BVP).

In practice, numerical methods for the solution for such ODEs involve successive approximations at
successive timesteps and are either implicit or explicit. Implicit methods typically involve the iterative
solution, at each time step, of systems of nonlinear algebraic equations, generally a theoretically infinite
process with a potentially non-unique or non-existent result. Explicit methods, in contrast, can be
implemented directly, generally a theoretically finite process with a unique result. The iterative solution
process of an implicit method can incur a significant run-time cost, but the use of such methods may
result in greater overall efficiency or fidelity. For example, the increase in the timestep afforded by
an implicit method when solving stiff ODEs typically offsets the increased cost per step. Also, when
integrating a Hamiltonian system, an implicit method may be used to arrange that the simulation itself
preserves energy or is symplectic [3, 23].

The existence and uniqueness theory for IVPs is much more decisive than for BVPs. IVPs have
unique solutions under mild assumptions that are typically satisfied in practice, whereas BVPs may
have from zero to uncountably many solutions. However, when an implicit method is involved in
approximating the solution of an IVP, the possibility emerges of divergence or convergence to one
of multiple solutions. Convergence to spurious solutions is well recognized ( [5, 11] and references
therein), particularly in the numerical solution of BVPs ( [9, 16–18] and references therein). Less
attention is typically given to the context of solving IVPs ( [14, 15, 19] and references therein), where
there is theoretically a unique solution and where the presence of a “good” initial guess is taken for
granted. In this article, we consider the context of an implicit IVP method that has multiple solutions at
a given timestep and how to choose from among them, as opposed to a qualitatively incorrect numerical
solution of an IVP or BVP.

Standard methods for error estimation and control via timestep selection tend to adjust timesteps
such that, in practice, any ambiguity arising from multiple solutions is avoided, but they are not usually
specifically designed to do so. But there are two specific scenarios in which constant timesteps are often
used in practice: simulations of symplectic systems using a symplectic method [3] and simulations of
large physical systems. Efforts toward adaptive symplectic methods have been made, but they tend
to be specialized and require a significant amount of user judgment [20–22, 33]. Software packages
for the simulation of large physical systems, especially on distributed architectures [29–32], often
use constant timesteps because of the large relative expense of estimating the error and changing the
timestep. However, at constant timestep, a simulation may unexpectedly encounter a time-localized
region of complex dynamics, and convergence can easily be construed as nominal when in fact it is not.
A large number of independent simulations, e.g., explorations of a parameter space, may not be feasible
or efficient at small constant timestep. It may not be easy to automate the detection of anomalous
behaviour in the absence of convergence failure, and a manual inspection may not be feasible.

Numerical methods for solution of ODEs can also be classified according to how many past steps
are stored and used in computing the next step. In general, the next step can be a function of k past
steps, leading to multi-step methods. If only the current state is stored, then the method is one-step.
Although a multistep method may be regarded as a one-step method on a Cartesian product of state
spaces [28], the theory of multistep methods is complicated by the possibility of uncontrolled growth
of the error in the past states [25]. This is not the focus of this article; we consider only one-step
methods.
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To formalize, the time-advanced state qn+1 ≈ q(tn+1) after one step of a one-step implicit method is
obtained from the given current state qn ≈ q(tn) by solving a generally nonlinear equation of the form

F(y; x, h) = 0, y = qn+1, x = qn, (1.1)

where h is the given timestep. For example, the backward Euler method has F(y; x, h) = y− x−h f (y).
We assume, for all x, that

F(x; x, 0) = 0, Fy(x; x, 0) = 1, Fh(x; x, 0) = − f (x),

where 1 is the identity matrix and subscripts of F denote partial derivatives. Then, by the implicit
function theorem, for any fixed x, there is a unique smooth solution y(h) defined for sufficiently small h,
and y = x + h f (x) + O(h2), as is required for consistency.

Two solutions y1(h) and y2(h), defined on open intervals containing h = 0 and satisfying the
condition that Fy

(
yi(h); x, h

)
is nonsingular, are equal on the intersection of their domains (the set on

which y1(h) = y2(h) is nonempty, closed, and open by the implicit function theorem, and the
intersection of intervals is connected). Therefore, there is a maximal such solution, which we call the
principal solution branch, and there is generally a critical timestep hc after which the principal branch
ceases to exist. The condition that the solution set of F(y; x, h) = 0 is smooth in the space {y, h} is
weaker than the condition that it defines y as a function of h. Solutions may be continuously
connected after a fold bifurcation, for example, where the solution manifold turns backwards from the
direction of increasing timestep [26, 27]. Continuing through such a bifurcation leads to multiple
solutions at smaller timesteps than the critical one at which the bifurcation occurs. These solutions
co-exist with the solutions from the principal branch, and they may persist even as the timestep
approaches zero.

A simple example demonstrating the existence of a critical timestep hc at which a fold bifurcation
occurs is the application of the backward Euler method to the scalar IVP

q̇ = q2, q(0) = q0 > 0.

With the backward Euler method, the update equation (1.1) can be written as

hy2 − y + x = 0,

having solutions

y =
1 ±
√

1 − 4hx
2h

.

Evidently, there are two solutions for h < hc = (4x)−1, a single solution at h = hc, and no solutions
for h > hc; see Figure 1. We note the existence of two solutions for all 0 < h < hc. By the Newton–
Kantarovich Theorem [24], convergence to either solution is possible for an appropriately chosen initial
guess.

The principal solution branch contains the initial condition at zero timestep, which is exactly correct,
and it contains all solutions near zero timestep that continuously emanate from the initial condition. If
a more complicated bifurcation occurs, say a pitchfork, as opposed to a fold (e.g., bifurcations of the
solutions of y3 − (h − hc)y = 0 and y2 − (h − hc) = 0, respectively), then there are multiple solutions
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Figure 1. The backward Euler method for the equation q̇ = q2 has a fold point at (hc, (2hc)−1),
where hc = (4x)−1. There are two solutions for h < hc, a unique solution at h = hc, and
no solutions for h > hc. Solutions on the lower branch, which we refer to as the principal
solution branch, are preferred because solutions they are naturally considered to be consistent
with the initial condition.

beyond the critical timestep, none of which can be continuously and monotonically continued back to
the initial condition without passage through the bifurcation itself. There may be two successive fold
bifurcations, resulting in an “S”-shaped solution manifold, with timesteps larger than hc, for which
there is a unique solution. But in that situation, the two additional solutions at timesteps h . hc would
be rejected in favour of that on the principal branch, and for h & hc, the unique solutions are near an
inconsistent one and so would also be rejected.

Therefore, if there are multiple solutions at a given timestep smaller than the critical one, then
the principal branch should be chosen, and the timestep cannot be validly increased to be larger than
the critical one, irrespective of whether or not there are unique solutions there. Simulations should
generally not be carried on from solutions that are not on the principal branch, regardless of whether
the timestep used is larger or smaller the critical timestep, because they tend to result in non-negligible
perturbations to the solution. So as to have a concise term, we make the following definitions.

Definition 1.1. Given an initial condition x, a solution y with timestep h is called consistent if (y, h) is
on the principal solution branch.

Definition 1.2. The smallest timestep h such that there is a bifurcation of the principal branch is called
the critical timestep hc. Timesteps h > hc are called invalid. By definition, any solutions obtained with
invalid timesteps cannot be on the principal branch.

Another basic example relevant to Lagrangian systems that shows the existence of a fold bifurcation
for a critical timestep hc involves the Lagrangian

L(x, ẋ) =
1
2

ẋ2 −
1
3

x3,
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which models the dynamics of a nonlinear spring that has a stiffness proportional to its linear
displacement from equilibrium. Applying the first-order Variational Taylor method (described in
Section 3 below) yields an update equation of the form h (ẋ + ẏ) − 2 (x − y)

h
(
x2 + y2

)
+ 2 (ẋ − ẏ)

 = 0,

to be solved for y and ẏ. The solution to this update equation is

y = h−2
(
−2 ±

√
4 − h2 (

h2x2 + 4hẋ − 4x
))
,

ẏ = −ẋ + 2h−1 (x − y) ,
(1.2)

which again shows the potential for multiple solutions. Taking, for example, the initial state x = 1,

ẋ = 0, it is straightforward to show that (1.2) has two real solutions for h < hc =

√
2 + 2

√
2, a single

solution at h = hc, and no real solutions for h > hc.

2. Numerical continuation of the implicit solution

We consider one-parameter families of solutions to (1.1) in the hyperplane defined by the vector
(y, h) for fixed x. For practical computation, we parameterize these families by arclength, which
monotonically increases throughout the computation.

Suppose we have two points on the solution curve (y0, h0) and (y1, h1) with known tangent vector
T 0 at the first point. Our goal is to find a next point on the solution curve in the same arclength
direction following (y1, h1). This pseudo-arclength continuation is accomplished in a
predictor-corrector fashion. The prediction is performed via a linear approximation to the curve at the
point (y1, h1) and the correction by computing the minimum-norm solution to the system with rank-1
deficiency.

The tangent vector T 1 at (y1, h1) satisfies[
Fy Fh

]
T 1 = 0

and determines T 1 up to a scalar factor. To preserve the direction of the orientation of the branch, we
require

T
T
0T 1 = 1.

Using a natural decomposition T i = (T (y)
i ,T (h)

i ), i = 0, 1, we write the above as a single system[
Fy Fh

T
(y)T
0 T

(h)
0

] [
T

(y)
1
T

(h)
1

]
=

[
0
1

]
,

the solution to which uniquely determines T 1.
Using a step of length ∆s, we create a predictor

ŷ2 = y1 +
∆s
‖T 1‖

T
(y)
1 , ĥ2 = h1 +

∆s
‖T 1‖

T
(h)
1 ,
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to approximate the next point on the curve. The name pseudo-arclength comes from the fact that ∆s
measures arclength along the tangent line.

From the predictor, a Newton-like method is applied to obtain the next solution point on the curve
(y2, h2). Our specific choice of algorithm is the Gauss–Newton method. This particular approach for
path-following was first used in [10]. It is identified as being the Gauss–Newton method in [8]. A
practical description is given in [2] and summarized as follows.

We seek a solution to
F(ŷ + ∆y; x, ĥ + ∆h) = 0

such that ‖(∆y,∆h)‖ is minimal. Because F is nonlinear, we set up the Newton iteration as (y0, h0) =

(ŷ, ĥ), and yk+1 = yk + ∆y, hk+1 = hk + ∆h, where (∆y, ∆h) is the minimum-norm solution to

Fy(yk; x, hk)∆y + Fh(yk; x, hk)∆h = −F(yk; x, hk).

The minimum-norm solution is obtained by solving the matrix system[
Fy Fh

T
(y)T
1 T

(h)
1

] [
T

(y) ∆1y
T (h) ∆1h

]
=

[
0 −F
1 0

]
and constructing

∆y = ∆1y + ηT (y), ∆h = ∆1h + ηT (h),

with

η = −
(∆1y)TT

(y) + (∆1h)T (h)

‖T ‖2
.

Quadratic convergence of the above algorithm is proven in [8], and in our experiments, we iterate
solutions to a tolerance ‖F‖ < Ftol = 10−9, where ‖ · ‖ = ‖ · ‖2.

An initial step length ∆s0 must be chosen to initialize the continuation. For subsequent steps along
the continuation curve, we choose the next step length according to

∆sk =

√
2ε
‖wk‖

, wk =
1

∆sk−1
(T k − T k−1) , k = 1, 2, . . . ,

where ε is a user-defined tolerance for the absolute error in (ŷ, ĥ); we set ε = 100 Ftol.

3. The double pendulum

We applied pseudo-arclength continuation as described in Section 2 to the double pendulum system
of two bobs connected by a frictionless pin joint, the first moving on a circle with fixed center, the
second moving on a circle centered at the first, and both moving in the presence of gravity; see Figure 2.
The system is Lagrangian (and so symplectic), with Lagrangian function

LDP
ang = α̇2 +

1
2
β̇2 + α̇β̇ cos(α − β) + g (2 cosα + cos β) ,

in terms of the angular coordinates (α, β) shown in Figure 2a, and g = 9.81. The system evolution is in
accord with Euler–Lagrange differential equations of the form

q̇(t) = f (q), q =
(
α, β, α̇, β̇

)T
.
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For initial conditions, we use the near-vertical arrangement as in Dharmaraja et al. [1],

α(0) =
9π
10
, α̇(0) = 0.7, β(0) = π, β̇(0) = 0.4.

We compute a reference solution trajectory, qref; details are given at the end of this section. In the
resulting motion, the system quickly goes through a fast loop, as seen in the lower right of Figure 2b.
Events such as this, where the dynamics change quickly relative to the initial or overall dynamics, seem
to readily induce the bifurcations in (1.1) in which we are interested. Accordingly, we chose a point on
the trajectory that is just before the loop for our x value, specifically the point corresponding to time
t = 0.9.

a)

x

y

α

β

b)
−2 −1 0 1 2
−2

−1

0

1

2

t = 0.0

t = 0.9t = 2.0

x

y

Figure 2. a) Double pendulum in its initial configuration. b) Reference trajectory of the
double pendulum bobs used in this study. Starting from the initial configuration (black
squares), the outer pendulum swings down performing a fast loop before arriving at the final
configuration (black diamonds). We look at the behaviour of integrators starting from the
configuration corresponding to time t = 0.9 (red circles), just before entering the fast loop.

The fold points we seek are a property of the implicit method used for the integration as defined
by F(y; x, h). We now investigate the properties of these fold points for various implicit integration
methods.

We first consider a Variational Taylor (VT) method [6, 7], which uses the first-order Taylor
expansion of trajectories x→ x + tẋ to obtain the discrete Lagrangian,

Lh(x) =

∫ h/2

−h/2
LDP

ang(x + tẋ) dt.

The resulting one-step method is obtained by finding the critical points of the discrete action Lh(y) +

Lh(x) subject to the constraints[
x1

x2

]
−

h
2

[
ẋ1

ẋ2

]
= a1,

[
y1

y2

]
+

h
2

[
ẏ1

ẏ2

]
= a2,

[
x1

x2

]
+

h
2

[
ẋ1

ẋ2

]
=

[
y1

y2

]
−

h
2

[
ẏ1

ẏ2

]
,
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where a1 and a2 are constants, the values of which are not required for the method implementation.
The first two of these constraints are discrete analogues of the fixed-endpoint constraint for the
continuous variational principle. The last, which connects the discrete trajectories, is a discrete
analogue of the continuous constraint that the derivative of configuration is velocity. The resulting
constrained optimization problem is equivalent to discrete Euler–Lagrange equations, and, in the case
at hand, the associated Lagrange multipliers may be explicitly eliminated to obtain equations of the
form (1.1). Such methods extend to any order, but they become much more complicated, and it
suffices for our purpose here to consider only the first-order method [12, 13].

In addition to this, we investigate the fold points of a variety of implicit Runge–Kutta methods of
the form

qn+1 = qn + h
s∑

i=1

bi ki, ki = f

tn + cih, qn + h
s∑

j=1

ai j k j

 .
Specifically, using the usual Butcher tableau notation [4], we use the methods below (in row order):
backward Euler (BE); trapezoidal rule (TR); the trapezoidal rule backward differentiation formula 2
split-step method, with optimized split-step size γ = 2 −

√
2 as in [1] (TRB); third- and fifth-order

Radau IIA methods (R3, R5); and fourth- and sixth-order Gauss–Legendre methods (GL4, GL6). In
the experiments described below, the nonlinear systems associated with any implicit method were
solved using a classical Newton iteration.

1 1

1

0 0 0

1 1/2 1/2

1/2 1/2

0 0 0 0

γ γ

2
γ

2 0

1 1
2(2−γ)

1
2(2−γ)

1−γ
2−γ

1
2(2−γ)

1
2(2−γ)

1−γ
2−γ

1/3 5/12 −1/12
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3/4 1/4

2
5 −

√
6
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11
45 −

7
√
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√
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√
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√
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√
6

1800
11
45 + 7

√
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√
6
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√
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√
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√
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√
6
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1
9

1
2 −

√
3
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1
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√
3
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1
2 +

√
3
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4 +

√
3
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4

1
2

1
2

1
2 −

√
15
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5
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√
15
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√
15
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1
2
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√
15
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2
9

5
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√
15
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1
2 +

√
15
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5
36 +

√
15
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2
9 +

√
15

15
5
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5
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4
9

5
18

A reference solution for this problem was computed using timestep href = 2 × 10−5 with the VT
method. This reference solution was compared to that obtained from a VT integration with timestep
size href/2. The state of the system at t = 2.0 is given in Table 1, where we see agreement of 8
significant digits between these solutions (Table 1).
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Table 1. State of the reference solution at final time t = 2.0 compared to that obtained by
halving the timestep. Matching digits are in bold font.

href href/2 Digits
α −1.570737451319846 −1.570737439361913 8
β 3.773018950076258 3.773018944217077 8
α̇ 4.118116660671203 4.118116638219623 8
β̇ −6.273626026547350 −6.273626000367146 8

To demonstrate the potential effects of convergence to non-principal-branch solutions from an
implicit one-step method, we show inconsistent solutions obtained with the VT method and timestep
size h = 0.1225 in Figure 3. The nonlinear solver used in computing the solution at the next timestep
converges in all steps displayed, yet the inconsistent solutions appear markedly different from the
reference solution of Figure 2. There is even a difference in trajectories with inconsistent solutions
when all that is changed is the initialization of the nonlinear solver, in this case, from the solution at
the previous timestep to a linear extrapolation based on the solution at the previous two timesteps; this
implies the existence of at least two non-principal solution branches at some point along the time
integration.

a)
−2 −1 0 1 2
−2

−1

0

1

2

t=0.0

t=0.9

t=2.0

x

y

b)
−2 −1 0 1 2
−2

−1

0

1

2

t=0.0

t=0.9

t=2.0

x

y

Figure 3. Simulations of the double pendulum using a timestep of h = 0.1225 with the
VT method. a) The nonlinear solver of a VT timestep (initialized with the solution at the
previous timestep) converges to a solution, but the trajectory differs substantially from the
true trajectory as shown in Figure 2. b) Changing the initialization of the nonlinear solver to
a linear extrapolation based on the solution at the previous two timesteps, the simulation still
converges, but the resulting trajectory diverges even further.

All of the methods tested exhibit fold points before h = 0.33, as seen in Figure 4. Four of the
methods (BE, TR, TRB, and R3) have two fold points, resulting in a continuous connection between
the h = 0 solution and the h = 0.35 solution. Three of the methods (R5, GL4, and GL6) have a single
fold point, beyond which we were unable to find other solutions. The solution obtained with the VT
method exhibits two separate solution branches. The main branch originating from the h = 0 solution
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folds back, with norm approaching infinity as h returns to zero. A second branch extends beyond the
fold point, allowing for solutions for larger h that are not continuously and monotonically connected
to the h = 0 solution.

10−2 10−1

101

102

103

h

‖
qn+

1 ‖
2

VT
BE
TR
TRB

10−2 10−1

101

102

103

h

R3
R5
GL4
GL6

Figure 4. Norm of the computed state for various integrators. Point on the trajectory used
for initialization is at t = 0.9 from the reference solution pictured in Figure 2b.

The relative error in the trajectories, computed as

erel =
‖qn+1 − qn+1

ref ‖2

‖qn+1
ref ‖2

,

is visualized for all solution curves in Figure 5. We notice that the computed solutions near the fold
points for each of the methods have relatively large (typically O(1)) errors in this instance and that
the methods are out of their regions of asymptotic convergence. Passing through the fold points in
arclength, the error generally increases as the timestep decreases.

10−2 10−1

10−5

10−3

10−1

101

103

h

R
el

at
iv

e
er
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r

VT
BE
TR
TRB

10−2 10−1

10−5

10−3

10−1

101

103

h

R3
R5
GL4
GL6

Figure 5. Relative errors in the state qn+1. These errors are large (typically O(1)) at the fold
points.
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4. Discussion

Bifurcations, as a function of the timestep, are to be expected in the solutions of the update equations
defined by implicit numerical methods for nonlinear IVPs. As demonstrated, such bifurcations can
occur in purely mathematical examples, such as the backward Euler method applied to the differential
equation q̇ = q2, as well as in more physically interesting models, such as the double pendulum.

For simulations where the accuracy of single trajectories is important and variable step sizes are
used, standard step-size control may reduce the timestep to help prevent convergence to inconsistent
solutions. Such convergence, however, may persist even at small timesteps, depending on how the
iterative solver for a given method is initialized. Accordingly, convergence of an implicit method
solver alone is unreliable for assessing whether or not a solution is consistent or whether a simulation
should be carried on. In fact, it may be possible to identify a critical timestep size hc, corresponding to
the first point at which a bifurcation of the principal solution branch occurs, such that timesteps h > hc

can be considered to be invalid and solutions obtained are by definition inconsistent.
In other instances, such as the long-time integration of symplectic systems, where timesteps are

often constant or more generally where consideration of backward error is a driving motivation, specific
trajectories may not be as important as the general behaviour of the system. Even though the O(1)
relative errors we observe in trajectories at fold points in the double pendulum example imply that
the solutions may be inconsistent for timesteps smaller than the critical timestep, it is helpful to be
aware of the presence of fundamental method- and state-dependent limitations on the size of the valid
timesteps. Simulations with timestep sizes that are larger than the critical timestep cannot be expected
to generate reasonable and robust results in practice.

We used pseudo-arclength continuation to follow the solution branches of the numerical solution to
the double pendulum problem using several common implicit numerical methods. Pseudo-arclength
continuation can be used in this fashion as a post hoc solution validation technique. That is, given
a simulation, we can use the pseudo-arclength continuation procedure described to verify that the
solutions at each timestep lie on the principal solution branch. In principle, this can be done in parallel
with the computations of the time-advanced state. It would be interesting to develop such a tool to
monitor timesteps of implicit methods and to flag if an inconsistent solution is generated.
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