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1. Introduction

Due to their very broad spectrum of applicability in nonlinear science, nonlinear evolution
equations (NLEEs) were very significant elements. Nonlinear physical phenomena are among the
most important areas of research in science and engineering, such as plasma physics, fluid mechanics,
gas dynamics, elasticity, relativity, chemical responses, ecology, optical fiber, solid state physics,
biomechanics to mention few. All these equations are fundamentally controlled by NLEEs [1-10].
NLEEs are frequently used to demonstrate separate wave motion.

It has been gaining more concentration ever since the arrival of the solitary wave in science
aspects. Extracting precisely travelling wave alternatives to NLEEs is therefore essential. That’s
because getting accurate alternatives to NLEEs offers us the freedom to present data about the


http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2019.6.1523

1524

characteristics of complicated physical phenomenon. Thus, in the assessment of nonlinear physical
phenomenon, the development of precise traveling wave solutions to NLEEs has become a concern.
Several analytical methods were used to develop wave travel alternatives for NLEEs [11-31]. Full
soliton stability is not yet mathematically or physically well understood. Although these solitons,
owing to resonance with the continuous spectrum, have a natural tendency to leak energy, they can
still withstand this inclination and stay strong. In this work, we will provide the exact travelling wave
solutions and some dispersion relations for the governing equations [33].

As follows, the paper is organized. Section II presents the method descriptions. Section III discusses
the method’s applications to the governing equations. Analysis of stability is being studied in Section
IV. The paper is concluded by Section V.

2. Description of the method

In this section, we will state the main steps of GERFM as follows [34]:

1. Let us take into account the NPDE in the form:

LW Yo i Wi, ...) = 0. (2.1

Using the transformations ¢ = ¥(¢) and € = ox — It, Eq.(2.2) is reduced to following ODE as:

Loy’ y",..) =0, (2.2)

where the values of o~ and / will be found later.
2. Suppose that solution of Eq. (2.2) is expressed by a finite series as:

M M
WE) = Ao+ ) AOE) + ) BOE©™. (2.3)
k=1 k=1

where
pleqlé: + pzeq2§

O) = (2.4)

p3efI3.f + p4€fI4§.
The values of constants p;, g;(1 <i < 4), Ay, A; and By(1 < k < M) are determined, in such a way
that solution (2.3) always persuade Eq. (2.2). By considering the homogenous balance principle
the value of M is determined.

3. Putting Eq. (2.3) into Eq. (2.2) and rearranging the terms in Eq. (2.2) lead to an algebraic
equations P(Z,,Z,,73,7Z4) = 0 in terms of Z; = ¢%¢ withi = 1,...,4. Equating the coeflicients
of P to zero, a system of nonlinear equations in terms of p;,¢;(1 < i < 4), and 0,1, Ay, Ax and
Bi.(1 <k < M) is reached.

4. By solving the above system of equations using any symbolic computation software, the values
of pi,qi(1 <i <4), Ay, Ai, and By (1 < k < M) are determined, replacing these values in Eq. (2.3)
provides us the soliton solutions of Eq. (2.1).
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3. Application of the method

3.1. The Benny-Luke equation
Consider the BLE of the form [33]

Uy — Uy T YUyxxx — Olyxyy + Uglhyy + 2u)cuxt =0, (31)
In order to find the solutions of Eq. (3.1), we utilize
u(x)=u(§), &=Kx+Lt, (3.2)

where K and L are arbitrary constants to be determined.
If we use transformation (3.2) in Eq. (3.1), after an integration along with neglecting constant of
integration, the following nonlinear ODE is obtained

3
(L - K*)u' + K* (yK? - 6L%)u” + 5LK2 (') =0, (3.3)
Balancing the terms of u”” and ()% in Eq. 3.3) gives M +3 =2(M +1),and M = 1. Using M =1
along with Egs. (2.3) and (2.4), one gets:

B,

D)’

Using a methodology similar to the one adopted in Subsection 2, we get some solutions of (3.1), as
bellows:

u&) = Ao + A 0(¢) +

(3.4)

Family 1: We attain p = [-1,-1,1,-1] and ¢ = [1, -1, 1, —1], so we will obtain

cosh (&)
D) =- . 3.5
() sinh (&) (3.5)
Case 1:
KA+4K?y -1 K(y-9¢6
K=KL=-—-Y"Y" A =ApA =—4 -9 B, =0.
VasK? - 1 VASK?2 — 14Ky — 1
So, the solitary wave solutions of Eq. (3.1) takes the form of
© Ao V46K2 — 1/4K?y — 1 — 4Kcoth (£) (5 — )
u() = .
V46K? — 1+/4K2y — 1
Thus the solution of (3.1) is obtained as
Ao V46K? — 1 4/4K2y — 1 — 4Kcoth (£) (6 -
w0 VAK%y coth @)@ ~y) (3.6)

V46K? — 14Ky — 1
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where ¢ = K (x — ‘4K2y_lt).

VISKA 1
Case 2:
KK - K+16K?*y — 1
’ V166K —1
4K (y - 6) 4K (y - 6)
Ay = Ap, Ay = u , B = " .
V166K? — 1+/16K%y — 1 V166K? — 1+/16K%y — 1

So, the solitary wave solutions of Eq. (3.1) takes the form of

Ao V166K? — 14/16K*y — 1coth (¢) + 4K ((coth ©)* + 1) 6-7)

u() =
V166K?2 — 1+/16K2y — 1coth (¢)

Therefore the solution of (3.1) is attained as

Ao VI66K? = 1+/16K?y — Tcoth (¢) + 4K ((coth (£))* + 1) (6 — )

up (x, 1) = ; (3.7)
V166K? — 1/16K2y — 1coth (&)
_ V16K2y-1
where & = K(x+ Nrronid L
Case 3:
KA+4K?y —1 K(y-9¢
K=K L=-Y""Y" " A —AyA =4 =9 B, =0.
VasK? - 1 VASK? — 14Ky — 1
So, the solitary wave solutions of Eq. (3.1) takes the form of
© Ao VASK? — 1/4K%y — 1 + 4Kcoth (£) (6 — y)
u(é) = .
VASK2 — 14Ky — 1
Thus we attain the solution of (3.1) as follows
Ao V46K? — 1 4/4K?y — 1 + 4Kcoth (£) (6 -
w (e = 0 VAK2y coth @ 6 ~7) (3.8)
VASK? — 1+/4K%y — 1
3 VaKy-1
where & = K(x+ NTonids
Case 4:
KK = K+16K?*y — 1
’ VI66KZ -1
4K (y =6 4K (y-¢
Ao = Ao Ay = - -9 - AN
V166K? — 14/16K2y — 1 V166K? — 14/16K%y — 1

So, the solitary wave solutions of Eq. (3.1) takes the form of

Ao V165K — 116Ky — Tcoth (£) — 4K ((coth (£))* + 1) (6 — )

u(é) =
\/166K2 -1 \/16K2’)/ - ICOth(f)
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And hence we attain the solution of (3.1) in the form

Ao VI66K? = 1+/16K?y — Tcoth (¢) — 4K ((coth (£))* + 1) (6 — ) »
HE , .
(o0 VI65K? — 1 T16K2y — Tcoth (¢) G2

V16K2y-1
where & = K(x - ‘/Mizy_l t).

Family 2: We attain p = [-i,—i, 1, 1] and g = [i, —i, i, —i], so we will obtain

sin (£)
D) =- . 3.10
9 cos () (3.10)
Case 1:
KA+/4K?>y + 1 4K (y -6
K=KL=--Y2" " A= ApA = & =9 B, =0.
V45K? + 1 VASK? + 14Ky + 1
Inserting these values in Eqgs.(3.4) and (3.10), one gets
© Ao VASK? + 1 J4K%y + 1 cos (€) — 4K sin (£) (6 — y)
ué) = )
cos (&) VA4K%y + 1 V46K? + 1
Therefore we attain the solution of (3.1) as follows
Ao V4SK? + 1 /4K?y + 1 — 4K si §—
BN VARZy + 1008 (€) ~ 4K sin@©) (6~ ) G
cos (€) \4K2y + 1 V46K2 + 1
_ VA4K2y+1
where & = K(x— Noerid b
Case 2:
KK - KA+16K?y + 1
’ VI6sKZ +1
4K (y -6 4K (y — 6
Ay = Ag A, = (y-9) _ (y=9)

,B =— .
V166K? + 14/16K2y + 1 V166K?2 + 11/16K%y + 1
Plugging these values in Egs.(3.4) and (3.10), one gets

Ao V166K + 1/16K%y + 1 cos (&) sin (¢) — 8 (cos> (£) = 1/2) (6 - y) K

u(é) = .
cos (£) sin (£) V166K2 + 14/16K2y + 1

Thus the solution of (3.1) is given by

Ao V165K? + 1/16K2y + 1 cos (€) sin (€) — 8 (cos> (£) = 1/2) (6 - ) K
ug (x,t) = , (3.12)
cos (£) sin (¢) V166K2 + 1 4/16K2y + 1
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V16K2y+1
where & = K(x t e t).

Family 3: We attain p = [-2—-i,——-2+1i,1,1] and g = [i, —i, i, —i], so we will obtain

_sin(§) —2cos(§)
D) = cos @) . (3.13)

Case 1:

K+J4K?y + 1 20K (y - 6)
7A0:AOaA1 :O’Bl = - .
V45K? + 1 V40K2 + 1 /4K?y + 1

Imposing these values in Egs. (3.4) and (3.13), one gets
—20K cos (£) VAK?y + 1(5 - y) VA6K? + 1 + E1Ag (4K%y + 1) (46K + 1)

u(é) = (46K? + 1) (4K2y + 1) (= sin (¢) + 2 cos (£)) ,

K=K L=-

where E; = (2cos (§) — sin (£)), we then reach the solution of (3.1 stated as

—20K cos (&) VAK?y + 1(5 - y) VAGK? + 1 + E\Ag (4K%y + 1) (46K> + 1)

1) = - , 3.14
ur (%.1) (46K2 + 1) (4K2y + 1) (—sin (&) + 2 cos (&) .14)
_ V4KZy+1
where & = K(x— Tt
Case 2:
KA+4K?*y + 1 4K (y -0
K=K L=-N2T 0 A= ApA = & =9 B, =0.
VASK? + 1 VA0K? + 14K%y + 1
Inserting these values in Egs. (3.4) and (3.13), one reaches
© = =4 (2cos (&) —sin (&) VAK?>y + 1 (6 —y) K V46K? + 1 + cos (£) Ez
" (46K? + 1) (4K?*y + 1) cos (&)
where E, = Ay (4[( 2y + 1) (4(5[( 24 1) . Therefore we attain the solution of (3.1) as
(uf) = =4 (2cos (&) —sin (&) VA4K?y + 1 (6 —y) K V46K? + 1 + cos (€) Ez (3.15)
e = (46K2 + 1) (4K2y + 1) cos (€) '
B Vak2y+1
where & = K(x+ Tt
Family 4: We attain p = [1 —i,1+i,—1,1] and g = [i, —i, i, —i], so we will obtain
O ) = cos (£) + sin (f). (3.16)
cos (£)
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Case 1:
K+4K?y + 1 4K (y — 6
K=K L=-—- YY" A =AyA, = =9 B, =0.
V45K + 1 VA0K? + 1 4K%y + 1

Putting these values in Egs.(3.4) and (3.16), one gets

—4K \J4K?*y + 1 (cos (£) + sin (£)) (6 —y) V46K? + 1 + cos (£) E3
(46K? + 1) (4K?*y + 1) cos (&)

u() =

where E; = Ag (4[( 2y + l) (46[( 24 1) . Therefore we attain the solution of (3.1) in the following form

—4K \J4K?y + 1 (cos (£) + sin (€)) (6 —y) V46K? + 1 + cos (£) E3

1) = 3.17
up (%:1) = (46K2 + 1) (4K2y + 1) cos (€) 3-17)
B VaK2y+1
where & = K(x— rerid b
Case 2:
K+\4K*y + 1 8K(y—-90
K=KL=-—— YY" A —ApnA =0.B = =9 .
V46K + 1 VASK? + 14Ky + 1
So, the solitary wave solutions of Eq. (3.1) takes the form of
© = 8K cos (&) \4K?*y + 1 (6 —y) V46K? + 1 + (cos (£) + sin (£)) E4
u =
(46K? + 1) (4K?*y + 1) (cos (£) + sin (£))
Es=A (4K27 + 1) (4(‘51(2 + 1) . Therefore one can reach the solution of (3.1) as comes next
(ef) = 8K cos (&) V4K?*y + 1 (6 —y) V46K? + 1 + (cos (£) + sin (£)) E,4 (3.18)
o 1= (46K2 + 1) (4K2y + 1) (cos (&) + sin (€)) ’ '
_ V4KZy+1
where & = K(x— Noerid b
Family 5: We attain p = [-1,3,1,-1] and ¢ = [1,-1, 1, —1], so we will obtain
cosh (£) — 2 sinh (&)
D¢ = . 3.19
(€3] sinh &) (3.19)
Case 1:
K+\4K*y — 1 4K (y -6
K:K,L:——Y,AO:AO,Alz & =9) ,B; =0.
V4sK? - 1 V40K? — 1 4K?y — 1

Imposing these values in Eqs. (3.4) and (3.19), one gets

—4K \J4K?y — 1 (cosh (&) — 2sinh (£)) (6 —y) V46K? — 1 + A0E5
(46K? — 1) (4K?y — 1) sinh (¢)

u() =
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where E5 = sinh (£) (4K 2y — 1) (4(5[( 2 1). Therefore we attain the solution of (3.1) as

—4K \J4K?*y — 1 (cosh (£) — 2sinh (£)) (6 —y) V46K? — 1 + A0E5

up (x, 1) = (46K? — 1) (4K*y — 1) sinh (&)
where & = K(x - \/%t)-

Family 6: We attain p = [-3,-1,1,1] and ¢ = [1,—1, 1, —1], so we will obtain
—2 cosh (¢) — sinh (&)

(6 =

cosh (&)
Case 1:
K+4K?2y — 1 AK (y = 6
K=KL=oY"" 77" A =ApA = 7-9 B, =0.
V46K2 - 1 V40K? — 1 4K?y — 1

Putting these values in Eqgs.(3.4) and (3.21), one gets

4 (2 cosh (¢) + sinh (£)) V4K?*y — 1 (6 —y) K V46K? — 1 + cosh (f)
(46K? — 1) (4K*y — 1) cosh (&)

u(é) =

E¢ = (451(2 - I)AO (4K2y — 1) . Therefore we reach the solution of (3.1) as follows

4 (2 cosh (&) + sinh (&) \/4K?*y — 1 (6 —y) K V46K? — 1 + cosh () E6

$t -
tha (%, 1) = (46K2 — 1) (4K%y — 1) cosh (&)
_ V4K2y-1
where & = K(x+ VTonids
Family 7: We attain p = [-3,-2,1, 1] and ¢ = [0, 1,0, 1], so we will obtain
—3 —2¢¢
OE) = ———.
) o of
Case 1:
KKy -1 24K (y - 6
K:K’L:_—yaAO:AO,Alz(),Bl:— (7 ) .
oK2 — 1 VOK2 - 1K?y - 1

Plugging these values in Eqgs.(3.4) and (3.23), one attains

24K \JK*y — 1 (1 + ef) (6—7y) V6K> -1+ 2(51(2 - 1)A0E7

u ) = (6K2 — 1) (K>y — 1) (3 + 2¢%) ’

where E; = (K 2y — 1) (3 /2 +¢ef ) . Therefore we attain the solution of (3.1) as

—24K K2y = 1(1 +¢) (6 —y) VOK? — 1 +2(6K> - 1) AgE;
(0K% — 1) (K2y — 1) (3 + 2¢%) ’

uiz (x,1) =

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)
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28—
where & = K(x - ;(3_11 t).

Family 8: We attain p = [1,0,1,1] and g = [1, 0, 1, 0], so we will obtain

@ ¢ 3.5
)= (3.25)
Case 1:
K+K?y -1 4K (y -6
K=KL="Y"V"" A =Ap,A = =9 p -0
0K2 -1 VoK2 - 1/K2y - 1
Putting these values in Egs.(3.4) and (3.25), one reaches
4Kef K2y —1(6 —y) VOK2 — 1 + A (51(2 - 1) (K> - 1) (1+ ef)
u(®) = K2 — 1) (K2 — 1) (1 + ¢f) '
Therefore we attain the solution of (3.1) as comes next
4Kef K2y = 1(5 - y) VOK? = 1+ A (0K> - 1) (K?y = 1) (1 + €f)
U4 (x’ t) = B (326)
(OK> = 1)(K?>y = 1)(1 +¢€?)
where & = K(x + ‘Kzz_lt).
0K*—1
Family 9: We attain p = [2,1,1,1] and g = [1,0, 1, 0], so we will obtain
2ef + 1
D) = . 3.27
) = (3.27)
Case 1:
KyK*>y -1 4K (y -6
K=KL=—Y"Y"" Ay=ApA = b0 g -0
oK — 1 VoK2 - 14/K2y - 1
Putting these values in Eqgs.(3.4) and (3.27), we have
—4\K?y = 1(2ef + 1) (6 - y) K VoK? — 1 + Ay (6K> — 1) (K*y — 1) (1 + &)
u () = K2 —1)(K2y — 1) (1 + ) '
Therefore we reach the solution of (3.1) as comes next
—4\K?y = 1(25 + 1) (6 - ) K VOK2 — 1 + Ag (6K> — 1) (K>y — 1) (1 + €)
ugs (x,1) = (3.28)

(K2 —1)(K2y — 1) (1 + €) ’

where & = K (x - sz_lt).

0K2-1
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Family 10: We attain p = [-1,0,1,1] and ¢ = [0, 1, 0, 1], so we will obtain

1
D) =- . 3.29
©) = -5 (3.29)
Case 1:
K+K*y -1 4K (y -6
K=KL=-—Y"Y"" Ay=Ap.A =- =9 _ -0
6K2 — 1 VOK2 - 14/K2y — 1
Employing these values to Egs. (3.4) and (3.29), one reaches
—AK\Ky-1(6-y) Vo K2 -1 +A0(5K2 - 1)(K2y— 1)(1 +¢f)
u(®) = 6K —1)(K2y - 1)(1 + ) '
Therefore we attain the solution of (3.1) is as comes next
~4 KKy =16 —7) Vo K> = 1+ Ay (6 K> - 1)([(27 - 1)(1 + ef)
1) = , 3.30
¥as (%, ) OK2—1)(K2y - 1) (1 + &) (5.30)
where ¢ = K(x + ‘Kzz_lt).
SK2-1
3.2. The Phi-4 equation
Now, let us Consider the PE given by [33]
Uy — Uy + mPu+ ou’ =0, (3.31)

To solve Eq. (3.31), we again apply the travelling wave transformation (3.2). Then Eq. (3.31) turns to
the following nonlinear ODE as

(L2 _ KZ) v’ +miu+ou’ =0, (3.32)

Balancing the terms of u” and u® in Eq. (3.32) gives 3N = N + 2, so N = 1. So, the solution of Eq.
(3.31) will be as:

B
u(é) = Ag + A, O¢) + W;)' (3.33)

Family 1: We attain p = [1 +i,1—1i,1,—1] and g = [i, —i, i, —i], so we will obtain

_ —sin (&) + cos (£)
O (&) = w03 @) . (3.34)
Case 1:
4 K* —2m? m 2m
K:K,L: 2 9AO:_$,A1_O’BIZ %
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Putting these values into Egs. (3.33) and (3.34), one gets

_ m(cos (&) +sin())
MO = L Cein@ 1 cos @)

Therefore we attain the solution of (3.31) given by

m(cos (Kx + —@) + sin (Kx + —@))

up (x,1) = .
\/E(— sin (Kx + —“‘KZZ‘Q’"Q) + cos (Kx + —‘4’(22‘2’”2))
Case 2:
4 K% -2 m? m m
K=K,L=———/—A)=—,Ai=——,B;=0.

2 0 \/E 1 \/(7' 1
Inserting these values into Egs. (3.33) and (3.34), one gets

() = msin (£)

Vo cos (&)
Therefore we attain the solution of (3.31) stated as
msin (Kx + —“”(22‘2’"2)

u (x,1) = .
V4 K2-2 m?
Vo cos (Kx + T)

Family 2: We attain p = [1 —i,1 —4i,1,1] and g = [i, —i, i, —i], so we will obtain

_ cos (&) +sin(€)
® () = s @
Case 1:
V4 K% — 2 m? m m
K:K,L:f,A():%,Al:O,B]:—2$.

Putting these values into Egs. (3.33) and (3.37), one gets

m (— sin (€) + cos (£))
Vo (cos (&) + sin (£))’

Therefore we attain the solution of (3.31) as comes next

m (— sin (Kx + —‘41@2—2’”2) + cos (Kx + —‘41(22_2’"2))

u() = -

us (x, 1) = —

2 2

\/E(cos (Kx + —““@_2’"2) + sin (Kx + —‘“@_2’"2))

(3.35)

(3.36)

(3.37)

(3.38)
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Family 3: We attain p = [-2 —i,-2 + 1,1, 1] and g = [i, —i, i, —i], so we will obtain
—2 cos (&) +sin ()

D) = cos @ . (3.39)
Case 1:
K=k L= 2, _%,Al 0,8, = _%
Imposing these values into Egs. (3.33) and (3.39), one gets
() = m (2 sin (£) + cos (£))

VT (2 cos (&) —sin(€))’

Hence we reach the solution of (3.31) as follows

m(z sin(Kx+ @)HGS(,{H W))

uy (x,t) = ) (3.40)
\/5(2 cos (Kx + —“41@2_2’”2) —sin (Kx + —"“(22‘2’"2))
Family 4: We attain p = [1 —i,—1 —-1i,—1,1] and g = [i, —i, i, —i], so we will obtain
—sin (¢) + cos (&)
D¢ = . 341
3] Sin @) (3.41)
Case 1:
4 K2 -2 m? m m
K=K L=——"—A=—,A1=—,B; =0.
5 0 N7 1 N7 1
Putting these values into Egs. (3.33) and (3.41), one gets
mcos (&)
ul@@)=ul¢)=———.
&) =u) Vo sin @)
Therefore we attain the solution of (3.31) as comes next
m cos (Kx + —@)
us (x,t) = u(¢) = . (3.42)
Ve sin (Ko + S22 )
Family 5: We attain p = [2 —i,-2 —i,—1,1] and g = [i, —i, i, —i], so we will obtain
cos (€) — 2 sin(¢)
D) = . 343
) Sin (@) (3.43)
Case 1:
4 K2 -2 m? 2m Sm
K:K,L: ,A :—,A _()’B -
> 0 Nz 1 1 N7
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Inserting these values into Eqgs. (3.33) and (3.43), one gets

_ m(sin(§) + 2 cos(£))
MO = cos @ -2 sin (@)

Therefore we attain the solution of (3.31) given as

m

(sin (Kx + —'“{22_2’"2) + 2 cos (Kx + —"“{22_2’”2))

ue (x,1) =

2

\/E(cos (Kx + —‘“(2‘2’"2) — 2 sin (Kx + —"4’(22‘2’"2))

Family 6: We attain p = [i,—i, 1, 1] and g = [i, —i, i, —i], so we will obtain

Case 1:

K=K L=

_ sin@
D &) = cos (@)’
V16 K2 — 2 m? m m
1 aAO—O,Al—_ﬁ’BI—ﬁ-

Employing these values into Egs. (3.33) and (3.45), one gets

(2 (cos ®))* = 1)m
2T cos (@sin (@)

u() =

Therefore we attain the solution of (3.31) is as comes next

2
(2 (cos (Kx + —V“’Kj‘zmzt)) - l)m

Uz (-x9 t) =

4

2o cos (Kx + —“m’(j‘z”ﬂt) sin (Kx + —W‘z”ﬂt)

Family 7: We attain p = [-1,-1,1,—-1] and ¢ = [1, -1, 1, —1], so we will obtain

Case 1:

cosh
@ (f) = -2
sinh (&)
4 K2 — m? 2 2
K=kL= K- a1 Y g p Y
2 \o \o
Putting these values into Egs. (3.33) and (3.47), one gets
V2m
u(@) =- : :
2 y/o sinh (¢) cosh (£)
Therefore we attain the solution of (3.31) as follows
V2m

AIMS Mathematics

2 (x’ t) = -

2 /o sinh (Kx + —‘A'K;_"ﬂt) cosh (Kx + —‘4[{22_'"21‘)

Volume 4, Issue 6,

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)
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4. Stability analysis

In this section, the stability analysis [35-37] for the governing equations that is (3.1) and (3.31) will
be analyzed.

4.1. Stability for Eq. (3.1)
Consider the perturbed solution of the form [37]
u(x,t) = ww(x,t) + Py, “4.1)

it can be easily seen that, any constant P is a steady state solution for (3.1). Plugging (4.1) into (3.1),
one arrives at
Wy + 2T W Wy — TWix + T W Wy — OTWirgy + YTWirex = 0, 4.2)

linearizing the above equation in 7, we reach
TWy — TWyx — OTW gy + YTWinx = O. 4.3)
Assume that (4.3) has a solution of the form
w(x, 1) = ¢ ®H), 4.4)
where k is the normalized wave number, plugging (4.4) into (4.3)

vk + 2 (1 - 60?) - o? =0, (4.5)

vk* + k?
w:_‘/5k2+1' (4.6)

From (4.6), one can see that the real part is negative for all k£ values, then any superposition of the
solutions will appear to decay. Thus, the dispersion is stable.

solving for w, we obtain

4.2. Stability for Eq. (3.31)

In a similar manner, consider the perturbed solution of the form
u(x,t) = ™w(x, t) + Py, “4.7)

it is plainly to see that in (4.7) any constant P, is a steady state solution for (3.31). Plugging (4.7) into
(3.31), one gets
m*(tw(x, 1) + P1) + o(tw(x, 1) + P1)’ + Twy — Twy, = 0, (4.8)

linearizing the above equation in 7, one gets
m*rw(x, 1) + 30'TP%W(X, )+ 1w, —Tw,, = 0. 4.9)
Suppose again that (4.9) has a formal solution of the form (4.4), inserting (4.4) into (4.9), one gets

K +m? + 3P0 — w* =0, (4.10)

AIMS Mathematics Volume 4, Issue 6, 1523-1539.
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solving for w from the immediate equation, we acquire

w=- \/k2 +m? + 3P0 4.11)

From (4.11), it can be seen that the real part is negative for all k, m, P} values. Thus, any superposition
of the solutions will appear to decay. Hence, the dispersion is stable.

5. Conclusion

In this work, we present new solitary wave solutions for the BLE and PE. We applied the new
GERFM to reach such solutions. Moreover, the stability for the governing equations is investigated via
the aspect of linear stability analysis. It has been proved that, both the governing equations are stable.
These new families of solutions are shown the power, effectiveness and fruitfulness of this method.
These fresh solutions have many applications in physics and other physical sciences branches. Other
nonlinear PDEs involving mathematical physics and other different branches of physical sciences can
also be solved through this method.
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