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Abstract: In this paper we present a global existence theorem of a positive monotonic integrable
solution for the mixed type nonlinear quadratic integral equation of fractional order

x(t) = p(t) + h(t, x(t))
∫ t

0
k(t, s)( f1(s, Iα f2(s, x(s))) + g1(s, Iβg2(s, x(s))))ds, t ∈ [0, 1], α, β > 0

by applying the technique of measures of weak noncompactness. As an application, we consider an
initial value problem of arbitrary (fractional) order differential equations.
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1. Introduction

It is well-known that a useful mathematical tool for physical investigation and description of non-
local and anomalous diffusion is fractional calculus, which is that a branch of mathematical analysis
dealing with pseudo-differential operators interpreted as integrals and derivatives of non-integer order
(see [1, 16, 21, 22]). For example, quadratic integral equations are often applicable in the theory of
radiative transfer, of the theory of kinetic gases, the theory of neutron transport and in the theory
of traffic. The quadratic integral equation can be very often encountered in many applications (see
[6, 7, 9]).
Recently, the existence of positive monotonic continuous and integrable solutions of the mixed type
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integral inclusion

x(t) ∈ p(t) +

∫ 1

0
k(t, s) F1(s, Iβ f2(s, x(s))ds, t ∈ [0, 1], β > 0 (1.1)

has been studied in [13,15] by using Schauder’s and nonlinear alternative of Leray-Shauder type fixed-
point Theorem. Also, the existence of integrable solution for the nonlinear quadratic integral equation

x(t) = a(t) + g(t, x(t))
∫ t

0
k(t, s) f (s, x(s))ds, t ∈ [0, 1] (1.2)

has been proven in [12] by using Lusin and Dragoni theorems and applying Schauder Tychonoff fixed-
point Theorem.
Here we are concerned with the mixed type nonlinear integral equation of fractional order

x(t) = p(t) + h(t, x(t))
∫ t

0
k(t, s)( f1(s, Iα f2(s, x(s))) + g1(s, Iβg2(s, x(s))))ds, t ∈ [0, 1], α, β > 0 (1.3)

which is more complicated than the equation assumed in [12]. We will use the technique associated
with measures of noncompactness to show a global existence theorem for a positive nondecreasing
integrable solution of equation (1.3), where the functions f1, f2, g1 and g2 satisfy Carathéodory
condition.
Moreover, the existence of at least one integrable solution of the fractional-order quadratic integral
equation

x(t) = p(t) + h(t, x(t))Iθ( f1(s, Iα f2(s, x(s)) + g1(s, Iβg2(s, x(s))))), t ∈ [0, 1], α, β > 0 (1.4)

will be studied. Let us mention the result obtained for h(t, x(t)) = 1 in integral equation (1.4) extend
those obtained in the paper [2]. Also, the results concerning the existence of monotonic positive
integrable solution of the nonlinear functional equation

x(t) = f1(t, Iα f2(t, x(t)) + g1(t, Iβg2(t, x(t)),

will be given as a special case, which generalized the results proved in [4, 14].

2. preliminaries

In this section, we introduce notations, definitions, and preliminary facts that are used throughout
this paper.
Let L1 = L1(I) be the class of Lebesgue integrable function on the interval I = [a, b], where 0 ≤ a< b <
∞, with the standard norm

‖x‖ =

∫ b

a
|x(t)|dt.

Definition 2.1. The Riemann-Liouville fractional integral of the function f (.) ∈ L1(I) of order α ∈ R+

is defined by (cf. [18, 19, 22])

Iαa f (t) =

∫ t

a

(t − s)α−1

Γ(α)
f (s) d(s).

AIMS Mathematics Volume 4, Issue 3, 821–830.



823

For the properties of the fractional order integral (see [17, 18]).

Definition 2.2. The Caputo fractional derivative Dα of order α ∈ (a, b] of the absolutely continuous
function g is defined as (see [10, 19, 20, 22] )

Dα
a g(t) = I1−α

a
d
dt

g(t) , t ∈ [a, b].

Now, let E denote an arbitrary Banach space with zero element θ and X a nonempty bounded subset
of E. Moreover denote by Br = B(θ, r) the closed ball in E centered at θ and with radius r.
The measure of weak noncompactness defined by De Blasi [3, 11] is given by

β(X) = in f (r > 0; there exists a weakly compact subset Y of E such that X ⊂ Y + Br). (2.1)

The function β(X) possesses several useful properties which may be found in De Blasi’s paper [11].
The convenient formula for the function β(X) in L1 was given by Appell and De Pascale (see [3]) as
follows:

β(X) = lim
ε→0

(
sup
x∈X

(
sup

[∫
D
|x(t)|dt : D ⊂ [a, b], meas D ≤ ε

]))
, (2.2)

where the symbol meas D stands for Lebesgue measure of the set D.

Next, we shall also use the notion of the Hausdorff measure of noncompactness χ (see [4]) defined
by

χ(X) = in f (r > 0; there exist a finite subset Y of E such that X ⊂ Y + Br). (2.3)

In the case when the set X is compact in measure, the Hausdorff and De Blasi measures of
noncompactness will be identical. Namely, we have the following (see [3, 11]).

Theorem 2.1. Let X be an arbitrary nonempty bounded subset of L1. If X is compact in measure, then
β(X) = χ(X).

Now, we will recall the fixed point theorem due to Banaś [8].

Theorem 2.2. Let Q be a nonempty, bounded, closed, and convex subset of E, and let T : Q →
Q be a continuous transformation which is a contraction with respect to the Hausdorff measure of
noncompactness χ; that is, there exists a constant α ∈ [0, 1] such that χ(T X) ≤ αχ(X) for any nonempty
subset X of Q. Then, T has at least one fixed point in the set Q.

In the sequel, we will need some criteria for compactness in measure; the complete description of
compactness in measure was given in Banaś [4], but the following sufficient condition will be more
convenient for our purposes (see [4]).

Theorem 2.3. Let X be a bounded subset of L1. Assume that there is a family of measurable subsets
(Ωc)0≤c≤b−a of the interval (a, b) such that meas Ωc = c. If for every c ∈ [0, b − a], and for every x ∈ X,

x(t1) ≤ x(t2), (t1 ∈ Ωc, t2 < Ωc)

then, the set X is compact in measure.
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3. Existence Theorem

To facilitate our discussion, let us first state the following assumptions:

(1) the function p : [0, 1]→ R+ is integrable and nondecreasing on [0, 1].
(2) h : [0, 1]×R+ → R+, satisfies Carathéodory condition i.e., h is measurable in t for any x ∈ R+ and

continuous in x for almost all t ∈ [0, 1]. There exists a function m(t) ∈ L1 such that

|h(t, x)| ≤ m(t).

Moreover it is nondecreasing in the two arguments.
(3) fi : [0, 1] × R+ → R+, and gi : [0, 1] × R+ → R+, i = 1, 2 satisfy Carathéodory condition i.e., fi, gi

are measurable in t for any x ∈ R+ and continuous in x for almost all t ∈ [0, 1] .
There exist four functions t → ai(t) , t → bi(t), t → ci(t), and t → di(t). such that

| fi(t, x)| ≤ ai(t) + bi(t)|x|, i = 1, 2 ∀ t ∈ [0, 1] and x ∈ R

and
|gi(t, x)| ≤ ci(t) + di(t)|x|, i = 1, 2 ∀ t ∈ [0, 1] and x ∈ R

where ai(.), ci(.) ∈ L1, and bi(.), di(.) are measurable and bounded.

(4) k : [0, 1] × R+ → R+ is measurable with respect to both variables and the integral operator K
defined by

(Kx)(t) =

∫ t

0
k(t, s)x(s)ds, t ∈ [0, 1]

map nondecreasing positive function L1 into itself and such that∫ t

0
k(t, s) m(t)dt < M, s ∈ [0, 1].

Moreover, it is nondecreasing in the first argument.

For the existence of at least one nondecreasing L1−positive solution of a mixed type integral equation
(1.3) we have the following theorem.

Theorem 3.1. Let the assumptions (1)–(4) be satisfied and assume that Mb1b2
Γ(α+1) +

Md1d2
Γ(β+1) < 1, then equation

(1.3) has at least one solution x ∈ L1 which is nondecreasing on the interval [0, 1].

Proof. Firstly, for t1, t2 ∈ [0, 1], t1 < t2 and x(t1) ≤ x(t2), we have

x(t1) = p(t1) + h(t1, x(t1))
∫ t

0
k(t1, s) ( f1(s, Iα f2(s, x(s))) + g1(s, Iβg2(s, x(s))))ds

≤ P(t2) + h(t2, x(t2))
∫ t

0
k(t2, s) ( f1(s, Iα f2(s, x(s))) + g1(s, Iβg2(s, x(s))))ds

= x(t2).
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This implies that, if the solution of the integral equation (1.3) exists, then it is nondecreasing on [0, 1].
Let the operator T be defined by the formula

(T x)(t) = p(t) + h(t, x(t))
∫ t

0
k(t, s) ( f1(s, Iα f2(s, x(s))) + g1(s, Iβg2(s, x(s)))) ds

Let x ∈ L1, then by assumptions (1)–(4) we find that

|(T x)(t)| = |p(t)| + |h(t, x(t))|
∫ t

0
k(t, s) | f1(s, Iα f2(s, x(s))) + g1(s, Iβg2(s, x(s)))| ds

≤ |p(t)| + m(t)
∫ t

0
k(t, s) (| f1(s, Iα f2(s, x(s)))| + |g1(s, Iβg2(s, x(s)))|) ds

‖T x‖ =

∫ 1

0
|(T x)(t)| dt

≤

∫ 1

0
|p(t)| dt +

∫ 1

0
m(t)

∫ t

0
k(t, s)| f1(s,

∫ s

0

(s − τ)α−1

Γ(α)
f2(τ, x(τ)) dτ| ds dt

+

∫ 1

0
m(t)

∫ t

0
k(t, s)|g1(s,

∫ s

0

(s − τ)β−1

Γ(β)
g2(τ, x(τ)) dτ| ds dt

≤ ‖p‖ +

∫ 1

0
m(t)

∫ t

0
k(t, s)(a1(s) + b1(s)|

∫ s

0

(s − τ)α−1

Γ(α)
f2(τ, x(τ))dτ|) ds dt

+

∫ 1

0
m(t)

∫ t

0
k(t, s)(c1(s) + d1(s)|

∫ s

0

(s − τ)β−1

Γ(β)
f2(τ, x(τ)) dτ|) ds dt

≤ ‖p‖ +

∫ 1

0

∫ 1

s
k(t, s) m(t) dt (a1(s) + b1(s)|

∫ s

0

(s − τ)α−1

Γ(α)
f2(τ, x(τ))dτ|)ds dt

+

∫ 1

0

∫ 1

s
k(t, s) m(t) dt (c1(s) + d1(s)|

∫ s

0

(s − τ)β−1

Γ(β)
f2(τ, x(τ))dτ|)ds dt

≤ ‖p‖ + M
∫ 1

0
|a1(s)| ds + M

∫ 1

0
|b1(s)|

∫ s

0

(s − τ)β−1

Γ(α)
| f2(τ, x(τ))|dτ ds

+ M
∫ 1

0
|c1(s)|ds + M

∫ 1

0
|d1(s)|

∫ s

0

(s − τ)β−1

Γ(β)
| f2(τ, x(τ))|dτ ds

≤ ‖p‖ + M‖a1‖ + Mb1

∫ 1

0

∫ s

0

(s − τ)α−1

Γ(α)
[a2(τ) + b2(τ)|x(τ)|]dτds

+ M‖c1‖ + Md1

∫ 1

0

∫ s

0

(s − τ)β−1

Γ(β)
[c2(τ) + d2(τ)|x(τ)|]dτds

≤ ‖p‖ + M‖a1‖ + Mb1

∫ 1

0

∫ 1

τ

(s − τ)α−1

Γ(α)
a2(τ)dsdτ + Mb1

∫ 1

0

∫ 1

τ

(s − τ)α−1

Γ(α)
|b2(τ)||x(τ)|dsdτ

+ M‖c1‖ + Md1

∫ 1

0

∫ 1

τ

(s − τ)β−1

Γ(β)
c2(τ)dsdτ + Md1

∫ 1

0

∫ 1

τ

(s − τ)β−1

Γ(β)
|d2(τ)||x(τ)|dsdτ
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≤ ‖p‖ + M‖a1‖ + Mb1

∫ 1

0
a2(τ)

∫ 1

τ

(s − τ)α−1

Γ(α)
dsdτ + Mb1b2

∫ 1

0
|x(τ)|

(1 − τ)α

Γ(α + 1)
dτ

+ M‖c1‖ + Md1

∫ 1

0
c2(τ)

∫ 1

τ

(s − τ)β−1

Γ(β)
dsdτ + Md1d2

∫ 1

0
|x(τ)|

(1 − τ)β

Γ(β + 1)
dτ

≤ ‖p‖ + M‖a1‖ + Mb1

∫ 1

0
a2(τ)

(1 − τ)α

Γ(α + 1)
dτ +

Mb1b2

Γ(α + 1)

∫ 1

0
|x(τ)|dτ

+ M‖c1‖ + Md1

∫ 1

0
c2(τ)

(1 − τ)β

Γ(β + 1)
dτ +

Md1d2

Γ(β + 1)

∫ 1

0
|x(τ)|dτ

≤ ‖p‖ + M‖a1‖ +
Mb1

Γ(α + 1)

∫ 1

0
|a2(τ)| dτ +

Mb1b2‖x‖
Γ(α + 1)

+ M‖c1‖ +
Md1

Γ(β + 1)

∫ 1

0
|c2(τ)| dτ +

Md1d2‖x‖
Γ(β + 1)

≤ ‖p‖ + M‖a1‖ +
Mb1‖a2‖

Γ(α + 1)
+

Mb1b2‖x‖
Γ(α + 1)

+
Md1‖c2‖

Γ(β + 1)
+

Md1d2‖x‖
Γ(β + 1)

,

≤ ‖p‖ + M‖a1‖ + M‖c1‖ +
Mb1‖a2‖ + Mb1b2‖x‖

Γ(α + 1)
+

Md1‖c2‖ + Md1d2‖x‖
Γ(β + 1)

which gives

‖T x‖ ≤ ‖p‖ + M‖a1‖ + M‖c1‖ +
Mb1‖a2‖ + Mb1b2‖x‖

Γ(α + 1)
+

Md1‖c2‖ + Md1d2‖x‖
Γ(β + 1)

(3.1)

and proves that T x ∈ L1. Moreover, the estimate (3.1) shows that the operator T maps the ball Br into
itself, where

r = [‖p‖ + M‖a1‖ + M‖c1‖ +
Mb1‖a2‖

Γ(α + 1)
+

Md1‖c2‖

Γ(β + 1)
][1 − (

Mb1b2

Γ(α + 1)
+

Md1d2

Γ(β + 1)
)]−1.

Let Qr ⊂ Br consisting of all positive and nondecreasing functions on I. Clearly Qr is nonempty,
bounded, closed and convex (see Banas [4], pp. 780). Now Qr is a bounded subset of L1 consisting
of all positive and nondecreasing functions on [0, 1], then Theorem 2.3 shows that Qr is compact in
measure (see Lemma 2 in [5] pp. 63).
Thus the operator T maps Qr into itself, by using assumptions (1)–(4), the operator T is continuous on
Qr, and the operator T transforms a positive and nondecreasing function into the function of the same
type (see [5, 23]).
In what follows we show that the operator T is a contraction with respect to the measure of weak
noncompactness β. To do this let us fix ε > 0 and X ⊂ Qr. Further, take a measurable subset D ⊂ [0, 1]
such that meas D ≤ ε, then for any x ∈ X by our assumptions and using the same reasoning as in [4,5]
we obtain

‖T x‖L1(D) =

∫
D
|(T x)(t)|dt

≤

∫
D
|p(t)|dt +

∫
D

m(t)
∫ t

0
k(t, s)[a1(s) + b1(s)|

∫ s

0

(s − τ)α−1

Γ(α)
f2(τ, x(τ))dτ|dsdt
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+

∫
D

m(t)
∫ t

0
k(t, s)[c1(s) + d1(s)|

∫ s

0

(s − τ)β−1

Γ(β)
g2(τ, x(τ))dτ|dsdt

≤ ‖p‖D + M‖a1‖D + Mb1

∫
D

a2(τ)
(1 − τ)β

Γ(β + 1)
dτ +

Mb1b2

Γ(β + 1)

∫
D
|x(τ)|dτ

+ M‖c1‖ + Mb1

∫
D

a2(τ)
(1 − τ)α

Γ(α + 1)
dτ +

Mb1b2

Γ(α + 1)

∫
D
|x(τ)|dτ

≤ ‖p‖D + M‖a1‖D +
Mb1

Γ(α + 1)

∫
D
|a2(τ)| dτ + +

Mb1b2

Γ(α + 1)

∫
D
|x(τ)|dτ

+ M‖c1‖ +
Md1

Γ(β + 1)

∫
D
|c2(τ)| dτ +

Md1d2

Γ(β + 1)

∫
D
|x(τ)|dτ,

≤ ‖p‖D + M‖a1‖D +
Mb1‖a2‖D

Γ(α + 1)
+

Mb1b2

Γ(α + 1)
‖x‖D

+ M‖c1‖D +
Md1‖c2‖D

Γ(β + 1)
+

Md1d2

Γ(β + 1)
‖x‖D

‖T x‖L1(D) ≤ ‖p‖D + M‖a1‖D + M‖c1‖D +
Mb1‖a2‖D

Γ(α + 1)
+

Md1‖c2‖D

Γ(β + 1)
+ (

Mb1b2

Γ(α + 1)
+

Md1d2

Γ(β + 1)
)‖x‖D.

But

lim
ε→0
{sup{

∫
D
|p(t)|dt : D ⊂ I, meas.D < ε}} = 0

lim
ε→0
{sup{

∫
D
|ai(t)|dt : D ⊂ I, meas.D < ε}} = 0 i = 1, 2

and

lim
ε→0
{sup{

∫
D
|ci(t)|dt : D ⊂ I, meas.D < ε}} = 0 i = 1, 2.

We obtain

β(T x(t)) ≤ (
Mb1b2

Γ(α + 1)
+

Md1d2

Γ(β + 1)
) β(x(t))

and

β(T X) ≤ (
Mb1b2

Γ(α + 1)
+

Md1d2

Γ(β + 1)
) β(X) (3.2)

where β is the De Blasi measure of weak noncompactness. Keeping in mind Theorem 2.1, we can
write (3.2) in the form

χ(T X) ≤ (
Mb1b2

Γ(α + 1)
+

Md1d2

Γ(β + 1)
) χ(X)

where χ is the Hausdorff measure of noncompactness. Since ( Mb1b2
Γ(α+1) + Md1d2

Γ(β+1) ) < 1, it follows, from
Theorems 2.2, that T is a contraction with respect to the measure of noncompactness χ and has at least
one fixed point in Qr which proves that the nonlinear quadratic functional integral equation (1.3) has
at least one positive nondecreasing solution x ∈ L1[0, 1]. �
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4. Fractional order quadratic functional integral equation

As particular cases of Theorem 3.1, we can obtain theorems on the existence of a positive and
nondecreasing solutions belonging to the space L1.

Theorem 4.1. Let the assumptions of Theorem 3.1 be satisfied with k(t, s) =
(t−s)θ−1

Γ(θ) , then the fractional-
order quadratic integral equation

x(t) = p(t) + h(t, x(t))Iθ( f1(s, Iα f2(s, x(s)) + g1(s, Iβg2(s, x(s))))), t ∈ [0, 1], α, β > 0 (4.1)

has at least one positive nondecreasing solution x ∈ L1.

Proof. From the properties of fractional order integral operator, we deduce that the operator

(Kx)(t) =

∫ t

0

(t − s)θ−1

Γ(θ)
x(s)ds, θ ∈ [0, 1]

satisfy the assumption (4) in Theorem 3.1, and the result follows from the results of Theorem 3.1. �

Corollary 4.1.1. Under the assumptions of Theorem 3.1, with p(t) = 0, h(t, x(t)) = 1 and letting θ → 0
the nonlinear functional equation

x(t) = f1(t, Iα f2(t, x(t)) + g1(t, Iβg2(t, x(t)) (4.2)

has at least one positive nondecreasing solution x ∈ L1.

Proof. Fractional-order quadratic integral equation (4.1) will be the functional equation (4.2) and the
result follows from Theorem 4.1. �

5. Fractional order functional differential equations

Finally, for the existence of a monotonic positive integrable solution of the nonlinear functional
differential equation of fractional order

Dθx(t) = f1(t, Iα f2(t, x(t)) + g1(t, Iβg2(t, x(t)), t ∈ (0, 1] and I1−θx(t)|t=0 = p (5.1)

where Dθ is the Riemann-Liouville fractional order derivative, we have the following theorem.

Theorem 5.1. Under the assumptions of Theorem 3.1, with p(t) = p tθ−1

Γ(θ) and h(t, x(t)) = 1, the Cauchy
type problem (5.1) has at least one positive nondecreasing integrable solution.

Proof. Integrating Cauchy problem (5.1) we obtain the integral equation

x(t) = p
tθ−1

Γ(θ)
+

∫ t

0

(t − s)θ−1

Γ(θ)
[ f1(s, Iα f2(s, x(s)) + g1(s, Iβg2(s, x(s))]ds (5.2)

which, by Theorem 3.1, has the desired solution, operating by Dθ on equation (5.2) we obtain the
problem (5.1). So the equivalence between problem (5.1) and integral equation (5.2) is proven and
then the results follow from Theorem 3.1. �
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5. J. Banaś, Integrable solutions of Hammerstein and Urysohn integral equations, J. Aust. Math.
Soc., 46 (1989), 61–68.

6. J. Banaś and A. Martinon, Monotonic solutions of a quadratic integral equation of Volterra type,
Comput. Math. Appl., 47 (2004), 271–279.
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