

AIMS Mathematics, 4(3): 792–804. DOI:10.3934/math.2019.3.792 Received: 18 April 2019 Accepted: 27 June 2019 Published: 05 July 2019

http://www.aimspress.com/journal/Math

Research article

Existence of positive weak solutions for a nonlocal singular elliptic system

Tomas Godoy*

Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba, Argentina

* Correspondence: Email: godoy@famaf.unc.edu.ar.

Abstract: Let Ω be a bounded domain in \mathbb{R}^n with $C^{1,1}$ boundary, and let $s \in (0, 1)$ be such that $s < \frac{n}{2}$. We give sufficient conditions for the existence of a weak solution $(u, v) \in H^s(\mathbb{R}^n) \times H^s(\mathbb{R}^n)$ of the nonlocal singular system $(-\Delta)^s u = ad_{\Omega}^{-\gamma_1}v^{-\beta_1}$ in Ω , $(-\Delta)^s v = bd_{\Omega}^{-\gamma_2}u^{-\beta_2}$ in Ω , u = v = 0 in $\mathbb{R}^n \setminus \Omega$, u > 0 in Ω , v > 0 in Ω , where *a* and *b* are nonnegative bounded measurable functions such that $\inf_{\Omega} a > 0$ and $\inf_{\Omega} b > 0$. For the found weak solution (u, v), the behavior of *u* and *v* near $\partial\Omega$ is also investigated.

Keywords: fractional singular elliptic systems; positive solutions; sub and supersolutions; Schauder fixed point theorem

Mathematics Subject Classification: Primary 35A15; Secondary 35S15, 47G20, 46E35

1. Introduction and statement of the main results

Singular elliptic problems of the form

$$\begin{cases}
-\Delta u = g(., u) \text{ in } \Omega, \\
u = 0 \text{ on } \partial \Omega, \\
u > 0 \text{ in } \Omega,
\end{cases}$$
(1.1)

with g such that $\lim_{s\to 0^+} g(x, s) = \infty$, have been extensively studied in the literature. Starting with the pioneering works [9, 10, 17], a vast amount of works was devoted to these problems, see for instance, [2, 5, 8, 12–14, 16, 19, 20, 25–27, 30], and [37].

In particular, [26] gives an existence result for classical solutions to problem (1.1), in the case when $g(., u) = ad_{\Omega}^{-\gamma}u^{-\beta}$, with $0 \le a \in C^{\sigma}(\overline{\Omega})$ for some $\sigma \in (0, 1)$, $\beta > 0$ and $\gamma < 2$; and [13] gives an existence result for very weak solutions of the same problem. Notice that, in this case, g(x, s) becomes singular at s = 0 and also at $x \in \partial\Omega$. Let us mention also that existence and uniqueness results for singular problems involving the *p*-laplacian operator on exterior domains were recently obtained in [6].

The existence of positive solutions of singular elliptic systems is addressed (in the local case), in [22], [29], and [1]. In [22] and [29] the results are obtained via the sub-supersolutions method, while in [1] (where appear also multiplicity results), the methods are variational and topological.

A systematic study of local singular elliptic problems, as well as additional references, can be found in [21,33]. For a thorough introduction to the variational analysis of nonlinear problems described by nonlocal operators, we refer the reader to the reference [28].

Concerning nonlocal elliptic problems, let us mention that in [32], existence and multiplicity results were obtained for some singular elliptic problems driven by fractional powers of the p-Laplacian operator. In [11], global bifurcation problems for the fractional p-Laplacian were studied and, in [3], existence and multiplicity results were obtained for singular bifurcation problems of the form $(-\Delta)^s u = f(x) u^{-\beta} + \lambda u^p$ in Ω , u = 0 in $\mathbb{R}^n \setminus \Omega$, u > 0 in Ω , in the case where Ω is a bounded and regular enough domain in \mathbb{R}^n , $s \in (0, 1)$, n > 2s, $\beta > 0$, p > 1, $\lambda > 0$, and f is a nonnegative function belonging to a suitable Lebesgue space. There, it was proved the existence of at least two solutions for this problem when λ is positive and small enough. In [23], a more precise existence and multiplicity result was obtained for the same problem in the case when $f \equiv 1$ and the nonlinearity has critical growth at infinity, (i.e., when $p = 2_s^* - 1$, with $2_s^* = \frac{2n}{n-2s}$). In fact, in [23], it was proved that, under these assumptions, there exists $\Lambda > 0$ such that:

i) There exist exactly two positive solutions when $0 < \lambda < \Lambda$,

- ii) There exists at least one positive solution when $\lambda = \Lambda$,
- iii) No solution exists when $\lambda > \Lambda$.

Also, in [24], it was investigated the existence of positive weak solutions to problems like $(-\Delta)^s u = -au^{-\beta} + \lambda h$ in Ω , u = 0 in $\mathbb{R}^n \setminus \Omega$, u > 0 in Ω , in the case where $s \in (0, 1)$, n > 2s, $\beta \in (0, 1)$, $\lambda > 0$, and where *a* and *h* are nonnegative bounded functions with $h \neq 0$.

Our aim in this work is to obtain sufficient conditions on β_1 , β_2 , γ_1 and γ_2 for the existence of positive weak solutions to the following problem

$$\begin{aligned} & (-\Delta)^{s} u = a d_{\Omega}^{-\gamma_{1}} v^{-\beta_{1}} \text{ in } \Omega, \\ & (-\Delta)^{s} v = b d_{\Omega}^{-\gamma_{2}} u^{-\beta_{2}} \text{ in } \Omega, \\ & u = v = 0 \text{ in } \mathbb{R}^{n} \setminus \Omega, \\ & u, v \in H^{s} (\mathbb{R}^{n}) \\ & u > 0 \text{ in } \Omega, v > 0 \text{ in } \Omega. \end{aligned}$$

$$(1.2)$$

Here, and from now on, Ω is a bounded domain in \mathbb{R}^n with $C^{1,1}$ boundary, $s \in (0, 1)$, $d_{\Omega} := dist(., \partial\Omega)$, $\beta_1 \in (0, 1), \beta_2 \in (0, 1), \gamma_1 < 2s, \gamma_2 < 2s, a$ and b belong to $L^{\infty}(\Omega)$, and satisfy $\inf_{\Omega} a > 0$ and $\inf_{\Omega} b > 0$.

Before stating our main results, let us recall the definition of the fractional Sobolev space $H^s(\mathbb{R}^n)$ and some well known facts related to this space. For $s \in (0, 1)$ and $n \in \mathbb{N}$, let

$$H^{s}(\mathbb{R}^{n}) := \left\{ u \in L^{2}(\mathbb{R}^{n}) : \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} \frac{|u(x) - u(y)|^{2}}{|x - y|^{n+2s}} dx dy < \infty \right\},$$

and for $u \in H^{s}(\mathbb{R}^{n})$, let

$$||u||_{H^{s}(\mathbb{R}^{n})} := \left(\int_{\mathbb{R}^{n}} u^{2} + \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} \frac{|u(x) - u(y)|^{2}}{|x - y|^{n + 2s}} dx dy \right)^{\frac{1}{2}},$$

AIMS Mathematics

and let

$$X_0^s(\Omega) := \{ u \in H^s(\mathbb{R}^n) : u = 0 \text{ a.e. in } \mathbb{R}^n \setminus \Omega \},\$$

and for $u \in X_0^s(\Omega)$, let

$$||u||_{X_0^s(\Omega)} := \left(\int_{\mathbb{R}^n \times \mathbb{R}^n} \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} dx dy \right)^{\frac{1}{2}}.$$

With these norms, $H^s(\mathbb{R}^n)$ and $X_0^s(\Omega)$ are Hilbert spaces (see [36], Lemma 7), $C_c^{\infty}(\Omega)$ is dense in $X_0^s(\Omega)$ (see [18], Theorem 6). Also, $X_0^s(\Omega)$ is a closed subspace of $H^s(\mathbb{R}^n)$, and from the fractional Poincaré inequality (as stated e.g., in [15], Theorem 6.5; see also Remark 2.1 below), if n > 2s then $\|.\|_{X_0^s(\Omega)}$ and $\|.\|_{H^s(\mathbb{R}^n)}$ are equivalent norms on $X_0^s(\Omega)$.

For $f \in L^1_{loc}(\Omega)$ we will write $f \in (X_0^s(\Omega))'$ to mean that exists a positive constant c such that $\left| \int_{\Omega} f\varphi \right| \le c \|u\|_{X_0^s(\Omega)}$ for any $\varphi \in X_0^s(\Omega)$. For $f \in (X_0^s(\Omega))'$ we will write $((-\Delta)^s)^{-1} f$ for the unique weak solution u (given by the Riesz theorem) of the problem

$$\begin{cases} (-\Delta)^s \, u = f \text{ in } \Omega, \\ u = 0 \text{ in } \mathbb{R}^n \setminus \Omega. \end{cases}$$
(1.3)

The notion of weak solution that we use in this work is the given by the following definition:

Definition 1.1. Let $s \in (0, 1)$, let $f : \Omega \to \mathbb{R}$ be a Lebesgue measurable function such that $f\varphi \in L^1(\Omega)$ for any $\varphi \in X_0^s(\Omega)$. We say that $u : \mathbb{R}^n \to \mathbb{R}$ is a weak solution to the problem

$$\begin{cases} (-\Delta)^s u = f \text{ in } \Omega, \\ u = 0 \text{ in } \mathbb{R}^n \setminus \Omega \end{cases}$$

if $u \in X_0^s(\Omega)$, u = 0 in $\mathbb{R}^n \setminus \Omega$ and, for any $\varphi \in X_0^s(\Omega)$,

$$\int_{\mathbb{R}^n \times \mathbb{R}^n} \frac{\left(u\left(x\right) - u\left(y\right)\right)\left(\varphi\left(x\right) - \varphi\left(y\right)\right)}{\left|x - y\right|^{n + 2s}} dx dy = \int_{\Omega} f\varphi.$$

For $u \in X_0^s(\Omega)$ and $f \in L^1_{loc}(\Omega)$, we will write $(-\Delta)^s u \leq f$ in Ω (respectively $(-\Delta)^s u \geq f$ in Ω) to mean that, for any nonnegative $\varphi \in H_0^s(\Omega)$, it hold that $f\varphi \in L^1(\Omega)$ and

$$\int_{\mathbb{R}^n \times \mathbb{R}^n} \frac{(u(x) - u(y))(\varphi(x) - \varphi(y))}{|x - y|^{n + 2s}} dx dy \le \int_{\Omega} f\varphi \text{ (resp. } \ge \int_{\Omega} f\varphi \text{)}.$$

For $u, v \in X_0^s(\Omega)$, we will write $(-\Delta)^s u \le (-\Delta)^s v$ in Ω (respectively $(-\Delta)^s u \ge (-\Delta)^s v$ in Ω), to mean that $(-\Delta)^s (u - v) \le 0$ in Ω (resp. $(-\Delta)^s (u - v) \ge 0$ in Ω).

If *f* and *g* are measurable real valued functions defined on Ω , we will write $f \approx g$ to mean that there exists a positive constant *c*, such that $c^1 f \leq g \leq cf$ a.e. in Ω . We will write $f \leq g$ (respectively $f \geq g$ in Ω) to mean that, for some positive constant *c*, $f \leq cg$ a.e. in Ω (resp. $f \geq cg$ a.e. in Ω). Also, we set $\omega_0 := 2diam(\Omega)$. With these notations, our main results read as follow:

Theorem 1.2. Let $\beta_1 \in (0, 1)$, $\beta_2 \in (0, 1)$, let $\gamma_1 < 2s$, $\gamma_2 < 2s$, and let a and b be functions in $L^{\infty}(\Omega)$ such that $a \approx 1$, $b \approx 1$. Assume that one of the following three conditions i) - iii) holds: i) $\gamma_1 + s\beta_1 < s$ and $\gamma_2 + s\beta_2 < s$,

AIMS Mathematics

ii) $\gamma_1 + s\beta_1 < s \text{ and } \gamma_2 + s\beta_2 = s$, *iii*) $\gamma_1 + s\beta_1 = s \text{ and } \gamma_2 + s\beta_2 < s$. Then problem has a weak solution $(u, v) \in X_0^s(\Omega) \times X_0^s(\Omega)$ such that $u \approx \vartheta_1$ and $v \approx \vartheta_2$ in Ω , where

$$\vartheta_1 := d_{\Omega}^s \text{ and } \vartheta_2 := d_{\Omega}^s \text{ if } i) \text{ holds,}$$

$$\vartheta_1 := d_{\Omega}^s \text{ and } \vartheta_2 := d_{\Omega}^s \ln\left(\frac{\omega_0}{d_{\Omega}}\right) \text{ if } ii) \text{ holds,}$$

$$\vartheta_1 := d_{\Omega}^s \text{ and } \vartheta_2 := d_{\Omega}^s \text{ if } iii) \text{ holds.}$$

Theorem 1.3. Let $\beta_1 \in (0, 1)$, $\beta_2 \in (0, 1)$, let $\gamma_1 < 2s$, $\gamma_2 < 2s$, and let a and b be functions in $L^{\infty}(\Omega)$ such that $a \approx 1$, $b \approx 1$. Assume that $\gamma_1 + s\beta_1 = s$ and $\gamma_2 + s\beta_2 = s$. Then problem (1.2) has a weak solution $(u, v) \in X_0^s(\Omega) \times X_0^s(\Omega)$ such that $d_{\Omega}^s \leq u \leq d_{\Omega}^s \ln\left(\frac{\omega_0}{d_{\Omega}}\right)$ and $d_{\Omega}^s \leq v \leq d_{\Omega}^s \ln\left(\frac{\omega_0}{d_{\Omega}}\right)$ in Ω .

Theorem 1.4. Let $\beta_1 \in (0, 1)$, $\beta_2 \in (0, 1)$, let $\gamma_1 < 2s$, $\gamma_2 < 2s$, and let a and b be functions in $L^{\infty}(\Omega)$ such that $a \approx 1$, $b \approx 1$. Assume that one of the following two conditions holds: *i*) $\gamma_1 + s\beta_1 < s$ and $s < \gamma_2 + s\beta_2 < \min\{2s, \frac{1}{2} + s\}$,

ii) $s < \gamma_1 + s\beta_1 < \min\{2s, \frac{1}{2} + s\}$ and $\gamma_2 + \beta_2 s < s$.

Then problem (1.2) has a weak solution $(u, v) \in X_0^s(\Omega) \times X_0^s(\Omega)$ such that $u \approx \vartheta_1$ and $v \approx \vartheta_2$ in Ω , where

$$\vartheta_1 := d_{\Omega}^s \text{ and } \vartheta_2 := d_{\Omega}^{2s - \gamma_2 - s\beta_2} \text{ if } i) \text{ holds,}$$
$$\vartheta_1 := d_{\Omega}^{2s - \gamma_1 - s\beta_1} \text{ and } \vartheta_2 := d_{\Omega}^s \text{ if } ii) \text{ holds.}$$

The article is organized as follows: In Section 2, we quote some known facts and state some preliminary results. Lemma 2.2 quotes a result from [7], which gives accurate two side estimates for the values of the Green operator on negative powers of the distance function d_{Ω} (where the Green operator is the associated to the fractional laplacian with homogeneous Dirichlet condition on $\mathbb{R}^n \setminus \Omega$). Using this result and some of its consequences, Lemmas 2.4 and 2.5 states that, if the assumptions of Theorem 1.2 (respectively of Theorem 1.4) are assumed, and if ϑ_1 and ϑ_2 are as given in the statement of the respective Theorem, then $d_{\Omega}^{-\gamma_1} \vartheta_2^{-\beta_1}$ and $d_{\Omega}^{-\gamma_2} \vartheta_1^{-\beta_2}$ belong to $(X_0^s(\Omega))'$, $((-\Delta)^s)^{-1} (d_{\Omega}^{-\gamma_1} \vartheta_2^{-\beta_1}) \approx \vartheta_1$, and $((-\Delta)^s)^{-1} (d_{\Omega}^{-\gamma_2} \vartheta_1^{-\beta_2}) \approx \vartheta_2$ in Ω . Similarly, using again Lemma 2.2, Lemma 2.6 states that if $\gamma + \beta s = s$ and $\vartheta := d_{\Omega}^s \ln(\frac{\omega_0}{d_{\Omega}})$, then $d_{\Omega}^{-\gamma} \vartheta^{-\beta}$ belongs to $(X_0^s(\Omega))'$ and $d_{\Omega}^s \leq ((-\Delta)^s)^{-1} (d_{\Omega}^{-\gamma} \vartheta^{-\beta}) \leq \vartheta$.

In Section 3, Lemmas 3.1 and 3.2 adapt, to our setting, the ideas of the sub-supersolution method developed, for (local) elliptic systems, in ([29], Theorem 3.2).

In Lemma 3.1 we consider, for $\varepsilon > 0$ and under the hypothesis of either Theorem 1.2 or Theorem 1.4, the set $C_{\varepsilon} := \{(\zeta_1, \zeta_2) \in L^2(\Omega) \times L^2(\Omega) : \varepsilon \vartheta_i \le \zeta_i \le \varepsilon^{-1} \vartheta_i \text{ for } i = 1, 2\}$, and the operator $T : C_{\varepsilon} \to L^2(\Omega) \times L^2(\Omega)$ defined by

$$T(\zeta_1,\zeta_2) := \left(((-\Delta)^s)^{-1} \left(a d_{\Omega}^{-\gamma_1} \zeta_2^{-\beta_1} \right), ((-\Delta)^s)^{-1} \left(b d_{\Omega}^{-\gamma_2} \zeta_1^{-\beta_2} \right) \right);$$

and we show that *T* is a continuous and compact map and that, for ε small enough, $T(C_{\varepsilon}) \subset C_{\varepsilon}$. Lemma 3.2 says that the same conclusions hold if the hypothesis of Theorem 1.3 are assumed and C_{ε} is defined by

$$C_{\varepsilon} := \left\{ (\zeta_1, \zeta_2) \in L^2(\Omega) \times L^2(\Omega) : \varepsilon \vartheta_i \le \zeta_i \le \varepsilon^{-1} \vartheta_i \text{ for } i = 1, 2 \right\}.$$

Finally, Theorems 1.2, 1.3, and 1.4 are proved using the Schauder fixed point theorem combined with Lemmas 3.1 and 3.2.

AIMS Mathematics

Remark 2.1. (i) (see e.g., [34], Proposition 4.1 and Corollary 4.2) The following comparison principle holds: If $u, v \in X_0^s(\Omega)$ and $(-\Delta)^s u \ge (-\Delta)^s v$ in Ω , then $u \ge v$ in Ω . In particular, if $v \in X_0^s(\Omega)$, $(-\Delta)^s v \ge 0$ in Ω , and $v \ge 0$ in $\mathbb{R}^n \setminus \Omega$, then $v \ge 0$ in Ω .

(ii) (see e.g., [34], Lemma 7.3) Let $f : \Omega \to \mathbb{R}$ be a nonnegative and nonidentically zero measurable function such that $f \in (X_0^s(\Omega))'$, and let *u* be the weak solution of problem (1.3). Then *u* satisfies, for some positive constant *c*,

$$u \ge cd_{\Omega}^s \text{ in } \Omega. \tag{2.1}$$

(iii) (see e.g., [35], Proposition 1.1) If $f \in L^{\infty}(\Omega)$ then the weak solution *u* of problem (1.3) belongs to $C^{s}(\mathbb{R}^{n})$. In particular, there exists a positive constant *c* such that

$$|u| \le cd_{\Omega}^s \text{ in } \Omega. \tag{2.2}$$

For additional regularity resuls see, for instance, [4] and [28].

(iv) (Poincaré inequality, see [15], Theorem 6.5) Let $s \in (0, 1)$, let n > 2s, and let $2_s^* := \frac{2n}{n-2s}$. Then there exists a positive constant C = C(n, s) such that, for any measurable and compactly supported function $f : \mathbb{R}^n \to \mathbb{R}$,

$$||f||_{L^{2^*_s(\mathbb{R}^n)}} \le C \int_{\mathbb{R}^n \times \mathbb{R}^n} \frac{(f(x) - f(y))^2}{|x - y|^{n + sp}} dx dy.$$

(v) From the Hölder's inequality and the Poincaré inequality it follows that $v \in (X_0^s(\Omega))'$ for any $v \in L^{(2^*)'}(\Omega)$.

(vi) (Hardy inequality, see [32], Theorem 2.1) There exists a positive constant *c* such that, for any $\varphi \in X_0^s(\Omega)$,

$$\left\| d_{\Omega}^{-s} \varphi \right\|_{2} \le c' \left\| \varphi \right\|_{X_{0}^{s}(\Omega)}.$$

$$(2.3)$$

(vii) Let $G : \Omega \times \Omega \to \mathbb{R} \cup \{\infty\}$ be the Green function for $(-\Delta)^s$ in Ω , with homogeneous Dirichlet boundary condition on $\mathbb{R}^n \setminus \Omega$. Then, for any $f \in C(\overline{\Omega})$, the weak solution *u* of problem (1.3) is given by $u(x) = \int_{\Omega} G(x, y) f(y) dy$ for $x \in \Omega$ and by u(x) = 0 for $x \in \mathbb{R}^n \setminus \Omega$.

Let us recall the following result of [7]:

Lemma 2.2. (See [7], Lemma 2) Let G be the Green function for $(-\Delta)^s$ in Ω , with homogeneous Dirichlet boundary condition on $\mathbb{R}^n \setminus \Omega$. Then

$$\begin{split} &\int_{\Omega} G\left(.,y\right) d_{\Omega}^{-\rho}\left(y\right) dy \approx d_{\Omega}^{s} \ if \rho < s, \\ &\int_{\Omega} G\left(.,y\right) d_{\Omega}^{-\rho}\left(y\right) dy \approx d_{\Omega}^{s} \ln\left(\frac{\omega_{0}}{d_{\Omega}}\right) \ if \rho = s, \\ &\int_{\Omega} G\left(.,y\right) d_{\Omega}^{-\rho}\left(y\right) dy \approx d_{\Omega}^{2s-\rho} \ if \ s < \rho < s+1 \end{split}$$

AIMS Mathematics

As a consequence of Lemma 2.2, we have the following

Lemma 2.3. Let $\rho \in \left[0, s + \frac{1}{2}\right)$. Then $d_{\Omega}^{-\rho} \in \left(X_{0}^{s}(\Omega)\right)'$ and $((-\Delta)^{s})^{-1} \left(d_{\Omega}^{-\rho}\right) \approx d_{\Omega}^{s} \text{ if } \rho < s,$ $((-\Delta)^{s})^{-1} \left(d_{\Omega}^{-\rho}\right) \approx d_{\Omega}^{s} \ln\left(\frac{\omega_{0}}{d_{\Omega}}\right) \text{ if } \rho = s,$ $((-\Delta)^{s})^{-1} \left(d_{\Omega}^{-\rho}\right) \approx d_{\Omega}^{2s-\rho} \text{ if } s < \rho < s + \frac{1}{2}$ (2.4)

Proof. Let $\varphi \in X_0^s(\Omega)$. Since $d_{\Omega}^{s-\rho} \in L^2(\Omega)$, the Holder and the Hardy inequalities give $\int_{\Omega} \left| d_{\Omega}^{-\rho} \varphi \right| \leq \int_{\Omega} d_{\Omega}^{s-\rho} \left| \frac{\varphi}{d_{\Omega}^s} \right| \leq c \left\| d_{\Omega}^{s-\rho} \right\|_2 \|\varphi\|_{X_0^s(\Omega)} \leq c' \|\varphi\|_{X_0^s(\Omega)}$ with *c* and *c'* positive constants independent of φ . Thus $d_{\Omega}^{-\rho} \in (X_0^s(\Omega))'$.

Let *G* be the Green function for $(-\Delta)^s$ in Ω , with homogeneous Dirichlet boundary condition on $\mathbb{R}^n \setminus \Omega$. To prove (2.4) it is enough (thanks to Lemma 2.2) to show that $((-\Delta)^s)^{-1} \left(d_{\Omega}^{-\rho} \right) = \int_{\Omega} G(., y) d_{\Omega}^{-\rho}(y) dy$. Let $\{\varepsilon_j\}_{j \in \mathbb{N}} \subset (0, 1)$ be a decreasing sequence such that $\lim_{j \to \infty} \varepsilon_j = 0$, and for $j \in \mathbb{N}$, let $u_{\varepsilon_j} \in X_0^s(\Omega)$ be the weak solution of the problem

$$(-\Delta)^{s} u_{\varepsilon_{j}} = \left(d_{\Omega} + \varepsilon_{j}\right)^{-\rho} \text{ in } \Omega,$$

$$u_{\varepsilon_{j}} = 0 \text{ on } \mathbb{R}^{n} \setminus \Omega.$$

$$(2.5)$$

Thus $u_{\varepsilon_j} = \int_{\Omega} G(., y) \left(d_{\Omega}(y) + \varepsilon_j \right)^{-\rho} dy$ in Ω and, by Lemma 2.2, there exists a positive constant c, independent of j, such that $u_{\varepsilon_j} \leq cd_{\Omega}^s$ if $\rho < s$, $u_{\varepsilon_j} \leq cd_{\Omega}^s \ln\left(\frac{\omega_0}{d_{\Omega}}\right)$ if $\rho = s$, and $u_{\varepsilon_j} \leq cd_{\Omega}^{2s-\rho}$ if $s < \rho < \frac{1}{2} + s$. In particular, there exists a positive constant c' such that $\int_{\Omega} u_{\varepsilon_j} d_{\Omega}^{-\rho} \leq c'$ for all $j \in \mathbb{N}$. Let $u(x) := \lim_{j \to \infty} u_{\varepsilon_j}(x)$. By the monotone convergence theorem, $u(x) = \int_{\Omega} G(x, y) d_{\Omega}^{-\beta}(y) dy$. Taking u_{ε_j} as a test function in (2.5) we get

$$\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}} \frac{\left(u_{\varepsilon_{j}}\left(x\right)-u_{\varepsilon_{j}}\left(y\right)\right)^{2}}{\left|x-y\right|^{n+2s}} dx dy = \int_{\Omega} u_{\varepsilon_{j}}\left(y\right) \left(d_{\Omega}\left(y\right)+\varepsilon_{j}\right)^{-\rho} dy$$
$$\leq \int_{\Omega} u_{\varepsilon_{j}} d_{\Omega}^{-\rho} \leq c',$$

with c' independent of j. For $j \in \mathbb{N}$, let U_{ε_i} and U be the functions, defined on $\mathbb{R}^n \times \mathbb{R}^n$, by

$$U_{\varepsilon_{i}}(x, y) := u_{\varepsilon_{i}}(x) - u_{\varepsilon_{i}}(y), \ U(x, y) := u(x) - u(y).$$

Then $\{U_{\varepsilon_j}\}_{j\in\mathbb{N}}$ is bounded in $\mathcal{H} = L^2\left(\mathbb{R}^n \times \mathbb{R}^n, \frac{1}{|x-y|^{n+2s}}dxdy\right)$. Thus, after pass to a subsequence if necessary, we can assume that $\{U_{\varepsilon_j}\}_{j\in\mathbb{N}}$ is weakly convergent in \mathcal{H} to some $V \in \mathcal{H}$. Since $\{U_{\varepsilon_j}\}_{j\in\mathbb{N}}$ converges pointwise to U on $\mathbb{R}^n \times \mathbb{R}^n$, we conclude that $U \in \mathcal{H}$ and that $\{U_{\varepsilon_j}\}_{j\in\mathbb{N}}$ converges weakly to U in \mathcal{H} . Thus $u \in X_0^s(\Omega)$ and, for any $\varphi \in X_0^s(\Omega)$,

$$\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\frac{\left(u\left(x\right)-u\left(y\right)\right)\left(\varphi\left(x\right)-\varphi\left(y\right)\right)}{\left|x-y\right|^{n+2s}}dxdy$$

AIMS Mathematics

$$= \lim_{j \to \infty} \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} \frac{\left(u_{\varepsilon_{j}}(x) - u_{\varepsilon_{j}}(y)\right) (\varphi(x) - \varphi(y))}{|x - y|^{n + 2s}} dx dy$$
$$= \lim_{j \to \infty} \int_{\Omega} \left(d_{\Omega} + \varepsilon_{j}\right)^{-\beta} \varphi = \int_{\Omega} d_{\Omega}^{-\beta} \varphi,$$

Therefore $u = ((-\Delta)^s)^{-1} \left(d_{\Omega}^{-\rho} \right)$ and so $((-\Delta)^s)^{-1} \left(d_{\Omega}^{-\rho} \right) = \int_{\Omega} G(x, y) d_{\Omega}^{-\beta}(y) dy$.

Lemma 2.4. Assume the hypothesis of Theorem 1.2 and let ϑ_1 and ϑ_2 be as given there. Then, in each one of the cases i) and ii) of Theorem 1.2, $d_{\Omega}^{-\gamma_1}\vartheta_2^{-\beta_1} \in (X_0^{\overline{s}}(\Omega))', d_{\Omega}^{-\gamma_2}\vartheta_1^{-\beta_2} \in (X_0^{\overline{s}}(\Omega))',$ $((-\Delta)^s)^{-1} \left(d_{\Omega}^{-\gamma_1} \vartheta_2^{-\beta_1} \right) \approx \vartheta_1, and \left((-\Delta)^s \right)^{-1} \left(d_{\Omega}^{-\gamma_2} \vartheta_1^{-\beta_2} \right) \approx \vartheta_2 in \Omega.$

Proof. When the condition *i*) of Theorem 1.2 holds we have $\vartheta_1 = \vartheta_2 = d_{\Omega}^s$, and the lemma follows directly from Lemma 2.3. If the condition *ii*) holds, then $\gamma_1 + s\beta_1 < s$, $\gamma_2 + s\beta_2 = s$, $\vartheta_1 = d_{\Omega}^s$ and $\vartheta_2 = d_{\Omega}^s \ln\left(\frac{\omega_0}{d_{\Omega}}\right)$. Since $\left(\ln\left(\frac{\omega_0}{d_{\Omega}}\right)\right)^{-\beta_1} \in L^{\infty}(\Omega)$ we have $d_{\Omega}^{-\gamma_1} \vartheta_2^{-\beta_1} = d_{\Omega}^{-\gamma_1 - s\beta_1} \left(\ln\left(\frac{\omega_0}{d_{\Omega}}\right)\right)^{-\beta_1} \leq d_{\Omega}^{-\gamma_1 - s\beta_1}$ and so, by Lemma 2.3, $d_{\Omega}^{-\gamma_1}\vartheta_2^{-\beta_1} \in (X_0^s(\Omega))'$ and $((-\Delta)^s)^{-1}(d_{\Omega}^{-\gamma_1}\vartheta_2^{-\beta_1}) \leq d_{\Omega}^s = \vartheta_1$ in Ω . Also, for $\delta > 0$ we have $\inf_{\Omega} d_{\Omega}^{-\delta} \left(\ln \left(\frac{\omega_0}{d_{\Omega}} \right) \right) \theta^{-\beta_1} > 0$, and so

$$d_{\Omega}^{-\gamma_{1}}\vartheta_{2}^{-\beta_{1}} = d_{\Omega}^{-\gamma_{1}-s\beta_{1}} \left(\ln\left(\frac{\omega_{0}}{d_{\Omega}}\right) \right)^{-\beta_{1}} = d_{\Omega}^{-(\gamma_{1}+s\beta_{1}-\delta)} d_{\Omega}^{-\delta} \left(\ln\left(\frac{\omega_{0}}{d_{\Omega}}\right) \right)^{-\beta_{1}}$$

$$\gtrsim d_{\Omega}^{-(\gamma_{1}+s\beta_{1}-\delta)} \text{ in } \Omega.$$

Then, by the comparison principle of Remark 2.1 i), and by Lemma 2.3,

$$\left((-\Delta)^{s}\right)^{-1}\left(d_{\Omega}^{-\gamma_{1}}\vartheta_{2}^{-\beta_{1}}\right) \gtrsim \left((-\Delta)^{s}\right)^{-1}\left(d_{\Omega}^{-(\gamma_{1}+s\beta_{1}-\delta)}\right) \approx d_{\Omega}^{s} = \vartheta_{1}$$

On the other hand, $d_{\Omega}^{-\gamma_2} \vartheta_1^{-\beta_2} = d_{\Omega}^{-\gamma_2 - s\beta_2} = d_{\Omega}^{-s}$, and so, again by Lemma 2.3, $d_{\Omega}^{-\gamma_2} \vartheta_1^{-\beta_2} \in (X_0^s(\Omega))'$ and $((-\Delta)^s)^{-1} \left(d_{\Omega}^{-\gamma_2} \vartheta_1^{-\beta_2} \right) \approx d_{\Omega}^s \ln \left(\frac{\omega_0}{d_{\Omega}} \right) = \vartheta_2 \text{ in } \Omega.$ By replacing β_1 , γ_1 , ϑ_1 and ϑ_2 by β_2 , γ_2 , ϑ_2 and ϑ_1 respectively, the same argument proves the lemma

in the case *iii*).

Lemma 2.5. Assume the hypothesis of Theorem 1.4 and let ϑ_1 and ϑ_2 be as given there. Then the conclusions of Lemma 2.4 remain true for ϑ_1 and ϑ_2 .

Proof. Consider the case when the condition *i*) of Theorem 1.4 holds, i.e., the case when $\gamma_1 + s\beta_1 < s$, $s < \gamma_2 + s\beta_2 < \min\{2s, \frac{1}{2} + s\}, \vartheta_1 = d_{\Omega}^s \text{ and } \vartheta_2 = d_{\Omega}^{2s - \gamma_2 - s\beta_2}.$ Then $d_{\Omega}^{-\gamma_1} \vartheta_2^{-\beta_1} = d_{\Omega}^{-\gamma_1 - \beta_1(2s - \gamma_2 - s\beta_2)}.$ Since $0 < \gamma_1 + \beta_1 (2s - \gamma_2 - s\beta_2) < \gamma_1 + s\beta_1 < s$, Lemma 2.3 gives that $d_{\Omega}^{-\gamma_1} \vartheta_2^{-\beta_1} \in (X_0^s(\Omega))'$ and that $((-\Delta)^s)^{-1} \left(d_{\Omega}^{-\gamma_1} \vartheta_2^{-\beta_1} \right) \approx d_{\Omega}^s = \vartheta_1 \text{ in } \Omega.$ On the other hand, $d_{\Omega}^{-\gamma_2} \vartheta_1^{-\beta_2} = d_{\Omega}^{-\gamma_2 - s\beta_2}$ and $s < \gamma_2 + s\beta_2 < \varepsilon$ $\min \{2s, \frac{1}{2} + s\}$, and so, by Lemma 2.3,

$$d_{\Omega}^{-\gamma_2}\vartheta_1^{-\beta_2} \in (X_0^s(\Omega))' \text{ and } ((-\Delta)^s)^{-1} \left(d_{\Omega}^{-\gamma_2}\vartheta_1^{-\beta_2}\right) \approx d_{\Omega}^{2s-\gamma_2-s\beta_2} = \vartheta_2 \text{ in } \Omega.$$

The proof when the condition *ii*) holds is similar.

AIMS Mathematics

Volume 4, Issue 3, 792-804.

Lemma 2.6. Let $\vartheta := d_{\Omega}^{s} \ln\left(\frac{\omega_{0}}{d_{\Omega}}\right)$. If $\gamma + s\beta = s$ and $\beta > 0$, then $d_{\Omega}^{-\gamma} \vartheta^{-\beta} \in \left(X_{0}^{s}(\Omega)\right)'$ and $d_{\Omega}^{s} \leq \left((-\Delta)^{s}\right)^{-1} \left(d_{\Omega}^{-\gamma} \vartheta^{-\beta}\right) \leq \vartheta$ in Ω .

Proof. Since $\left(\ln\left(\frac{\omega_0}{d_\Omega}\right)\right)^{-\beta} \in L^{\infty}(\Omega)$, we have $d_{\Omega}^{-\gamma}\vartheta^{-\beta} = d_{\Omega}^{-s}\left(\ln\left(\frac{\omega_0}{d_\Omega}\right)\right)^{-\beta} \leq d_{\Omega}^{-s}$. Then, by Lemma 2.3 and the comparison principle, $d_{\Omega}^{-\gamma}\vartheta^{-\beta} \in \left(X_0^s(\Omega)\right)'$ and $((-\Delta)^s)^{-1}\left(d_{\Omega}^{-\gamma}\vartheta^{-\beta}\right) \leq ((-\Delta)^s)^{-1}\left(d_{\Omega}^{-s}\right) \approx d_{\Omega}^s \ln\left(\frac{\omega_0}{d_\Omega}\right) = \vartheta$ in Ω . On the other hand, since $\inf_{\Omega} d_{\Omega}^{-\delta} \left(\ln\left(\frac{\omega_0}{d_\Omega}\right)\right)^{-\beta_1} > 0$ for any $\delta > 0$, we have

$$d_{\Omega}^{-\gamma}\vartheta^{-\beta} = d_{\Omega}^{-(\gamma+s\beta-\delta)}d_{\Omega}^{-\delta}\left(\ln\left(\frac{\omega_0}{d_{\Omega}}\right)\right)^{-\beta_1} \gtrsim d_{\Omega}^{-(\gamma+s\beta-\delta)} \text{ in } \Omega.$$

and then so, by Lemma 2.3 and the comparison principle, $((-\Delta)^s)^{-1} \left(d_{\Omega}^{-\gamma} \vartheta^{-\beta} \right) \gtrsim ((-\Delta)^s)^{-1} \left(d_{\Omega}^{-(\gamma+s\beta-\delta)} \right) \approx d_{\Omega}.$

3. Proof of the main results

Lemma 3.1. Assume the hypothesis of Theorem 1.2 (respectively of Theorem 1.4), and let ϑ_1 and ϑ_2 be as defined there. For $\varepsilon > 0$, let

$$C_{\varepsilon} := \left\{ (\zeta_1, \zeta_2) \in L^2(\Omega) \times L^2(\Omega) : \varepsilon \vartheta_i \le \zeta_i \le \frac{1}{\varepsilon} \vartheta_i \text{ for } i = 1, 2 \right\},\$$

and let $T: C_{\varepsilon} \to L^2(\Omega) \times L^2(\Omega)$ be defined by

$$T(\zeta_1, \zeta_2) = \left(((-\Delta)^s)^{-1} \left(a d_{\Omega}^{-\gamma_1} \zeta_2^{-\beta_1} \right), ((-\Delta)^s)^{-1} \left(b d_{\Omega}^{-\gamma_2} \zeta_1^{-\beta_2} \right) \right).$$
(3.1)

Then:

1) C_{ε} is a closed convex set in $L^{2}(\Omega) \times L^{2}(\Omega)$. 2) $T(C_{\varepsilon}) \subset C_{\varepsilon}$ for any ε positive and small enough. 3) $T: C_{\varepsilon} \to L^{2}(\Omega) \times L^{2}(\Omega)$ is continuous 4) $T: C_{\varepsilon} \to L^{2}(\Omega) \times L^{2}(\Omega)$ is a compact map.

Proof. Clearly C_{ε} is a closed convex set in $L^2(\Omega) \times L^2(\Omega)$. To see 2), note that, for any $(\zeta_1, \zeta_2) \in C_{\varepsilon}$, $ad_{\Omega}^{-\gamma_1}\zeta_2^{-\beta_1} \approx d_{\Omega}^{-\gamma_1}\vartheta_2^{-\beta_1}$ and $bd_{\Omega}^{-\gamma_2}\zeta_1^{-\beta_2} \approx d_{\Omega}^{-\gamma_2}\vartheta_1^{-\beta_2}$ and then, when the hypothesis of Theorem 1.2 hold (respectively of Theorem 1.4 hold), Lemma 2.5 (resp. Lemma 2.4) gives that *T* is well defined on C_{ε} and that $T(C_{\varepsilon}) \subset X_0^s(\Omega) \times X_0^s(\Omega) \subset L^2(\Omega) \times L^2(\Omega)$. To see 2) observe that, for any $(\zeta_1, \zeta_2) \in C_{\varepsilon}$,

$$\begin{split} \varepsilon^{\beta_1} & \inf_{\Omega} (a) \, d_{\Omega}^{-\gamma_1} \vartheta_2^{-\beta_1} \leq a d_{\Omega}^{-\gamma_1} \zeta_2^{-\beta_1} \leq \varepsilon^{-\beta_1} \sup_{\Omega} (a) \, d_{\Omega}^{-\gamma_1} \vartheta_2^{-\beta_1} \text{ in } \Omega, \\ \varepsilon^{\beta_2} & \inf_{\Omega} (b) \, d_{\Omega}^{-\gamma_2} \vartheta_1^{-\beta_2} \leq a d_{\Omega}^{-\gamma_2} \zeta_1^{-\beta_2} \leq \varepsilon^{-\beta_2} \sup_{\Omega} (b) \, d_{\Omega}^{-\gamma_2} \vartheta_1^{-\beta_2} \text{ in } \Omega \end{split}$$

and then, by the comparison principle and by Lemmas 2.5 and 2.4, there exist positive constants c_1 and c_2 , both independent of ε , ζ_1 and ζ_2 , such that

$$c_1 \varepsilon^{\beta_1} \vartheta_1 \le \left((-\Delta)^s \right)^{-1} \left(\varepsilon^{\beta_1} \inf_{\Omega} \left(a \right) d_{\Omega}^{-\gamma_1} \vartheta_2^{-\beta_1} \right) \le \left((-\Delta)^s \right)^{-1} \left(a d_{\Omega}^{-\gamma_1} \zeta_2^{-\beta_1} \right)$$

AIMS Mathematics

and, similarly,

$$c_1 \varepsilon^{\beta_2} \vartheta_2 \le \left((-\Delta)^s \right)^{-1} \left(a d_{\Omega}^{-\gamma_2} \zeta_1^{-\beta_2} \right) \le c_2 \varepsilon^{-\beta_2} \vartheta_2 \text{ in } \Omega,$$

Since $0 < \beta_1 < 1$ and $0 < \beta_2 < 1$, for ε small enough we have

$$\varepsilon \le c_1 \varepsilon^{\beta_1}, \varepsilon \le c_1 \varepsilon^{\beta_2}, c_2 \varepsilon^{-\beta_1} \le \varepsilon^{-1}, \text{ and } c_2 \varepsilon^{-\beta_2} \le \varepsilon^{-1}.$$
 (3.2)

Thus, for such a ε , $T(C_{\varepsilon}) \subset C_{\varepsilon}$.

To prove that $T : C_{\varepsilon} \to L^2(\Omega) \times L^2(\Omega)$ is continuous, consider an arbitrary $(\zeta_1, \zeta_2) \in C_{\varepsilon}$, and a sequence $\{(\zeta_{1,j}, \zeta_{2,j})\}_{j\in\mathbb{N}} \subset C_{\varepsilon}$ that converges to (ζ_1, ζ_2) in $L^2(\Omega) \times L^2(\Omega)$. After pass to a subsequence we can assume that $\{(\zeta_{1,j}, \zeta_{2,j})\}_{j\in\mathbb{N}}$ converges to (ζ_1, ζ_2) a.e. in Ω . Since $0 \leq ad_{\Omega}^{-\gamma_1}\zeta_{2,j}^{-\beta_1} \leq \sup_{\Omega}(a) \varepsilon^{-\beta_1}d_{\Omega}^{-\gamma_1}\vartheta_2^{-\beta_1}$ and since, by Lemmas 2.5 and 2.4, $d_{\Omega}^{-\gamma_1}\vartheta_2^{-\beta_1} \in (X_0^1(\Omega))'$, it follows that $\{ad_{\Omega}^{-\gamma_1}\zeta_{2,j}^{-\beta_1}\}_{j\in\mathbb{N}}$ is bounded in $(X_0^1(\Omega))'$. Similarly, $\{ad_{\Omega}^{-\gamma_2}\zeta_{1,j}^{-\beta_2}\}_{j\in\mathbb{N}}$ is bounded in $(X_0^1(\Omega))'$. Let $(\xi_{1,j}, \xi_{2,j}) := T(\zeta_{1,j}, \zeta_{2,j})$. Then $\{(\xi_{1,j}, \xi_{2,j})\}_{j\in\mathbb{N}}$ is bounded in $X_0^1(\Omega) \times X_0^1(\Omega) \times X_0^1(\Omega)$ act that $\{(\xi_{1,j}, \xi_{2,j})\}_{j\in\mathbb{N}}$ converges to (ξ_1, ξ_2) in $L^2(\Omega) \times L^2(\Omega)$, $\{(\xi_{1,j}, \xi_{2,j})\}_{j\in\mathbb{N}}$ converges (ξ_1, ξ_2) a.e. in Ω , and $\{\xi_{1,j}, \xi_{2,j}\}_{j\in\mathbb{N}}$ converges weakly to (ξ_1, ξ_2) in $X_0^1(\Omega) \times X_0^1(\Omega)$. Let $\varphi \in X_0^1(\Omega)$. We have, for each j,

$$\int_{\mathbb{R}^n \times \mathbb{R}^n} \frac{\left(\xi_{1,j}\left(x\right) - \xi_{1,j}\left(y\right)\right)\left(\varphi\left(x\right) - \varphi\left(y\right)\right)}{\left|x - y\right|^{n+2s}} dx dy = \int_{\Omega} a d_{\Omega}^{-\gamma_1} \zeta_{2,j}^{-\beta_1} \varphi, \tag{3.3}$$

$$\int_{\mathbb{R}^n \times \mathbb{R}^n} \frac{\left(\xi_{2,j}\left(x\right) - \xi_{2,j}\left(y\right)\right)\left(\varphi\left(x\right) - \varphi\left(y\right)\right)}{\left|x - y\right|^{n+2s}} dx dy = \int_{\Omega} b d_{\Omega}^{-\gamma_2} \zeta_{1,j}^{-\beta_2} \varphi.$$
(3.4)

Now, $\{(\zeta_{1,j}, \zeta_{2,j})\}_{j\in\mathbb{N}} \subset C_{\varepsilon}$ and so $|ad_{\Omega}^{-\gamma_1}\zeta_{2,j}^{-\beta_1}\varphi| \leq \varepsilon^{-\beta_1} ||a||_{\infty} |d_{\Omega}^{-\gamma_1}\vartheta_2^{-\beta_1}\varphi| \in L^1(\Omega)$. Therefore, by the Lebesgue dominated convergence theorem,

$$\lim_{j \to \infty} \int_{\Omega} a d_{\Omega}^{-\gamma_1} \zeta_{2,j}^{-\beta_1} \varphi = \int_{\Omega} a d_{\Omega}^{-\gamma_1} \zeta_2^{-\beta_1} \varphi.$$
(3.5)

Similarly,

$$\lim_{j \to \infty} \int_{\Omega} b d_{\Omega}^{-\gamma_2} \zeta_{1,j}^{-\beta_2} \varphi = \int_{\Omega} b d_{\Omega}^{-\gamma_2} \zeta_{1}^{-\beta_2} \varphi.$$
(3.6)

Then

$$\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} \frac{(\xi_{1}(x) - \xi_{1}(y)) (\varphi(x) - \varphi(y))}{|x - y|^{n+2s}} dx dy = \int_{\Omega} a d_{\Omega}^{-\gamma_{1}} \zeta_{2}^{-\beta_{1}} \varphi,$$
(3.7)

$$\int_{\mathbb{R}^n \times \mathbb{R}^n} \frac{\left(\xi_2\left(x\right) - \xi_2\left(y\right)\right) \left(\varphi\left(x\right) - \varphi\left(y\right)\right)}{\left|x - y\right|^{n+2s}} dx dy = \int_{\Omega} b d_{\Omega}^{-\gamma_1} \zeta_1^{-\beta_1} \varphi.$$
(3.8)

AIMS Mathematics

and so $(\xi_1, \xi_2) = T(\zeta_1, \zeta_2)$. Then $\{T(\zeta_{1,j}, \zeta_{2,j})\}_{j\in\mathbb{N}}$ converges to $T(\zeta_1, \zeta_2)$ in $L^2(\Omega) \times L^2(\Omega) \times L^2(\Omega)$. Thus, for any sequence $\{(\zeta_{1,j}, \zeta_{2,j})\}_{j\in\mathbb{N}} \subset C_{\varepsilon}$ that converges to (ζ_1, ζ_2) in $L^2(\Omega) \times L^2(\Omega)$, we have found a subsequence $\{(\zeta_{1,jk}, \zeta_{2,jk})\}_{k\in\mathbb{N}}$ such that $\{T(\zeta_{1,jk}, \zeta_{2,jk})\}_{k\in\mathbb{N}}$ converges to $T(\zeta_1, \zeta_2)$ in $L^2(\Omega) \times L^2(\Omega) \times L^2(\Omega)$. Therefore T is continuous. To see that $T : C_{\varepsilon} \to L^2(\Omega) \times L^2(\Omega)$ is a compact map, consider a bounded sequence $\{(\zeta_{1,j}, \zeta_{2,j})\}_{j\in\mathbb{N}} \subset C_{\varepsilon}$. Then $0 \le ad_{\Omega}^{-\gamma_1}\zeta_{2,j}^{-\beta_1} \le \sup_{\Omega}(a)\varepsilon^{-\beta_1}d_{\Omega}^{-\gamma_1}\vartheta_2^{-\beta_1}$ and so, as above, $\{ad_{\Omega}^{-\gamma_1}\zeta_{2,j}^{-\beta_1}\}_{j\in\mathbb{N}}$ is bounded in $(X_0^1(\Omega))'$. Then $\{((-\Delta)^s)^{-1}(ad_{\Omega}^{-\gamma_1}\zeta_{2,j}^{-\beta_1})\}_{j\in\mathbb{N}}$ is bounded in $X_0^1(\Omega)$. Thus there exists a subsequence $\{(\zeta_{1,jk}, \zeta_{2,jk})\}_{k\in\mathbb{N}}$ such that $(((-\Delta)^s)^{-1}(ad_{\Omega}^{-\gamma_1}\zeta_{2,j}^{-\beta_1})\}_{j\in\mathbb{N}}$ converges in $L^2(\Omega)$. Since $0 \le ad_{\Omega}^{-\gamma_2}\zeta_{1,jk}^{-\beta_2} \le \sup_{\Omega}(b)\varepsilon^{-\beta_2}d_{\Omega}^{-\gamma_1}\vartheta_1^{-\beta_2}$ we can repeat the above argument to obtain (after pass to a further subsequence if necessary) that $\{((-\Delta)^s)^{-1}(ad_{\Omega}^{-\gamma_2}\zeta_{1,jk}^{-\beta_2})\}_{k\in\mathbb{N}}$ converges in $L^2(\Omega)$. Therefore $\{T(\zeta_{1,jk}, \zeta_{2,jk})\}_{i\in\mathbb{N}}$ converges in $L^2(\Omega) \times L^2(\Omega)$.

Lemma 3.2. Assume the hypothesis of Theorem 1.3, and let ϑ be as given in Lemma 2.6. For $\varepsilon > 0$, let

$$C_{\varepsilon} := \left\{ (\zeta_1, \zeta_2) \in L^2(\Omega) \times L^2(\Omega) : \varepsilon d_{\Omega} \le \zeta_i \le \frac{1}{\varepsilon} \vartheta \text{ for } i = 1, 2 \right\},\$$

and let $T : C_{\varepsilon} \to L^2(\Omega) \times L^2(\Omega)$ be defined by (3.1). Then, for ε positive and small enough, the conclusions 1)-4) of Lemma 3.1 hold for C_{ε} and T.

Proof. The proof of the lemma is similar to the proof of Lemma 3.1. Clearly 1) holds. To prove 2), consider an arbitrary $(\zeta_1, \zeta_2) \in C_{\varepsilon}$. Since $0 \le ad_{\Omega}^{-\gamma_1}\zeta_2^{-\beta_1} \le \varepsilon^{-\beta_1} \sup_{\Omega} (a) d_{\Omega}^{-s}$ and $0 \le bd_{\Omega}^{-\gamma_2}\zeta_1^{-\beta_2} \le \varepsilon^{-\beta_1} \sup_{\Omega} (b) d_{\Omega}^{-s}$ a.e. in Ω , we have that $ad_{\Omega}^{-\gamma_1}\zeta_2^{-\beta_1}$ and $bd_{\Omega}^{-\gamma_2}\zeta_1^{-\beta_2}$ belong to $(X_0^s(\Omega))'$. Then $T(\zeta_1, \zeta_2)$ is well defined and belongs to $L^2(\Omega) \times L^2(\Omega)$. Also, $\varepsilon^{\beta_1} \inf_{\Omega} (a) d_{\Omega}^{-\gamma_1} \vartheta^{-\beta_1} \le ad_{\Omega}^{-\gamma_1}\zeta_2^{-\beta_1} \le \varepsilon^{-\beta_1} \sup_{\Omega} (a) d_{\Omega}^{-s}$ in Ω , and $\varepsilon^{\beta_2} \inf_{\Omega} (b) d_{\Omega}^{-\gamma_2} \vartheta^{-\beta_2} \le ad_{\Omega}^{-\gamma_2}\zeta_1^{-\beta_2} \le \varepsilon^{-\beta_2} \sup_{\Omega} (b) d_{\Omega}^{-s}$ in Ω . Then, by the comparison principle and Lemma 2.6, there exist positive constants c_1 and c_2 , both independent of ε , ζ_1 , and ζ_2 , such that

$$c_{1}\varepsilon^{\beta_{1}}d_{\Omega}^{s} \leq \left(\left(-\Delta\right)^{s}\right)^{-1}\left(ad_{\Omega}^{-\gamma_{1}}\zeta_{2}^{-\beta_{1}}\right) \leq c_{2}\varepsilon^{-\beta_{1}}\vartheta \text{ in }\Omega, \text{ and} \\ c_{1}\varepsilon^{\beta_{2}}d_{\Omega}^{s} \leq \left(\left(-\Delta\right)^{s}\right)^{-1}\left(ad_{\Omega}^{-\gamma_{2}}\zeta_{1}^{-\beta_{1}}\right) \leq c_{2}\varepsilon^{-\beta_{2}}\vartheta \text{ in }\Omega,$$

and so, as in Lemma 3.1, (3.2) holds for ε small enough. Then, for such a ε , $T(C_{\varepsilon}) \subset C_{\varepsilon}$. To prove 3), consider an arbitrary $(\zeta_1, \zeta_2) \in C_{\varepsilon}$, and a sequence $\{(\zeta_{1,j}, \zeta_{2,j})\}_{j\in\mathbb{N}} \subset C_{\varepsilon}$ that converges to (ζ_1, ζ_2) in $L^2(\Omega) \times L^2(\Omega)$. After pass to a subsequence we can assume that $\{(\zeta_{1,j}, \zeta_{2,j})\}_{j\in\mathbb{N}}$ converges to (ζ_1, ζ_2) a.e. in Ω . Since $0 \leq ad_{\Omega}^{-\gamma_1}\zeta_{2,j}^{-\beta_1} \leq \sup_{\Omega}(a) \varepsilon^{-\beta_1}d_{\Omega}^{-s}$, and $0 \leq bd_{\Omega}^{-\gamma_2}\zeta_{1,j}^{-\beta_2} \leq \sup_{\Omega}(b) \varepsilon^{-\beta_1}d_{\Omega}^{-s}$, and taking into account that $d_{\Omega}^{-s} \in (X_0^1(\Omega))'$, it follows that $\{ad_{\Omega}^{-\gamma_1}\zeta_{2,j}^{-\beta_1}\}_{j\in\mathbb{N}}$ and $\{bd_{\Omega}^{-\gamma_2}\zeta_{1,j}^{-\beta_2}\}_{j\in\mathbb{N}}$ are bounded in $(X_0^1(\Omega))'$. Let $(\xi_{1,j}, \xi_{2,j}) := T(\zeta_{1,j}, \zeta_{2,j})$. Then $\{(\xi_{1,j}, \xi_{2,j})\}_{j\in\mathbb{N}}$ is bounded in $X_0^1(\Omega) \times X_0^1(\Omega)$. Therefore, after pass to a further subsequence if necessary, we can assume that, for some $(\xi_1, \xi_2) \in X_0^1(\Omega) \times X_0^1(\Omega)$, $\{(\xi_{1,j}, \xi_{2,j})\}_{j\in\mathbb{N}}$ converges to (ξ_1, ξ_2) in $L^2(\Omega) \times L^2(\Omega)$ and *a.e.* in Ω ; and that $\{\xi_{1,j}, \xi_{2,j}\}_{j\in\mathbb{N}}$ converges weakly to (ξ_1, ξ_2) in $X_0^1(\Omega) \times X_0^1(\Omega)$. Let $\varphi \in X_0^1(\Omega)$. Since $\{(\zeta_{1,j}, \zeta_{2,j})\}_{j\in\mathbb{N}} \subset C_{\varepsilon}$ and $\gamma_1 + s\beta_1 = s$, we have $|ad_{\Omega}^{-\gamma_1}\zeta_{2,j}^{-\beta_1}| \leq \varepsilon^{-\beta_1} ||a||_{\infty} |d_{\Omega}^{-s}\varphi|$ and by the Hardy inequality, $|d_{\Omega}^{-s}\varphi| \in L^1(\Omega)$. Then, from

AIMS Mathematics

(3.3) and (3.4), the Lebesgue dominated convergence theorem gives (3.5). (3.6) is obtained similarly. Then (3.7) and (3.8) hold. Thus $(\xi_1, \xi_2) = T(\zeta_1, \zeta_2)$ and so $\{T(\zeta_{1,j}, \zeta_{2,j})\}_{j\in\mathbb{N}}$ converges to $T(\zeta_1, \zeta_2)$ in $L^2(\Omega) \times L^2(\Omega)$. Then, as in the proof of Lemma 3.1, the conclusion that T is continuous is reached. To see 4), consider a bounded sequence $\{(\zeta_{1,j}, \zeta_{2,j})\}_{j\in\mathbb{N}} \subset C_{\varepsilon}$. We have $0 \le ad_{\Omega}^{-\gamma_1} \zeta_{2,j}^{-\beta_1} \le \sup_{\Omega} (a) \varepsilon^{-\beta_1} d_{\Omega}^{-s}$ and $0 \le bd_{\Omega}^{-\gamma_2} \zeta_{1,j_k}^{-\beta_2} \le \sup_{\Omega} (b) \varepsilon^{-\beta_2} d_{\Omega}^{-s}$ in Ω , and so $\{ad_{\Omega}^{-\gamma_1} \zeta_{2,j}^{-\beta_1}\}_{j\in\mathbb{N}}$ and $\{bd_{\Omega}^{-\gamma_2} \zeta_{1,j}^{-\beta_2}\}_{j\in\mathbb{N}}$ are bounded in $(X_0^1(\Omega))'$. Now 4) follows as in the proof of Lemma 3.1

Proof of Theorems 1.2, 1.3, and 1.4. Theorems 1.2, 1.3 and 1.4 follow from the Schauder fixed point theorem (as stated e.g., in [31], Theorem 3.2.20), combined with Lemma 3.1 in the case of Theorems 1.2 and 1.4; and with Lemma 3.2 in the case of Theorem 1.3.

Conflict of interest

The author declare no conflicts of interest in this paper.

References

- 1. C. Alves, *Multiplicity of positive solutions for a mixed boundary value problem*, Rocky MT J. Math., **38** (2008), 19–39.
- I. Bachar, H. Mâagli and V. Rădulescu, Singular solutions of a nonlinear elliptic equation in a punctured domain, Electron. J. Qual. Theo., 94 (2017), 1–19.
- 3. B. Barrios, I. De Bonis, M. Medina, et al. *Semilinear problems for the fractional laplacian with a singular nonlinearity*, Open Math., **13** (2015), 390–407.
- 4. U. Biccari, M Warma and E. Zuazua, *Local elliptic regularity for the Dirichlet fractional laplacian*, Adv. Nonlinear Stud., **17** (2017), 387–409.
- 5. A. Callegari and A. Nachman, A nonlinear singular boundary-value problem in the theory of pseudoplastic fluids, SIAM J. Appl. Math., **38** (1980), 275–281.
- 6. M. Chhetri, P. Drabek, R. Shivaji, *Analysis of positive solutions for classes of quasilinear singular problems on exterior domains*, Adv. Nonlinear Anal., **6** (2017), 447–459.
- 7. M. B. Chrouda, Existence and nonexistence of positive solutions to the fractional equation $\Delta^{\frac{\mu}{2}}u = -u^{\gamma}$ in bounded domains, Annales Academiæ Scientiarum Fennicæ Mathematica, **42** (2017), 997–1007.
- F. Cîrstea, M. Ghergu and V. Rădulescu, Combined effects of asymptotically linear and singular nonlinearities in bifurcation problems of Lane-Emden-Fowler type, J. Math. Pure. Appl., 84 (2005), 493–508.
- D. S. Cohen and H. B. Keller, Some positive problems suggested by nonlinear heat generators, J. Math. Mech., 16 (1967), 1361–1376.
- 10. M. G. Crandall, P. H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Commun. Part. Diff. Eq., 2 (1977), 193–222.
- 11. L. M. Del Pezzo and A. Quaas, *Global bifurcation for fractional p-laplacian and an application*, Zeitschrift für Analysis und ihre Anwendungen, **35** (2016), 411–447.

AIMS Mathematics

- 12. M. A. del Pino, *A global estimate for the gradient in a singular elliptic boundary value problem*, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, **122** (1992), 341–352.
- J. I. Diaz, J. Hernandez and J. M. Rakotoson, On very weak positive solutions to some semilinear elliptic problems with simultaneous singular nonlinear and spatial dependence terms, Milan J. Math., 79 (2011), 233.
- 14. J. I. Díaz, J. M. Morel and L. Oswald, *An elliptic equation with singular nonlinearity*, Commun. Part. Diff. Eq., **12** (1987), 1333–1344.
- 15. E. Di Nezza, G. Palatucci and E. Valdinoci, *Hitchhiker's guide to the fractional Sobolev spaces*, B. Sci. Math., **136** (2012), 521–573.
- 16. L. Dupaigne, M. Ghergu and V. Rădulescu, *Lane-Emden-Fowler equations with convection and singular potential*, J. Math. Pure. Appl., **87** (2007), 563–581.
- 17. OK. W. Fulks and J. S. Maybee, A singular nonlinear equation, Osaka J. Math., 12 (1960), 1–19.
- 18. A. Fiscella, R. Servadei and E. Valdinoci, *Density properties for fractional Sobolev Spaces*, Ann. Acad. Sci. Fenn. Math., **40** (2015), 235–253.
- 19. L. Gasiński and N. S. Papageorgiou, *Nonlinear elliptic equations with singular terms and combined nonlinearities*, Ann. Henri Poincaré, **13** (2012), 481–512.
- 20. M. Ghergu, V. Liskevich and Z. Sobol, *Singular solutions for second-order non-divergence type elliptic inequalities in punctured balls*, J. Anal. Math., **123** (2014), 251–279.
- M. Ghergu, V. Rădulescu, Singular elliptic problems: bifurcation and asymptotic analysis, Oxford Lecture Series in Mathematics and its Applications, The Clarendon Press, Oxford University Press, Oxford, 2008.
- J. Giacomoni, J. Hernandez and P. Sauvy, *Quasilinear and singular elliptic systems*, Adv. Nonlinear Anal., 2 (2013), 1–41.
- 23. J. Giacomoni, T. Mukherjee, K. Sreenadh, *Positive solutions of fractional elliptic equation with critical and singular nonlinearity*, Adv. Nonlinear Anal., **6** (2017), 327–354.
- 24. T. Godoy, *A semilnear singular problem for the fractional laplacian*, AIMS Mathematics, **3** (2018), 464–484.
- 25. A. C. Lazer and P. J. McKenna, *On a singular nonlinear elliptic boundary value problem*, Proc. Amer. Math. Soc., **111** (1991), 721–730.
- 26. H. Mâagli, *Asymptotic behavior of positive solutions of a semilinear Dirichlet problem*, Nonlinear Analysis: Theory, Methods & Applications, **74** (2011), 2941–2947.
- 27. H. Mâagli and M. Zribi, *Existence and estimates of solutions for singular nonlinear elliptic problems*, J. Math. Anal. Appl., **263** (2001), 522–542.
- 28. G. Molica Bisci, V. Rădulescu and R. Servadei, *Variational methods for nonlocal fractional problems*, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2016.
- 29. M. Montenegro and A. Suárez, *Existence of a positive solution for a singular system*, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, **140** (2010), 435–447.

- 30. N. S. Papageorgiou and G. Smyrlis, *Nonlinear elliptic equations with singular reaction*, Osaka J. Math., **53** (2016), 489–514.
- 31. N. S. Papageorgiou, D. D. Repov and V. D. Rădulescu, *Nonlinear analysis-theory and methods*, Springer Monographs in Mathematics, Springer, Cham, 2019.
- 32. K. Ho, K. Perera, I. Sim, et al. A note on fractional p-laplacian problems with singular weights, J. Fixed Point Theory A., **19** (2017), 157–173.
- 33. V. D. Rădulescu, Singular phenomena in nonlinear elliptic problems. From blow-up boundary solutions to equations with singular nonlinearities, In: Handbook of Differential Equations: Stationary Partial Differential Equations (M. Chipot, Editor), North-Holland Elsevier Science, Amsterdam, 4 (2007), 483–591.
- 34. X. Ros-Oton, Nonlocal elliptic equations in bounded domains: a survey, Publ. Mat., **60** (2016), 3–26.
- 35. X. Ros Oton and J. Serra, *The Dirichlet problem fot the fractional laplacian: Regularity up to the boundary*, J. Math. Pure. Appl., **101** (2014), 275–302.
- R. Servadei and E. Valdinoci, *Variational methods for non-local operators of elliptic type*, Discrete Contin. Dyn. Syst., **33** (2013), 2105–2137.
- 37. Z. Zhang, *The asymptotic behaviour of the unique solution for the singular Lane-Emden-Fowler equation*, J. Math. Anal. Appl., **312** (2005), 33–43.

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)