Mathematics

Research article

The new class $L_{z, p, E}$ of s - type operators

Pinar Zengin Alp and Emrah Evren Kara*

Department of Mathematics, Düzce University, Konuralp, Duzce, Turkey

* Correspondence: Email: karaeevren@gmail.com.

Abstract

The purpose of this study is to introduce the class of s-type $Z\left(u, v ; l_{p}(E)\right)$ operators, which we denote by $L_{z, p, E}(X, Y)$, we prove that this class is an operator ideal and quasi-Banach operator ideal by a quasi-norm defined on this class. Then we define classes using other examples of s-number sequences. We conclude by investigating which of these classes are injective, surjective or symmetric.

Keywords: block sequence space; operator ideal; s-numbers; quasi-norm
Mathematics Subject Classification: 47B06, 47B37, 47L20.

1. Introduction

In this study, the set of all natural numbers is represented by \mathbb{N} and the set of all nonnegative real numbers is represented by \mathbb{R}^{+}.

If the dimension of the range space of a bounded linear operator is finite, it is called a finite rank operator [1].

Throughout this study, X and Y denote real or complex Banach spaces. The space of all bounded linear operators from X to Y is denoted by $\mathcal{B}(X, Y)$ and the space of all bounded linear operators from an arbitrary Banach space to another arbitrary Banach space is denoted by \mathcal{B}.

The theory of operator ideals is a very important field in functional analysis. The theory of normed operator ideals first appeared in 1950's in [2]. In functional analysis, many operator ideals are constructed via different scalar sequence spaces. An s - number sequence is one of the most important examples of this. The definition of s - numbers goes back to E. Schmidt [3], who used this concept in the theory of non-selfadjoint integral equations. In Banach spaces there are many different possibilities of defining some equivalents of s - numbers, namely Kolmogorov numbers, Gelfand numbers, approximation numbers, and several others. In the following years, Pietsch give the notion of s - number sequence to combine all s - numbers in one definition [4-6].

A map

$$
S: K \rightarrow\left(s_{r}(K)\right)
$$

which assigns a non-negative scalar sequence to each operator is called an s-number sequence if for all Banach spaces X, Y, X_{0} and Y_{0} the following conditions are satisfied:
(i) $\|K\|=s_{1}(K) \geq s_{2}(K) \geq \ldots \geq 0$, for every $K \in \mathcal{B}(X, Y)$,
(ii) $s_{p+r-1}(L+K) \leq s_{p}(L)+s_{r}(K)$ for every $L, K \in \mathcal{B}(X, Y)$ and $p, r \in \mathbb{N}$,
(iii) $s_{r}(M L K) \leq\|M\| s_{r}(L)\|K\|$ for all $M \in \mathcal{B}\left(Y, Y_{0}\right), L \in \mathcal{B}(X, Y)$ and $K \in \mathcal{B}\left(X_{0}, X\right)$, where X_{0}, Y_{0} are arbitrary Banach spaces,
(iv) If $\operatorname{rank}(K) \leq r$, then $s_{r}(K)=0$,
(v) $s_{n-1}\left(I_{n}\right)=1$, where I_{n} is the identity map of n-dimensional Hilbert space l_{2}^{n} to itself [7].
$s_{r}(K)$ denotes the $r-t h s-$ number of the operator K.
Approximation numbers are frequently used examples of s-number sequence which is defined by Pietsch. $a_{r}(K)$, the r-th approximation number of a bounded linear operator is defined as

$$
a_{r}(K)=\inf \{\|K-A\|: A \in \mathcal{B}(X, Y), \operatorname{rank}(A)<r\},
$$

where $K \in \mathcal{B}(X, Y)$ and $r \in \mathbb{N}$ [4]. Let $K \in \mathcal{B}(X, Y)$ and $r \in \mathbb{N}$. The other examples of s-number sequences are given in the following, namely Gel' $^{\prime}$ fand number ($c_{r}(K)$), Kolmogorov number $\left(d_{r}(K)\right)$, Weyl number $\left(x_{r}(K)\right.$), Chang number $\left(y_{r}(K)\right)$, Hilbert number $\left(h_{r}(K)\right)$, etc. For the definitions of these sequences we refer to [1].

In the sequel there are some properties of $s-$ number sequences.
When any isometric embedding $\mathcal{J} \in \mathcal{B}\left(Y, Y_{0}\right)$ is given and an s-number sequence $s=\left(s_{r}\right)$ satisfies $s_{r}(K)=s_{r}(\mathcal{J} K)$ for all $K \in \mathcal{B}(X, Y)$ the s-number sequence is called injective [8, p.90].

Proposition 1. [8, p.90-94] The number sequences $\left(c_{r}(K)\right)$ and $\left(x_{r}(K)\right)$ are injective.
When any quotient map $\mathcal{S} \in \mathcal{B}\left(X_{0}, X\right)$ is given and an s-number sequence $s=\left(s_{r}\right)$ satisfies $s_{r}(K)=$ $s_{r}(K \mathcal{S})$ for all $K \in \mathcal{B}(X, Y)$ the s-number sequence is called surjective [8, p.95].
Proposition 2. [8, p.95] The number sequences $\left(d_{r}(K)\right)$ and $\left(y_{r}(K)\right)$ are surjective.
Proposition 3. [8, p.115] Let $K \in \mathcal{B}(X, Y)$. Then the following inequalities hold:
i) $h_{r}(K) \leq x_{r}(K) \leq c_{r}(K) \leq a_{r}(K)$ and
ii) $h_{r}(K) \leq y_{r}(K) \leq d_{r}(K) \leq a_{r}(K)$.

Lemma 1. [5] Let $S, K \in \mathcal{B}(X, Y)$, then $\left|s_{r}(K)-s_{r}(S)\right| \leq\|K-S\|$ for $r=1,2, \ldots$.
Let ω be the space of all real valued sequences. Any vector subspace of ω is called a sequence space.

In [9] the space $Z\left(u, v ; l_{p}\right)$ is defined by Malkowsky and Savaş as follows:

$$
Z\left(u, v ; l_{p}\right)=\left\{x \in \omega: \sum_{n=1}^{\infty}\left|u_{n} \sum_{k=1}^{n} v_{k} x_{k}\right|^{p}<\infty\right\}
$$

where $1<p<\infty$ and $u=\left(u_{n}\right)$ and $v=\left(v_{n}\right)$ are positive real numbers.
The Cesaro sequence space ces $_{p}$ is defined as ($[10,11,19]$)

$$
\operatorname{ces}_{p}=\left\{x=\left(x_{k}\right) \in \omega: \sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{k=1}^{n}\left|x_{k}\right|\right)^{p}<\infty\right\}, \quad 1<p<\infty .
$$

If an operator $K \in \mathcal{B}(X, Y)$ satisfies $\sum_{n=1}^{\infty}\left(a_{n}(K)\right)^{p}<\infty$ for $0<p<\infty, K$ is defined as an l_{p} type operator in [4] by Pietsch. Afterwards ces-p type operators which is a new class obtained via Cesaro sequence space is introduced by Constantin [12]. Later on Tita in [14] proved that the class of l_{p} type operators and ces- p type operators coincide.

In [15], $\boldsymbol{\varsigma}_{p}^{(s)}$, the class of s-type $Z\left(u, v ; l_{p}\right)$ operators is given. For more information about sequence spaces and operator ideals we refer to [$1,13,16,18,20]$.

Let X^{\prime}, the dual of X, be the set of continuous linear functionals on X. The map $x^{*} \otimes y: X \rightarrow Y$ is defined by

$$
\left(x^{*} \otimes y\right)(x)=x^{*}(x) y
$$

where $x \in X, x^{*} \in X^{\prime}$ and $y \in Y$.
A subcollection \mathfrak{J} of \mathcal{B} is said to be an operator ideal if for each component $\mathfrak{J}(X, Y)=\mathfrak{I} \cap \mathcal{B}(X, Y)$ the following conditions hold:
(i) if $x^{*} \in X^{\prime}, y \in Y$, then $x^{*} \otimes y \in \mathfrak{J}(X, Y)$,
(ii) if $L, K \in \mathfrak{I}(X, Y)$, then $L+K \in \mathfrak{J}(X, Y)$,
(iii) if $L \in \mathfrak{I}(X, Y), K \in \mathcal{B}\left(X_{0}, X\right)$ and $M \in \mathcal{B}\left(Y, Y_{0}\right)$, then $M L K \in \mathfrak{I}\left(X_{0}, Y_{0}\right)$ [6].

Let \mathfrak{I} be an operator ideal and $\rho: \mathfrak{J} \rightarrow \mathbb{R}^{+}$be a function on \mathfrak{J}. Then, if the following conditions hold:
(i) if $x^{*} \in X^{\prime}, y \in Y$, then $\rho\left(x^{*} \otimes y\right)=\left\|x^{*}\right\|\|y\|$;
(ii) if $\exists C \geq 1$ such that $\rho(L+K) \leq C[\rho(L)+\rho(K)]$;
(iii) if $L \in \mathfrak{J}(X, Y), K \quad \in \mathcal{B}\left(X_{0}, X\right)$ and $M \in \mathcal{B}\left(Y, Y_{0}\right)$, then $\rho(M L K) \leq\|M\| \rho(L)\|K\|$,
ρ is said to be a quasi-norm on the operator ideal \mathfrak{I} [6].
For special case $C=1, \rho$ is a norm on the operator ideal \mathfrak{I}.
If ρ is a quasi-norm on an operator ideal \mathfrak{J}, it is denoted by $[\mathfrak{J}, \rho]$. Also if every component $\mathfrak{J}(X, Y)$ is complete with respect to the quasi-norm $\rho,[\mathfrak{J}, \rho]$ is called a quasi-Banach operator ideal.

Let [\mathfrak{J}, ρ] be a quasi-normed operator ideal and $\mathcal{J} \in \mathcal{B}\left(Y, Y_{0}\right)$ be a isometric embedding. If for every operator $K \in \mathcal{B}(X, Y)$ and $\mathcal{J} K \in \mathfrak{I}\left(X, Y_{0}\right)$ we have $K \in \mathfrak{I}(X, Y)$ and $\rho(\mathcal{J} K)=\rho(K)$, [$\left.\mathfrak{J}, \rho\right]$ is called an injective quasi-normed operator ideal. Furthermore, let $[\mathfrak{J}, \rho]$ be a quasi-normed operator ideal and $\mathcal{S} \in \mathcal{B}\left(X_{0}, X\right)$ be a quotient map. If for every operator $K \in \mathcal{B}(X, Y)$ and $K \mathcal{S} \in \mathfrak{I}\left(X_{0}, Y\right)$ we have $K \in \mathfrak{I}(X, Y)$ and $\rho(K \mathcal{S})=\rho(K)$, [J , $\rho]$ is called an surjective quasi-normed operator ideal [6].

Let K^{\prime} be the dual of K. An s - number sequence is called symmetric (respectively, completely symmetric) if for all $K \in \mathcal{B}, s_{r}(K) \geq s_{r}\left(K^{\prime}\right)$ (respectively, $s_{r}(K)=s_{r}\left(K^{\prime}\right)$) [6].

Lemma 2. [6] The approximation numbers are symmetric, i.e., $a_{r}\left(K^{\prime}\right) \leq a_{r}(K)$ for $K \in \mathcal{B}$.
Lemma 3. [6] Let $K \in \mathcal{B}$. Then

$$
c_{r}(K)=d_{r}\left(K^{\prime}\right) \text { and } \quad c_{r}\left(K^{\prime}\right) \leq d_{r}(K) .
$$

In addition, if K is a compact operator then $c_{r}\left(K^{\prime}\right)=d_{r}(K)$.

Lemma 4. [8] Let $K \in \mathcal{B}$. Then

$$
x_{r}(K)=y_{r}\left(K^{\prime}\right) \text { and } y_{r}\left(K^{\prime}\right)=x_{r}(K)
$$

The dual of an operator ideal \mathfrak{J} is denoted by \mathfrak{I}^{\prime} and it is defined as [6]

$$
\mathfrak{J}^{\prime}(X, Y)=\left\{K \in \mathcal{B}(X, Y): K^{\prime} \in \mathfrak{I}\left(Y^{\prime}, X^{\prime}\right)\right\}
$$

An operator ideal \mathfrak{J} is called symmetric if $\mathfrak{I} \subset \mathfrak{J}^{\prime}$ and is called completely symmetric if $\mathfrak{J}=\mathfrak{J}^{\prime}$ [6].
Let $E=\left(E_{n}\right)$ be a partition of finite subsets of the positive integers which satisfies

$$
\max E_{n}<\min E_{n+1}
$$

for $n \in \mathbb{N}^{+}$. In [21] Foroutannia defined the sequence space $l_{p}(E)$ by

$$
l_{p}(E)=\left\{x=\left(x_{n}\right) \in \omega: \sum_{n=1}^{\infty}\left|\sum_{j \in E_{n}} x_{j}\right|^{p}<\infty\right\}, \quad(1 \leq p<\infty)
$$

with the seminorm $\||\cdot|\|_{p, E}$, which defined as:

$$
\left\|\|x\|_{p, E}=\left(\sum_{n=1}^{\infty}\left|\sum_{j \in E_{n}} x_{j}\right|^{p}\right)^{\frac{1}{p}} .\right.
$$

For example, if $E_{n}=\{3 n-2,3 n-1,3 n\}$ for all n, then $x=\left(x_{n}\right) \in l_{p}(E)$ if and only if $\sum_{n=1}^{\infty}\left|x_{3 n-2}+x_{3 n-1}+x_{3 n}\right|^{p}<\infty$. It is obvious that $\||\cdot|\|_{p, E}$ is not a norm, since we have $\||x|\|_{p, E}=0$ while $x=(-1,1,0,0, \ldots)$ and $E_{n}=\{3 n-2,3 n-1,3 n\}$ for all n. For the particular case $E_{n}=\{n\}$ for $n \in \mathbb{N}^{+}$ we get $l_{p}(E)=l_{p}$ and $\|x\|_{p, E}=\|x\|_{p}$.

For more information about block sequence spaces, we refer the reader to [17,22-25].

2. Results

Let $u=\left(u_{n}\right)$ and $v=\left(v_{n}\right)$ be positive real number sequences. In this section, by replacing l_{p} with $l_{p}(E)$ we get the sequence space $Z\left(u, v ; l_{p}(E)\right)$ defined as follows:

$$
Z\left(u, v ; l_{p}(E)\right)=\left\{x \in \omega: \sum_{n=1}^{\infty}\left|u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} x_{j}\right|^{p}<\infty\right\} .
$$

An operator $K \in \mathcal{B}(X, Y)$ is in the class of s-type $Z\left(u, v ; l_{p}(E)\right)$ if

$$
\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} s_{j}(K)\right)^{p}<\infty, \quad(1<p<\infty) .
$$

The class of all s-type $Z\left(u, v ; l_{p}(E)\right)$ operators is denoted by $L_{z, p, E}(X, Y)$.
In particular case if $E_{n}=\{n\}$ for $n=1,2, \ldots$, then the class $L_{z, p, E}(X, Y)$ reduces to the class $\varsigma_{p}^{(s)}$.
Conditions used in Theorem 1 hold throughout the remainder of the paper.

Theorem 1. Fix $1<p<\infty$. If $\sum_{n=1}^{\infty}\left(u_{n}\right)^{p}<\infty$ and $\mathcal{M}>0$ is such that $v_{2 k-1}+v_{2 k} \leq \mathcal{M} v_{k}, \mathcal{M}>0$ for all $k \in \mathbb{N}$, then $L_{z, p, E}$ is an operator ideal.
Proof. Let $x^{*} \in X^{\prime}$ and $y \in Y$. Since the rank of the operator $x^{*} \otimes y$ is one, $s_{n}\left(x^{*} \otimes y\right)=0$ for $n \geq 2$. By using this fact

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} s_{j}\left(x^{*} \otimes y\right)\right)^{p} & =\sum_{n=1}^{\infty}\left(u_{n}\right)^{p}\left(v_{1} s_{1}\left(x^{*} \otimes y\right)\right)^{p} \\
& =\sum_{n=1}^{\infty}\left(u_{n}\right)^{p}\left(v_{1}\right)^{p}\left\|x^{*} \otimes y\right\|^{p} \\
& =\sum_{n=1}^{\infty}\left(u_{n}\right)^{p}\left(v_{1}\right)^{p}\left\|x^{*}\right\|^{p}\|y\|^{p} \\
& <\infty .
\end{aligned}
$$

Therefore $x^{*} \otimes y \in L_{z, p, E}(X, Y)$.
Let $L, K \in L_{z, p, E}(X, Y)$. Then

$$
\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} s_{j}(L)\right)^{p}<\infty, \quad \sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} s_{j}(K)\right)^{p}<\infty .
$$

To show that $L+K \in L_{z, p, E}(X, Y)$, let us begin with

$$
\begin{aligned}
\sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} s_{j}(L+K) & \leq \sum_{k=1}^{n}\left(\sum_{j \in E_{k}} v_{2 j-1} s_{2 j-1}(L+K)+\sum_{j \in E_{k}} v_{2 j} s_{2 j}(L+K)\right) \\
& \leq \sum_{k=1}^{n} \sum_{j \in E_{k}}\left(v_{2 j-1}+v_{2 j}\right) s_{2 j-1}(L+K) \\
& \leq \mathcal{M} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j}\left(s_{j}(L)+s_{j}(K)\right) \\
& \leq \mathcal{M} \sum_{k=1}^{n}\left(\sum_{j \in E_{k}} v_{j} s_{j}(L)+\sum_{j \in E_{k}} v_{j} s_{j}(K)\right)
\end{aligned}
$$

By using Minkowski inequality we get;

$$
\begin{aligned}
& \left(\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n}\left(\sum_{j \in E_{k}} v_{j} s_{j}(L+K)\right)\right)^{p}\right)^{\frac{1}{p}} \\
\leq & \mathcal{M}\left(\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n}\left(\sum_{j \in E_{k}} v_{j} s_{j}(L)+\sum_{j \in E_{k}} v_{j} s_{j}(K)\right)\right)^{p}\right)^{\frac{1}{p}} \\
\leq & \mathcal{M}\left[\left(\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} s_{j}(L)\right)^{p}\right)^{\frac{1}{p}}+\left(\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} s_{j}(K)\right)^{p}\right)^{\frac{1}{p}}\right]<\infty .
\end{aligned}
$$

Hence $L+K \in L_{z, p, E}(X, Y)$.
Let $M \in \mathcal{B}\left(Y, Y_{0}\right), L \in L_{z, p, E}(X, Y)$ and $K \in \mathcal{B}\left(X_{0}, X\right)$. Then,

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} s_{j}(M L K)\right)^{p} & \leq \sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}}\|M\|\|K\| v_{j} s_{j}(L)\right)^{p} \\
& \leq\|M\|^{p}\|K\|^{p}\left(\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} s_{j}(L)\right)^{p}\right)<\infty .
\end{aligned}
$$

So $M L K \in L_{z, p, E}\left(X_{0}, Y_{0}\right)$.
Therefore $L_{z, p, E}(X, Y)$ is an operator ideal.

Theorem 2. $\|K\|_{z, p, E}=\frac{\left(\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} s_{j}(K)\right)^{p}\right)^{\frac{1}{p}}}{\left(\sum_{n=1}^{\infty}\left(u_{n}\right)^{p}\right)^{\frac{1}{p}} v_{1}}$ is a quasi-norm on the operator ideal $L_{z, p, E}$.
Proof. Let $x^{*} \in X^{\prime}$ and $y \in Y$. Since the rank of the operator $x^{*} \otimes y$ is one, $s_{n}\left(x^{*} \otimes y\right)=0$ for $n \geq 2$. Then

$$
\begin{aligned}
\frac{\left(\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} s_{j}\left(x^{*} \otimes y\right)\right)^{p}\right)^{\frac{1}{p}}}{\left(\sum_{n=1}^{\infty}\left(u_{n}\right)^{p}\right)^{\frac{1}{p}} v_{1}} & =\frac{\left(\left(\sum_{n=1}^{\infty}\left(u_{n}\right)^{p}\right) v_{1}^{p}\left\|x^{*} \otimes y\right\|^{p}\right)^{\frac{1}{p}}}{\left(\sum_{n=1}^{\infty}\left(u_{n}\right)^{p}\right)^{\frac{1}{p}} v_{1}} \\
& =\left\|x^{*} \otimes y\right\|=\left\|x^{*}\right\|\|y\| .
\end{aligned}
$$

Therefore $\left\|x^{*} \otimes y\right\|_{z, p, E}=\left\|x^{*}\right\|\|y\|$.
Let $L, K \in L_{z, p, E}(X, Y)$. Then

$$
\begin{aligned}
\sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} s_{j}(L+K) & \leq \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{2 j-1} s_{2 j-1}(L+K)+\sum_{j \in E_{n}} v_{2 j} s_{2 j}(L+K) \\
& \leq \sum_{k=1}^{n} \sum_{j \in E_{k}}\left(v_{2 j-1}+v_{2 j}\right) s_{2 j-1}(L+K) \\
& \leq \mathcal{M} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j}\left(s_{j}(L)+s_{j}(K)\right) .
\end{aligned}
$$

By using Minkowski inequality we get;

$$
\left(\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} s_{j}(L+K)\right)^{p}\right)^{\frac{1}{p}} \leq\left(\sum_{n=1}^{\infty}\left(M u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j}\left(s_{j}(L)+s_{j}(K)\right)\right)^{p}\right)^{\frac{1}{p}}
$$

$$
\leq \mathcal{M}\left[\begin{array}{c}
\left(\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} s_{j}(L)\right)^{p}\right)^{\frac{1}{p}} \\
+\left(\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} s_{j}(K)\right)^{p}\right)^{\frac{1}{p}}
\end{array}\right] .
$$

Hence

$$
\|L+K\|_{z, p, E} \leq \mathcal{M}\left(\|S\|_{z, p, E}+\|K\|_{z, p, E}\right) .
$$

Let $M \in \mathcal{B}\left(Y, Y_{0}\right), L \in L_{z, p, E}(X, Y)$ and $K \in \mathcal{B}\left(X_{0}, X\right)$

$$
\begin{aligned}
\left(\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} s_{j}(M L K)\right)^{p}\right)^{\frac{1}{p}} & \leq\left(\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}}\|M\|\|K\| v_{j} s_{j}(L)\right)^{p}\right)^{\frac{1}{p}} \\
& \leq\|M\|\|K\|\left(\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} s_{j}(L)\right)^{p}\right)^{\frac{1}{p}} \\
& <\infty \\
\|M L K\|_{z, p, E} & \leq\|M\|\|K\|\|L\|_{z, p, E}
\end{aligned}
$$

Therefore $\|K\|_{z, p, E}$ is a quasi-norm on $L_{z, p, E}$.
Theorem 3. Let $1<p<\infty$. $\left[L_{z, p, E}(X, Y),\|K\|_{z, p, E}\right]$ is a quasi-Banach operator ideal.
Proof. Let X, Y be any two Banach spaces and $1 \leq p<\infty$. The following inequality holds

$$
\|K\|_{z, p, E}=\frac{\left(\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} s_{j}(K)\right)^{p}\right)^{\frac{1}{p}}}{\left(\sum_{n=1}^{\infty}\left(u_{n}\right)^{p}\right)^{\frac{1}{p}} v_{1}} \geq\|K\|
$$

for $K \in L_{z, p, E}(X, Y)$.
Let (K_{m}) be Cauchy in $L_{z, p, E}(X, Y)$. Then for every $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left\|K_{m}-K_{l}\right\|_{z, p, E}<\varepsilon \tag{2.1}
\end{equation*}
$$

for all $m, l \geq n_{0}$. It follows that

$$
\left\|K_{m}-K_{l}\right\| \leq\left\|K_{m}-K_{l}\right\|_{z, p, E}<\varepsilon .
$$

Then $\left(K_{m}\right)$ is a Cauchy sequence in $\mathcal{B}(X, Y) \cdot \mathcal{B}(X, Y)$ is a Banach space since Y is a Banach space. Therefore $\left\|K_{m}-K\right\| \rightarrow 0$ as $m \rightarrow \infty$ for some $K \in \mathcal{B}(X, Y)$. Now we show that $\left\|K_{m}-K\right\|_{z, p, E} \rightarrow 0$ as $m \rightarrow \infty$ for $K \in L_{z, p, E}(X, Y)$.

The operators $K_{l}-K_{m}, K-K_{m}$ are in the class $\mathcal{B}(X, Y)$ for $K_{m}, K_{l}, K \in \mathcal{B}(X, Y)$.

$$
\left|s_{n}\left(K_{l}-K_{m}\right)-s_{n}\left(K-K_{m}\right)\right| \leq\left\|K_{l}-K_{m}-\left(K-K_{m}\right)\right\|=\left\|K_{l}-K\right\| .
$$

Since $K_{l} \rightarrow K$ as $l \rightarrow \infty$ we obtain

$$
\begin{equation*}
s_{n}\left(K_{l}-K_{m}\right) \rightarrow s_{n}\left(K-K_{m}\right) \tag{2.2}
\end{equation*}
$$

It follows from (2.1) that the statement

$$
\left\|K_{m}-K_{l}\right\|_{z, p, E}=\frac{\left(\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} s_{j}\left(K_{m}-K_{l}\right)\right)^{p}\right)^{\frac{1}{p}}}{\left(\sum_{n=1}^{\infty}\left(u_{n}\right)^{p}\right)^{\frac{1}{p}} v_{1}}<\varepsilon
$$

holds for all $m, l \geq n_{0}$. We obtain from (2.2) that

$$
\frac{\left(\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} s_{j}\left(K_{m}-K\right)\right)^{p}\right)^{\frac{1}{p}}}{\left(\sum_{n=1}^{\infty}\left(u_{n}\right)^{p}\right)^{\frac{1}{p}} v_{1}} \leq \varepsilon .
$$

Hence we have

$$
\left\|K_{m}-K\right\|_{z, p, E}<\varepsilon \quad \text { for all } m \geq n_{0}
$$

Finally we show that $K \in L_{z, p, E}(X, Y)$.

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} s_{j}(K)\right)^{p} & \leq \sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{2 j-1} s_{2 j-1}(K)+u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{2 j} s_{2 j}(K)\right)^{p} \\
& \leq \sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}}\left(v_{2 j-1}+v_{2 j}\right) s_{2 j-1}\left(K-K_{m}+K_{m}\right)\right)^{p} \\
& \leq \mathcal{M} \sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j}\left(s_{j}\left(K-K_{m}\right)+s_{j}\left(K_{m}\right)\right)\right)^{p}
\end{aligned}
$$

By using Minkowski inequality; since $K_{m} \in L_{z, p, E}(X, Y)$ for all m and $\left\|K_{m}-K\right\|_{z, p, E} \rightarrow 0$ as $m \rightarrow \infty$, we have

$$
\begin{aligned}
& \mathcal{M}\left(\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j}\left(s_{j}\left(K-K_{m}\right)+s_{j}\left(K_{m}\right)\right)\right)^{p}\right)^{\frac{1}{p}} \\
\leq & \mathcal{M}\left[\begin{array}{c}
\left(\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} s_{j}\left(K-K_{m}\right)\right)^{p}\right)^{\frac{1}{p}} \\
+\left(\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} s_{j}\left(K_{m}\right)\right)^{p}\right)^{\frac{1}{p}}
\end{array}\right]<\infty
\end{aligned}
$$

which means $K \in L_{z, p, E}(X, Y)$.

Definition 1. Let $\mu=\left(\mu_{i}(K)\right)$ be one of the sequences $s=\left(s_{n}(K)\right), c=\left(c_{n}(K)\right), d=\left(d_{n}(K)\right)$, $x=\left(x_{n}(K)\right), y=\left(y_{n}(K)\right)$ and $h=\left(h_{n}(K)\right)$. Then the space $L_{z, p, E}^{(\mu)}$ generated via $\mu=\left(\mu_{i}(K)\right)$ is defined as

$$
L_{z, p, E}^{(\mu)}(X, Y)=\left\{K \in \mathcal{B}(X, Y): \sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} \mu_{j}(K)\right)^{p}<\infty,(1<p<\infty)\right\} .
$$

And the corresponding norm $\|K\|_{z, p, E}^{(\mu)}$ for each class is defined as

$$
\|K\|_{z, p, E}^{(\mu)}=\frac{\left(\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} \mu_{j}(K)\right)^{p}\right)^{\frac{1}{p}}}{\left(\sum_{n=1}^{\infty}\left(u_{n}\right)^{p}\right)^{\frac{1}{p}} v_{1}}
$$

Proposition 4. The inclusion $L_{z, p, E}^{(a)} \subseteq L_{z, q, E}^{(a)}$ holds for $1<p \leq q<\infty$.
Proof. Since $l_{p} \subseteq l_{q}$ for $1<p \leq q<\infty$ we have $L_{z, p, E}^{(a)} \subseteq L_{z, q, E}^{(a)}$.
Theorem 4. Let $1<p<\infty$. The quasi-Banach operator ideal $\left[L_{z, p, E}^{(s)},\|K\|_{z, p, E}^{(s)}\right]$ is injective, if the sequence $s_{n}(K)$ is injective.

Proof. Let $1<p<\infty$ and $K \in \mathcal{B}(X, Y)$ and $\mathcal{J} \in \mathcal{B}\left(Y, Y_{0}\right)$ be any isometric embedding. Suppose that $\mathcal{J} K \in L_{z, p, E}^{(s)}\left(X, Y_{0}\right)$. Then

$$
\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} s_{j}(\mathcal{J} K)\right)^{p}<\infty
$$

Since $s=\left(s_{n}\right)$ is injective, we have

$$
\begin{equation*}
s_{n}(K)=s_{n}(\mathcal{J} K) \text { for all } K \in \mathcal{B}(X, Y), n=1,2, \ldots \tag{2.3}
\end{equation*}
$$

Hence we get

$$
\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} s_{j}(K)\right)^{p}=\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} s_{j}(\mathcal{J} K)\right)^{p}<\infty
$$

Thus $K \in L_{z, p, E}^{(s)}(X, Y)$ and we have from (2.3)

$$
\begin{aligned}
\|\mathcal{J} K\|_{z, p, E}^{(s)} & =\frac{\left(\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} s_{j}(\mathcal{J} K)\right)^{p}\right)^{\frac{1}{p}}}{\left(\sum_{n=1}^{\infty}\left(u_{n}\right)^{p}\right)^{\frac{1}{p}} v_{1}} \\
= & \frac{\left(\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} s_{j}(K)\right)^{p}\right)^{\frac{1}{p}}}{\left(\sum_{n=1}^{\infty}\left(u_{n}\right)^{p}\right)^{\frac{1}{p}} v_{1}}=\|K\|_{z, p, E}^{(s)}
\end{aligned}
$$

Hence the operator ideal $\left[L_{z, p, E}^{(s)},\|K\|_{z, p, E}^{(s)}\right]$ is injective.
Conclusion 1. [8, p.90-94] Since the number sequences $\left(c_{n}(K)\right)$ and $\left(x_{n}(K)\right)$ are injective , the quasiBanach operator ideals $\left[L_{z, p, E}^{(c)},\|K\|_{z, p, E}^{(c)}\right]$ and $\left[L_{z, p, E}^{(x)},\|K\|_{z, p, E}^{(x)}\right]$ are injective.
Theorem 5. Let $1<p<\infty$. The quasi-Banach operator ideal $\left[L_{z, p, E}^{(s)},\|K\|_{z, p, E}^{(s)}\right]$ is surjective, if the sequence $\left(s_{n}(K)\right)$ is surjective.

Proof. Let $1<p<\infty$ and $K \in \mathcal{B}(X, Y)$ and $\mathcal{S} \in \mathcal{B}\left(X_{0}, X\right)$ be any quotient map. Suppose that $K \mathcal{S} \in L_{z, p, E}^{(s)}\left(X_{0}, Y\right)$. Then

$$
\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} s_{j}(K \mathcal{S})\right)^{p}<\infty
$$

Since $s=\left(s_{n}\right)$ is surjective, we have

$$
\begin{equation*}
s_{n}(K)=s_{n}(K \mathcal{S}) \text { for all } K \in \mathcal{B}(X, Y), n=1,2, \ldots \tag{2.4}
\end{equation*}
$$

Hence we get

$$
\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} s_{j}(K)\right)^{p}=\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} s_{j}(K S)\right)^{p}<\infty .
$$

Thus $K \in L_{z, p, E}^{(s)}(X, Y)$ and we have from (2.4)

$$
\begin{aligned}
\|K \mathcal{S}\|_{z, p, E}^{(s)} & =\frac{\left(\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} s_{j}(K \mathcal{S})\right)^{p}\right)^{\frac{1}{p}}}{\left(\sum_{n=1}^{\infty}\left(u_{n}\right)^{p}\right)^{\frac{1}{p}} v_{1}} \\
& =\frac{\left(\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} s_{j}(K)\right)^{p}\right)^{\frac{1}{p}}}{\left(\sum_{n=1}^{\infty}\left(u_{n}\right)^{p}\right)^{\frac{1}{p}} v_{1}}=\|K\|_{z, p, E}^{(s)} .
\end{aligned}
$$

Hence the operator ideal $\left[L_{z, p, E}^{(s)},\|K\|_{z, p, E}^{(s)}\right]$ is surjective.
Conclusion 2. [8, p.95] Since the number sequences $\left(d_{n}(K)\right)$ and $\left(y_{n}(K)\right)$ are surjective, the quasiBanach operator ideals $\left[L_{z, p, E}^{(d)},\|K\|_{z, p, E}^{(d)}\right]$ and $\left[L_{z, p, E}^{(y)},\|K\|_{z, p, E}^{(y)}\right]$ are surjective.
Theorem 6. Let $1<p<\infty$. Then the following inclusion relations holds:

$$
\begin{aligned}
& \text { i } L_{z, p, E}^{(a)} \subseteq L_{z, p, E}^{(c)} \subseteq L_{z, p, E}^{(x)} \subseteq L_{z, p, E}^{(h)} \\
& \text { ii } L_{z, p, E}^{(a)} \subseteq L_{z, p, E}^{(d)} \subseteq L_{z, p, E}^{(p)} \subseteq L_{z, p, E}^{(h)}
\end{aligned}
$$

Proof. Let $K \in L_{z, p, E}^{(a)}$. Then

$$
\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} s_{j}(K)\right)^{p}<\infty
$$

where $1<p<\infty$. And from Proposition 3, we have;

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} h_{j}(K)\right)^{p} & \leq \sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} x_{j}(K)\right)^{p} \\
& \leq \sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} c_{j}(K)\right)^{p} \\
& \leq \sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} a_{j}(K)\right)^{p} \\
& <\infty
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} h_{j}(K)\right)^{p} & \leq \sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} y_{j}(K)\right)^{p} \\
& \leq \sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} d_{j}(K)\right)^{p} \\
& \leq \sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} a_{j}(K)\right)^{p} \\
& <\infty .
\end{aligned}
$$

So it is shown that the inclusion relations are satisfied.
Theorem 7. For $1<p<\infty, L_{z, p, E}^{(a)}$ is a symmetric operator ideal and $L_{z, p, E}^{(h)}$ is a completely symmetric operator ideal.

Proof. Let $1<p<\infty$.
Firstly, we show that $L_{z, p, E}^{(a)}$ is symmetric in other words $L_{z, p, E}^{(a)} \subseteq\left(L_{z, p, E}^{(a)}\right)^{\prime}$ holds. Let $K \in L_{z, p, E}^{(a)}$. Then

$$
\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} a_{j}(K)\right)^{p}<\infty .
$$

It follows from [6, p.152] $a_{n}\left(K^{\prime}\right) \leq a_{n}(K)$ for $K \in \mathcal{B}$. Hence we get

$$
\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} a_{j}\left(T^{\prime}\right)\right)^{p} \leq \sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} a_{j}(K)\right)^{p}<\infty .
$$

Therefore $K \in\left(L_{z, p, E}^{(a)}\right)^{\prime}$. Thus $L_{z, p, E}^{(a)}$ is symmetric.
Now we prove that the equation $L_{z, p, E}^{(h)}=\left(L_{z, p, E}^{(h)}\right)^{\prime}$ holds. It follows from [8, p.97] that $h_{n}\left(K^{\prime}\right)=$ $h_{n}(K)$ for $K \in \mathcal{B}$. Then we can write

$$
\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} h_{j}\left(K^{\prime}\right)\right)^{p}=\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} h_{j}(K)\right)^{p} .
$$

$$
\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} h_{j}\left(K^{\prime}\right)\right)^{p}=\sum_{n=1}^{\infty}\left(u_{n} \sum_{k=1}^{n} \sum_{j \in E_{k}} v_{j} h_{j}(K)\right)^{p}
$$

Hence $L_{z, p, E}^{(h)}$ is completely symmetric.
Theorem 8. Let $1<p<\infty$. The equation $L_{z, p, E}^{(c)}=\left(L_{z, p, E}^{(d)}\right)^{\prime}$ and the inclusion relation $L_{z, p, E}^{(d)} \subseteq\left(L_{z, p, E}^{(c)}\right)^{\prime}$ holds. Also, for a compact operator $K, K \in L_{z, p, E}^{(d)}$ if and only if $K^{\prime} \in\left(L_{z, p, E}^{(c)}\right)$.
Proof. Let $1<p<\infty$. For $K \in \mathcal{B}$ it is known from [8] that $c_{n}(K)=d_{n}\left(K^{\prime}\right)$ and $c_{n}\left(K^{\prime}\right) \leq d_{n}(K)$. Also, when K is a compact operator, the equality $c_{n}\left(K^{\prime}\right)=d_{n}(K)$ holds. Thus the proof is clear.
Theorem 9. $L_{z, p, E}^{(x)}=\left(L_{z, p, E}^{(y)}\right)^{\prime}$ and $L_{z, p, E}^{(y)}=\left(L_{z, p, E}^{(x)}\right)^{\prime}$ hold for $1<p<\infty$.
Proof. Let $1<p<\infty$. For $K \in \mathcal{B}$ we have from [8] that $x_{n}(K)=y_{n}\left(K^{\prime}\right)$ and $y_{n}(K)=x_{n}\left(K^{\prime}\right)$. Thus the proof is clear.

Acknowledgments

The authors would like to thank anonymous referees for their careful corrections and valuable comments on the original version of this paper.

Conflict of interest

The authors declare no conflict of interest.

References

1. A. Maji, P. D. Srivastava, On operator ideals using weighted Cesàro sequence space, Journal of the Egyptian Mathematical Society, 22 (2014), 446-452.
2. A. Grothendieck, Produits Tensoriels Topologiques et Espaces Nucléaires, American Mathematical Soc., 16 (1955).
3. E. Schmidt, Zur theorie der linearen und nichtlinearen integralgleichungen, Mathematische Annalen, 63 (1907), 433-476.
4. A. Pietsch, Einigie neu Klassen von Kompakten linearen Abbildungen, Revue Roum. Math. Pures et Appl., 8 (1963), 427-447.
5. A. Pietsch, s-Numbers of operators in Banach spaces, Studia Math., 51 (1974), 201-223.
6. A. Pietsch, Operator Ideals, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.
7. B.Carl, A.Hinrichs, On s-numbers and Weyl inequalities of operators in Banach spaces, Bull.Lond. Math. Soc., 41 (2009), 332-340.
8. A. Pietsch, Eigenvalues and s-numbers, Cambridge University Press, New York, 1986.
9. E. Malkowsky and E. Savaş, Matrix transformations between sequence spaces of generalized weighted means, Appl. Math. Comput., 147 (2004), 333-345.
10. J. S. Shiue, On the Cesaro sequence spaces, Tamkang J. Math., 1 (1970), 19-25.
11. S. Saejung, Another look at Cesàro sequence spaces, J. Math. Anal. Appl., 366 (2010), 530-537.
12. G. Constantin, Operators of ces - p type, Rend. Acc. Naz. Lincei., 52 (1972), 875-878.
13. M. Kirişci, The Hahn sequence space defined by the Cesaro mean, Abstr. Appl. Anal., 2013 (2013), 1-6.
14. N. Tita, On Stolz mappings, Math. Japonica, 26 (1981), 495-496.
15. E. E. Kara, M. İlkhan, On a new class of s-type operators, Konuralp Journal of Mathematics, 3 (2015), 1-11.
16. A. Maji, P. D. Srivastava, Some class of operator ideals, Int. J. Pure Appl. Math., 83 (2013), 731-740.
17. S. E. S. Demiriz, The norm of certain matrix operators on the new block sequence space, Conference Proceedings of Science and Technology, 1 (2018), 7-10.
18. A. Maji, P. D. Srivastava, Some results of operator ideals on $s-t y p e ~|A, p|$ operators, Tamkang J. Math., 45 (2014), 119-136.
19. N. Şimşek,V. Karakaya, H. Polat, Operators ideals of generalized modular spaces of Cesaro type defined by weighted means, J. Comput. Anal. Appl., 19 (2015), 804-811.
20. E. Erdoğan, V. Karakaya, Operator ideal of s-type operators using weighted mean sequence space, Carpathian J. Math., 33 (2017), 311-318.
21. D. Foroutannia, On the block sequence space $l_{p}(E)$ and related matrix transformations, Turk. J. Math., 39 (2015), 830-841.
22. H. Roopaei, D. Foroutannia, The norm of certain matrix operators on new difference sequence spaces, Jordan J. Math. Stat., 8 (2015), 223-237.
23. H. Roopaei, D. Foroutannia, A new sequence space and norm of certain matrix operators on this space, Sahand Communications in Mathematical Analysis, 3 (2016), 1-12.
24. P. Z. Alp, E. E. Kara, A new class of operator ideals on the block sequence space $l_{p}(E)$, Adv. Appl. Math. Sci., 18 (2018), 205-217.
25. P. Z. Alp, E. E. Kara, Some equivalent quasinorms on $L_{\phi, E}$, Facta Univ. Ser. Math. Inform., 33 (2018), 739-749.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
