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Department of Mathematics, Düzce University, Konuralp, Duzce, Turkey

* Correspondence: Email: karaeevren@gmail.com.

Abstract: The purpose of this study is to introduce the class of s-type Z
(
u, v; lp (E)

)
operators, which

we denote by Lz,p,E (X,Y), we prove that this class is an operator ideal and quasi-Banach operator
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Keywords: block sequence space; operator ideal; s-numbers; quasi-norm
Mathematics Subject Classification: 47B06, 47B37, 47L20.

1. Introduction

In this study, the set of all natural numbers is represented by N and the set of all nonnegative real
numbers is represented by R+ .

If the dimension of the range space of a bounded linear operator is finite, it is called a finite rank
operator [1].

Throughout this study, X and Y denote real or complex Banach spaces. The space of all bounded
linear operators from X to Y is denoted by B (X,Y) and the space of all bounded linear operators from
an arbitrary Banach space to another arbitrary Banach space is denoted by B.

The theory of operator ideals is a very important field in functional analysis. The theory of normed
operator ideals first appeared in 1950’s in [2]. In functional analysis, many operator ideals are
constructed via different scalar sequence spaces. An s- number sequence is one of the most important
examples of this. The definition of s- numbers goes back to E. Schmidt [3], who used this concept in
the theory of non-selfadjoint integral equations. In Banach spaces there are many different
possibilities of defining some equivalents of s- numbers, namely Kolmogorov numbers, Gelfand
numbers, approximation numbers, and several others. In the following years, Pietsch give the notion
of s- number sequence to combine all s- numbers in one definition [4–6].

A map
S : K → (sr(K))
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which assigns a non-negative scalar sequence to each operator is called an s-number sequence if for all
Banach spaces X,Y, X0 and Y0 the following conditions are satisfied:

(i) ‖K‖ = s1 (K) ≥ s2 (K) ≥ . . . ≥ 0, for every K ∈ B (X,Y) ,
(ii) sp+r−1 (L + K) ≤ sp (L) + sr (K) for every L,K ∈ B (X,Y) and p, r ∈ N,

(iii) sr (MLK) ≤ ‖M‖ sr (L) ‖K‖ for all M ∈ B (Y,Y0) , L ∈ B (X,Y) and K ∈ B (X0, X) , where X0,Y0

are arbitrary Banach spaces,
(iv) If rank (K) ≤ r, then sr (K) = 0,
(v) sn−1 (In) = 1, where In is the identity map of n-dimensional Hilbert space ln

2 to itself [7].

sr (K) denotes the r − th s−number of the operator K.
Approximation numbers are frequently used examples of s-number sequence which is defined by

Pietsch. ar (K), the r-th approximation number of a bounded linear operator is defined as

ar (K) = inf { ‖K − A‖ : A ∈ B (X,Y) , rank (A) < r } ,

where K ∈ B (X,Y) and r ∈ N [4]. Let K ∈ B (X,Y) and r ∈ N. The other examples of s-number
sequences are given in the following, namely Gel′ f and number (cr (K)), Kolmogorov number (dr (K)),
Weyl number (xr (K)), Chang number (yr (K)) , Hilbert number (hr (K)) , etc. For the definitions of
these sequences we refer to [1].

In the sequel there are some properties of s−number sequences.
When any isometric embedding J ∈ B (Y,Y0) is given and an s-number sequence s = (sr) satisfies

sr (K) = sr (JK) for all K ∈ B (X,Y) the s-number sequence is called injective [8, p.90].

Proposition 1. [8, p.90–94] The number sequences (cr (K)) and (xr (K)) are injective.

When any quotient map S ∈ B (X0, X) is given and an s-number sequence s = (sr) satisfies sr (K) =

sr (KS) for all K ∈ B (X,Y) the s-number sequence is called surjective [8, p.95].

Proposition 2. [8, p.95] The number sequences (dr (K)) and (yr (K)) are surjective.

Proposition 3. [8, p.115] Let K ∈ B (X,Y). Then the following inequalities hold:

i) hr (K) ≤ xr (K) ≤ cr (K) ≤ ar (K) and
ii) hr (K) ≤ yr (K) ≤ dr (K) ≤ ar (K) .

Lemma 1. [5] Let S ,K ∈ B (X,Y) , then |sr (K) − sr (S )| ≤ ‖K − S ‖ for r = 1, 2, . . . .

Let ω be the space of all real valued sequences. Any vector subspace of ω is called a sequence
space.

In [9] the space Z
(
u, v; lp

)
is defined by Malkowsky and Savaş as follows:

Z
(
u, v; lp

)
=

x ∈ ω :
∞∑

n=1

∣∣∣∣∣∣∣un

n∑
k=1

vkxk

∣∣∣∣∣∣∣
p

< ∞


where 1 < p < ∞ and u = (un) and v = (vn) are positive real numbers.

The Cesaro sequence space cesp is defined as ( [10, 11, 19])

cesp =

x = (xk) ∈ ω :
∞∑

n=1

1
n

n∑
k=1

|xk|

p

< ∞

 , 1 < p < ∞.
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If an operator K ∈ B (X,Y) satisfies
∞∑

n=1
(an (K))p < ∞ for 0 < p < ∞, K is defined as an lp type

operator in [4] by Pietsch. Afterwards ces-p type operators which is a new class obtained via Cesaro
sequence space is introduced by Constantin [12]. Later on Tita in [14] proved that the class of lp type
operators and ces-p type operators coincide.

In [15], ς(s)
p , the class of s−type Z

(
u, v; lp

)
operators is given. For more information about sequence

spaces and operator ideals we refer to [1, 13, 16, 18, 20].
Let X

′

, the dual of X, be the set of continuous linear functionals on X. The map x∗ ⊗ y : X → Y is
defined by

(x∗ ⊗ y) (x) = x∗ (x) y

where x ∈ X, x∗ ∈ X
′

and y ∈ Y .
A subcollection = of B is said to be an operator ideal if for each component

= (X,Y) = = ∩ B (X,Y) the following conditions hold:

(i) if x∗ ∈ X
′

, y ∈ Y , then x∗ ⊗ y ∈ = (X,Y) ,
(ii) if L,K ∈ = (X,Y) , then L + K ∈ = (X,Y) ,

(iii) if L ∈ = (X,Y) , K ∈ B (X0, X) and M ∈ B (Y,Y0) , then
MLK ∈ = (X0,Y0) [6].

Let = be an operator ideal and ρ : = → R+ be a function on =. Then, if the following conditions
hold:

(i) if x∗ ∈ X
′

, y ∈ Y , then ρ (x∗ ⊗ y) = ‖x∗‖ ‖y‖ ;
(ii) if ∃C ≥ 1 such that ρ (L + K) ≤ C

[
ρ (L) + ρ (K)

]
;

(iii) if L ∈ = (X,Y) ,K ∈ B (X0, X) and M ∈ B (Y,Y0) , then
ρ (MLK) ≤ ‖M‖ ρ (L) ‖K‖,

ρ is said to be a quasi-norm on the operator ideal = [6].
For special case C = 1, ρ is a norm on the operator ideal =.
If ρ is a quasi-norm on an operator ideal =, it is denoted by

[
=, ρ

]
. Also if every component = (X,Y)

is complete with respect to the quasi-norm ρ,
[
=, ρ

]
is called a quasi-Banach operator ideal.

Let
[
=, ρ

]
be a quasi-normed operator ideal and J ∈ B (Y,Y0) be a isometric embedding. If for

every operator K ∈ B (X,Y) and JK ∈ = (X,Y0) we have K ∈ = (X,Y) and ρ (JK) = ρ (K),
[
=, ρ

]
is

called an injective quasi-normed operator ideal. Furthermore, let
[
=, ρ

]
be a quasi-normed operator

ideal and S ∈ B (X0, X) be a quotient map. If for every operator K ∈ B (X,Y) and KS ∈ = (X0,Y) we
have K ∈ = (X,Y) and ρ (KS) = ρ (K),

[
=, ρ

]
is called an surjective quasi-normed operator ideal [6].

Let K
′

be the dual of K. An s− number sequence is called symmetric (respectively, completely
symmetric) if for all K ∈ B, sr (K) ≥ sr(K

′

) (respectively,sr (K) = sr(K
′

)) [6].

Lemma 2. [6] The approximation numbers are symmetric, i.e., ar(K
′

) ≤ ar(K) for K ∈ B .

Lemma 3. [6] Let K ∈ B. Then

cr(K) = dr(K
′

) and cr(K
′

) ≤ dr(K).

In addition , if K is a compact operator then cr(K
′

) = dr(K) .
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Lemma 4. [8] Let K ∈ B. Then

xr(K) = yr(K
′

) and yr(K
′

) = xr(K)

.

The dual of an operator ideal = is denoted by =
′

and it is defined as [6]

=
′

(X,Y) =
{
K ∈ B (X,Y) : K′ ∈ =

(
Y
′

, X
′
)}

.
An operator ideal = is called symmetric if = ⊂ =

′

and is called completely symmetric if = = =
′

[6].
Let E = (En) be a partition of finite subsets of the positive integers which satisfies

max En < min En+1

for n ∈ N+. In [21] Foroutannia defined the sequence space lp (E) by

lp (E) =

x = (xn) ∈ ω :
∞∑

n=1

∣∣∣∣∣∣∣∑j∈En

x j

∣∣∣∣∣∣∣
p

< ∞

 , (1 ≤ p < ∞)

with the seminorm ‖|·|‖p,E , which defined as:

‖|x|‖p,E =

 ∞∑
n=1

∣∣∣∣∣∣∣∑j∈En

x j

∣∣∣∣∣∣∣
p

1
p

.

For example, if En = {3n − 2, 3n − 1, 3n} for all n, then x = (xn) ∈ lp (E) if and only if
∞∑

n=1
|x3n−2 + x3n−1 + x3n|

p < ∞. It is obvious that ‖|·|‖p,E is not a norm, since we have ‖|x|‖p,E = 0 while

x = (−1, 1, 0, 0, . . .) and En = {3n − 2, 3n − 1, 3n} for all n. For the particular case En = {n} for n ∈ N+

we get lp (E) = lp and ‖|x|‖p,E = ‖x‖p .

For more information about block sequence spaces, we refer the reader to [17, 22–25].

2. Results

Let u = (un) and v = (vn) be positive real number sequences. In this section, by replacing lp with
lp (E) we get the sequence space Z

(
u, v; lp (E)

)
defined as follows:

Z
(
u, v; lp (E)

)
=

x ∈ ω :
∞∑

n=1

∣∣∣∣∣∣∣un

n∑
k=1

∑
j∈Ek

v jx j

∣∣∣∣∣∣∣
p

< ∞

 .
An operator K ∈ B (X,Y) is in the class of s-type Z

(
u, v; lp (E)

)
if

∞∑
n=1

un

n∑
k=1

∑
j∈Ek

v js j (K)


p

< ∞, (1 < p < ∞) .

The class of all s-type Z
(
u, v; lp (E)

)
operators is denoted by Lz,p,E (X,Y) .

In particular case if En = {n} for n = 1, 2, . . . , then the class Lz,p,E (X,Y) reduces to the class ς(s)
p .

Conditions used in Theorem 1 hold throughout the remainder of the paper.
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Theorem 1. Fix 1 < p < ∞. If
∞∑

n=1
(un)p < ∞ andM > 0 is such that v2k−1 + v2k ≤ Mvk,M > 0 for all

k ∈ N, then Lz,p,E is an operator ideal.

Proof. Let x∗ ∈ X
′

and y ∈ Y . Since the rank of the operator x∗ ⊗ y is one, sn (x∗ ⊗ y) = 0 for n ≥ 2. By
using this fact

∞∑
n=1

un

n∑
k=1

∑
j∈Ek

v js j (x∗ ⊗ y)


p

=

∞∑
n=1

(un)p (v1s1 (x∗ ⊗ y))p

=

∞∑
n=1

(un)p (v1)p
‖x∗ ⊗ y‖p

=

∞∑
n=1

(un)p (v1)p
‖x∗‖p

‖y‖p

< ∞.

Therefore x∗ ⊗ y ∈ Lz,p,E(X,Y).
Let L,K ∈ Lz,p,E(X,Y). Then

∞∑
n=1

un

n∑
k=1

∑
j∈Ek

v js j (L)


p

< ∞,

∞∑
n=1

un

n∑
k=1

∑
j∈Ek

v js j (K)


p

< ∞.

To show that L + K ∈ Lz,p,E(X,Y), let us begin with

n∑
k=1

∑
j∈Ek

v js j (L + K) ≤
n∑

k=1

∑
j∈Ek

v2 j−1s2 j−1 (L + K) +
∑
j∈Ek

v2 js2 j (L + K)


≤

n∑
k=1

∑
j∈Ek

(
v2 j−1 + v2 j

)
s2 j−1 (L + K)

≤ M

n∑
k=1

∑
j∈Ek

v j

(
s j (L) + s j (K)

)
≤ M

n∑
k=1

∑
j∈Ek

v js j (L) +
∑
j∈Ek

v js j (K)

 .
By using Minkowski inequality we get; ∞∑

n=1

un

n∑
k=1

∑
j∈Ek

v js j (L + K)




p
1
p

≤ M

 ∞∑
n=1

un

n∑
k=1

∑
j∈Ek

v js j (L) +
∑
j∈Ek

v js j (K)




p
1
p

≤ M


 ∞∑

n=1

un

n∑
k=1

∑
j∈Ek

v js j (L)


p

1
p

+

 ∞∑
n=1

un

n∑
k=1

∑
j∈Ek

v js j (K)


p

1
p
 < ∞.
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Hence L + K ∈ Lz,p,E(X,Y).
Let M ∈ B(Y,Y0), L ∈ Lz,p,E(X,Y) and K ∈ B(X0, X). Then,

∞∑
n=1

un

n∑
k=1

∑
j∈Ek

v js j (MLK)


p

≤

∞∑
n=1

un

n∑
k=1

∑
j∈Ek

‖M‖ ‖K‖ v js j (L)


p

≤ ‖M‖p
‖K‖p

 ∞∑
n=1

un

n∑
k=1

∑
j∈Ek

v js j (L)


p < ∞.

So MLK ∈ Lz,p,E(X0,Y0).
Therefore Lz,p,E(X,Y) is an operator ideal. �

Theorem 2. ‖K‖z,p,E =

(
∞∑

n=1

(
un

n∑
k=1

∑
j∈Ek

v js j (K)
)p) 1

p

(
∞∑

n=1
(un)p

) 1
p

v1

is a quasi-norm on the operator ideal Lz,p,E.

Proof. Let x∗ ∈ X
′

and y ∈ Y . Since the rank of the operator x∗ ⊗ y is one , sn (x∗ ⊗ y) = 0 for n ≥ 2.
Then (

∞∑
n=1

(
un

n∑
k=1

∑
j∈Ek

v js j (x∗ ⊗ y)
)p) 1

p

(
∞∑

n=1
(un)p

) 1
p

v1

=

((
∞∑

n=1
(un)p

)
vp

1 ‖x
∗ ⊗ y‖p

) 1
p

(
∞∑

n=1
(un)p

) 1
p

v1

= ‖x∗ ⊗ y‖ = ‖x∗‖ ‖y‖ .

Therefore ‖x∗ ⊗ y‖z,p,E = ‖x∗‖ ‖y‖ .
Let L,K ∈ Lz,p,E(X,Y). Then

n∑
k=1

∑
j∈Ek

v js j (L + K) ≤
n∑

k=1

∑
j∈Ek

v2 j−1s2 j−1 (L + K) +
∑
j∈En

v2 js2 j (L + K)

≤

n∑
k=1

∑
j∈Ek

(
v2 j−1 + v2 j

)
s2 j−1 (L + K)

≤ M

n∑
k=1

∑
j∈Ek

v j

(
s j (L) + s j (K)

)
.

By using Minkowski inequality we get; ∞∑
n=1

un

n∑
k=1

∑
j∈Ek

v js j (L + K)


p

1
p

≤

 ∞∑
n=1

Mun

n∑
k=1

∑
j∈Ek

v j

(
s j (L) + s j (K)

)
p

1
p
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≤ M


(
∞∑

n=1

(
un

n∑
k=1

∑
j∈Ek

v js j (L)
)p) 1

p

+

(
∞∑

n=1

(
un

n∑
k=1

∑
j∈Ek

v js j (K)
)p) 1

p

 .
Hence

‖L + K‖z,p,E ≤ M
(
‖S ‖z,p,E + ‖K‖z,p,E

)
.

Let M ∈ B(Y,Y0), L ∈ Lz,p,E(X,Y) and K ∈ B(X0, X)

 ∞∑
n=1

un

n∑
k=1

∑
j∈Ek

v js j (MLK)


p

1
p

≤

 ∞∑
n=1

un

n∑
k=1

∑
j∈Ek

‖M‖ ‖K‖ v js j (L)


p

1
p

≤ ‖M‖ ‖K‖

 ∞∑
n=1

un

n∑
k=1

∑
j∈Ek

v js j (L)


p

1
p

< ∞

‖MLK‖z,p,E ≤ ‖M‖ ‖K‖ ‖L‖z,p,E .

Therefore ‖K‖z,p,E is a quasi-norm on Lz,p,E. �

Theorem 3. Let 1 < p < ∞.
[
Lz,p,E(X,Y), ‖K‖z,p,E

]
is a quasi-Banach operator ideal.

Proof. Let X,Y be any two Banach spaces and 1 ≤ p < ∞. The following inequality holds

‖K‖z,p,E =

(
∞∑

n=1

(
un

n∑
k=1

∑
j∈Ek

v js j (K)
)p) 1

p

(
∞∑

n=1
(un)p

) 1
p

v1

≥ ‖K‖

for K ∈ Lz,p,E(X,Y).
Let (Km) be Cauchy in Lz,p,E(X,Y). Then for every ε > 0 there exists n0 ∈ N such that

‖Km − Kl‖z,p,E < ε (2.1)

for all m, l ≥ n0. It follows that
‖Km − Kl‖ ≤ ‖Km − Kl‖z,p,E

< ε.

Then (Km) is a Cauchy sequence in B (X,Y) . B (X,Y) is a Banach space since Y is a Banach space.
Therefore ‖Km − K‖ → 0 as m → ∞ for some K ∈ B (X,Y) . Now we show that ‖Km − K‖z,p,E → 0 as
m→ ∞ for K ∈ Lz,p,E (X,Y) .

The operators Kl − Km, K − Km are in the class B (X,Y) for Km,Kl,K ∈ B (X,Y) .

|sn (Kl − Km) − sn (K − Km)| ≤ ‖Kl − Km − (K − Km)‖ = ‖Kl − K‖ .
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Since Kl → K as l→ ∞ we obtain

sn (Kl − Km)→ sn (K − Km) (2.2)

It follows from (2.1) that the statement

‖Km − Kl‖z,p,E =

(
∞∑

n=1

(
un

n∑
k=1

∑
j∈Ek

v js j (Km − Kl)
)p) 1

p

(
∞∑

n=1
(un)p

) 1
p

v1

< ε

holds for all m, l ≥ n0. We obtain from (2.2) that(
∞∑

n=1

(
un

n∑
k=1

∑
j∈Ek

v js j (Km − K)
)p) 1

p

(
∞∑

n=1
(un)p

) 1
p

v1

≤ ε.

Hence we have
‖Km − K‖z,p,E < ε for all m ≥ n0.

Finally we show that K ∈ Lz,p,E (X,Y) .

∞∑
n=1

un

n∑
k=1

∑
j∈Ek

v js j (K)


p

≤

∞∑
n=1

un

n∑
k=1

∑
j∈Ek

v2 j−1s2 j−1 (K) + un

n∑
k=1

∑
j∈Ek

v2 js2 j (K)


p

≤

∞∑
n=1

un

n∑
k=1

∑
j∈Ek

(
v2 j−1 + v2 j

)
s2 j−1 (K − Km + Km)


p

≤ M

∞∑
n=1

un

n∑
k=1

∑
j∈Ek

v j

(
s j (K − Km) + s j (Km)

)
p

By using Minkowski inequality; since Km ∈ Lz,p,E (X,Y) for all m and ‖Km − K‖z,p,E → 0 as m → ∞,
we have

M

 ∞∑
n=1

un

n∑
k=1

∑
j∈Ek

v j

(
s j (K − Km) + s j (Km)

)
p

1
p

≤ M


(
∞∑

n=1

(
un

n∑
k=1

∑
j∈Ek

v js j (K − Km)
)p) 1

p

+

(
∞∑

n=1

(
un

n∑
k=1

∑
j∈Ek

v js j (Km)
)p) 1

p

 < ∞
which means K ∈ Lz,p,E (X,Y) . �
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Definition 1. Let µ = (µi (K)) be one of the sequences s = (sn (K)) , c = (cn (K)) , d = (dn (K)) ,
x = (xn (K)) , y = (yn (K)) and h = (hn (K)) . Then the space L(µ)

z,p,E generated via µ = (µi (K)) is defined
as

L(µ)
z,p,E(X,Y) =

K ∈ B (X,Y) :
∞∑

n=1

un

n∑
k=1

∑
j∈Ek

v jµ j (K)


p

< ∞, (1 < p < ∞)

 .
And the corresponding norm ‖K‖(µ)

z,p,E for each class is defined as

‖K‖(µ)
z,p,E =

(
∞∑

n=1

(
un

n∑
k=1

∑
j∈Ek

v jµ j (K)
)p) 1

p

(
∞∑

n=1
(un)p

) 1
p

v1

.

Proposition 4. The inclusion L(a)
z,p,E ⊆ L(a)

z,q,E holds for 1 < p ≤ q < ∞.

Proof. Since lp ⊆ lq for 1 < p ≤ q < ∞ we have L(a)
z,p,E ⊆ L(a)

z,q,E. �

Theorem 4. Let 1 < p < ∞. The quasi-Banach operator ideal
[
L(s)

z,p,E, ‖K‖
(s)
z,p,E

]
is injective, if the

sequence sn(K) is injective.

Proof. Let 1 < p < ∞ and K ∈ B (X,Y) and J ∈ B (Y,Y0) be any isometric embedding. Suppose that
JK ∈ L(s)

z,p,E (X,Y0) . Then
∞∑

n=1

un

n∑
k=1

∑
j∈Ek

v js j (JK)


p

< ∞

Since s = (sn) is injective, we have

sn (K) = sn (JK) for all K ∈ B (X,Y) , n = 1, 2, . . . . (2.3)

Hence we get
∞∑

n=1

un

n∑
k=1

∑
j∈Ek

v js j (K)


p

=

∞∑
n=1

un

n∑
k=1

∑
j∈Ek

v js j (JK)


p

< ∞

Thus K ∈ L(s)
z,p,E (X,Y) and we have from (2.3)

‖JK‖(s)
z,p,E =

(
∞∑

n=1

(
un

n∑
k=1

∑
j∈Ek

v js j (JK)
)p) 1

p

(
∞∑

n=1
(un)p

) 1
p

v1

=

(
∞∑

n=1

(
un

n∑
k=1

∑
j∈Ek

v js j (K)
)p) 1

p

(
∞∑

n=1
(un)p

) 1
p

v1

= ‖K‖(s)
z,p,E
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Hence the operator ideal
[
L(s)

z,p,E, ‖K‖
(s)
z,p,E

]
is injective. �

Conclusion 1. [8, p.90–94] Since the number sequences (cn(K)) and (xn(K)) are injective , the quasi-
Banach operator ideals

[
L(c)

z,p,E, ‖K‖
(c)
z,p,E

]
and

[
L(x)

z,p,E, ‖K‖
(x)
z,p,E

]
are injective.

Theorem 5. Let 1 < p < ∞. The quasi-Banach operator ideal
[
L(s)

z,p,E, ‖K‖
(s)
z,p,E

]
is surjective, if the

sequence (sn(K)) is surjective.

Proof. Let 1 < p < ∞ and K ∈ B (X,Y) and S ∈ B (X0, X) be any quotient map. Suppose that
KS ∈ L(s)

z,p,E (X0,Y). Then
∞∑

n=1

un

n∑
k=1

∑
j∈Ek

v js j (KS)


p

< ∞.

Since s = (sn) is surjective, we have

sn (K) = sn (KS) for all K ∈ B (X,Y) , n = 1, 2, . . . . (2.4)

Hence we get
∞∑

n=1

un

n∑
k=1

∑
j∈Ek

v js j (K)


p

=

∞∑
n=1

un

n∑
k=1

∑
j∈Ek

v js j (KS)


p

< ∞.

Thus K ∈ L(s)
z,p,E (X,Y) and we have from (2.4)

‖KS‖(s)
z,p,E =

(
∞∑

n=1

(
un

n∑
k=1

∑
j∈Ek

v js j (KS)
)p) 1

p

(
∞∑

n=1
(un)p

) 1
p

v1

=

(
∞∑

n=1

(
un

n∑
k=1

∑
j∈Ek

v js j (K)
)p) 1

p

(
∞∑

n=1
(un)p

) 1
p

v1

= ‖K‖(s)
z,p,E .

Hence the operator ideal
[
L(s)

z,p,E, ‖K‖
(s)
z,p,E

]
is surjective. �

Conclusion 2. [8, p.95] Since the number sequences (dn(K)) and (yn(K)) are surjective , the quasi-
Banach operator ideals

[
L(d)

z,p,E, ‖K‖
(d)
z,p,E

]
and

[
L(y)

z,p,E, ‖K‖
(y)
z,p,E

]
are surjective.

Theorem 6. Let 1 < p < ∞. Then the following inclusion relations holds:

i L(a)
z,p,E ⊆ L(c)

z,p,E ⊆ L(x)
z,p,E ⊆ L(h)

z,p,E

ii L(a)
z,p,E ⊆ L(d)

z,p,E ⊆ L(y)
z,p,E ⊆ L(h)

z,p,E.

Proof. Let K ∈ L(a)
z,p,E. Then

∞∑
n=1

un

n∑
k=1

∑
j∈Ek

v js j (K)


p

< ∞
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where 1 < p < ∞. And from Proposition 3, we have;

∞∑
n=1

un

n∑
k=1

∑
j∈Ek

v jh j (K)


p

≤

∞∑
n=1

un

n∑
k=1

∑
j∈Ek

v jx j (K)


p

≤

∞∑
n=1

un

n∑
k=1

∑
j∈Ek

v jc j (K)


p

≤

∞∑
n=1

un

n∑
k=1

∑
j∈Ek

v ja j (K)


p

< ∞

and
∞∑

n=1

un

n∑
k=1

∑
j∈Ek

v jh j (K)


p

≤

∞∑
n=1

un

n∑
k=1

∑
j∈Ek

v jy j (K)


p

≤

∞∑
n=1

un

n∑
k=1

∑
j∈Ek

v jd j (K)


p

≤

∞∑
n=1

un

n∑
k=1

∑
j∈Ek

v ja j (K)


p

< ∞.

So it is shown that the inclusion relations are satisfied. �

Theorem 7. For 1 < p < ∞, L(a)
z,p,E is a symmetric operator ideal and L(h)

z,p,E is a completely symmetric
operator ideal.

Proof. Let 1 < p < ∞.

Firstly, we show that L(a)
z,p,E is symmetric in other words L(a)

z,p,E ⊆
(
L(a)

z,p,E

)′
holds. Let K ∈ L(a)

z,p,E. Then

∞∑
n=1

un

n∑
k=1

∑
j∈Ek

v ja j (K)


p

< ∞.

It follows from [6, p.152] an

(
K
′
)
≤ an (K) for K ∈ B. Hence we get

∞∑
n=1

un

n∑
k=1

∑
j∈Ek

v ja j
(
T ′

)
p

≤

∞∑
n=1

un

n∑
k=1

∑
j∈Ek

v ja j (K)


p

< ∞.

Therefore K ∈
(
L(a)

z,p,E

)′
. Thus L(a)

z,p,E is symmetric.

Now we prove that the equation L(h)
z,p,E =

(
L(h)

z,p,E

)′
holds. It follows from [8, p.97] that hn

(
K
′
)

=

hn (K) for K ∈ B. Then we can write

∞∑
n=1

un

n∑
k=1

∑
j∈Ek

v jh j
(
K′

)
p

=

∞∑
n=1

un

n∑
k=1

∑
j∈Ek

v jh j (K)


p

.
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∞∑
n=1

un

n∑
k=1

∑
j∈Ek

v jh j
(
K′

)
p

=

∞∑
n=1

un

n∑
k=1

∑
j∈Ek

v jh j (K)


p

.

Hence L(h)
z,p,E is completely symmetric. �

Theorem 8. Let 1 < p < ∞. The equation L(c)
z,p,E =

(
L(d)

z,p,E

)′
and the inclusion relation L(d)

z,p,E ⊆
(
L(c)

z,p,E

)′
holds. Also, for a compact operator K, K ∈ L(d)

z,p,E if and only if K
′

∈
(
L(c)

z,p,E

)
.

Proof. Let 1 < p < ∞. For K ∈ B it is known from [8] that cn (K) = dn

(
K
′
)

and cn

(
K
′
)
≤ dn (K) .

Also, when K is a compact operator, the equality cn

(
K
′
)

= dn (K) holds. Thus the proof is clear. �

Theorem 9. L(x)
z,p,E =

(
L(y)

z,p,E

)′
and L(y)

z,p,E =
(
L(x)

z,p,E

)′
hold for 1 < p < ∞.

Proof. Let 1 < p < ∞. For K ∈ B we have from [8] that xn (K) = yn

(
K
′
)

and yn (K) = xn

(
K
′
)
. Thus

the proof is clear. �
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