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Abstract: A hybrid system of differential equations, which represents a generalized mathematical 

model for a system of rigid bodies mounted on an Euler-Bernoulli beam with the aid of springs, is 

described in the general form. A hybrid system of differential equations is understood as a system of 

differential equations composed of ordinary differential equations and partial differential equations. 

Hybrid systems of differential equations of such type are normally constructed in the process of 

inference of dynamic equations for a given class of mechanical systems with the use of the 

Hamiltonian variation principle. The paper considers the analytical-numerical method proposed by 

the author, which is based on the mathematical apparatus of generalized functions. The comparative 

analysis of results of numerical computations obtained by the author’s method to the computational 

results obtained by the techniques known from the literature has shown the plausibility and 

universality of the author’s approach. 
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1. Introduction 

Application of the Hamiltonian variation principle for constructing dynamic equations for 

mechanical systems with lumped and distributed parameters, in particular, for the systems of rigid 

bodies mounted on a beam (or a rod) with the aid of springs, implies consideration of hybrid systems 
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of differential equations (HSDEs) [1]. Until recently, any investigations of HSDEs have remained 

beyond the scope of interest of many researchers. 

HSDE is understood as a system of differential equations, comprised by ordinary differential 

equations and partial differential equations together. In particular, HSDEs are constructed in the 

process of investigations of mechanical vibrations of elements of various constructions, parts and 

mechanisms, for which the schemes to be computed are represented by rigid bodies or by systems of 

interconnected rigid bodies attached to some beams by elastic joints. 

In papers [2–13], considered were mathematical models for the investigation of free vibrations 

of mechanical systems, which, in each of the cases, represented a system of rigid bodies mounted on 

an Euler-Bernoulli beam with the aid of springs. These systems were called either beam-mass 

systems or two-degree-of-freedom spring-mass systems. The point is that each time the development 

these models necessitated special analytical methods, special numeric-analytical methods or, at least, 

the application of the method of finite elements. So, earlier, the computational schemes were 

different in each of the cases.  

The principal difficulties, which arise in process of investigation of the mechanical systems with 

lumped and distributed parameters, in particular, in the process of consideration of a system of rigid 

bodies connected to beams by elastic joints, are bound up mainly with the diversity of variants of 

mounting absolutely rigid bodies on flexible beams (rods). In order to avoid these difficulties, the 

authors of papers [2–11] have proposed to decompose of the beams (rods) into parts, and, next, to 

sew the solutions together at the points of attachment of elastically mounted masses. Unfortunately, 

this approach implies a very large volume of computations in the process of finding the analytical 

solution. Furthermore, the process of numerical solving of the problem necessitates a substantial 

volume of preliminary work. A different approach, which the author considers as more productive, 

presumes investigation of the generalized models described by HSDEs with the use of a relatively 

simple and sufficiently transparent mathematical apparatus of generalized functions. A similar 

apparatus is widely applied in mathematical physics, quantum mechanics, and in other disciplines for 

the purpose of describing point masses and charges, point sources of heat, concentrated forces, and 

moments. 

Noteworthy, during the recent years, the Chair of Applied Mathematics, East Siberian State 

University of Technology and Management, which was headed by the author, conducted the research 

work oriented to development of theoretical foundations for investigations of linear HSDEs with the 

coefficients depending on the Dirac delta-functions and on its derivatives. 

The class of linear HSDEs implied represents a new (and, so, poorly known) class of 

differential equations. In the capacity of applications of our research results we have, in particular, 

considered mechanical systems representing various classes of systems of interconnected rigid 

bodies and beams described by HSDEs. Furthermore, in the process of constructing the 

computational schemes for various mechanical systems (a rigid body attached to a beam; a cascade 

system of rigid bodies attached to a beam; a system of rigid bodies horizontally attached to a beam; 

several rigid bodies interconnected and attached to a beam), a universal approach to computations 

has been developed and realized by the author. It is based on application of the mathematical 

apparatus of generalized functions. Note, there are two papers [12,13], which can be found in the 

literature, in which the mathematical apparatus of generalized functions has been applied in the 

investigations of free vibrations of the Euler-Bernoulli beam with n parallel mounted masses, but 

unfortunately, without any strong mathematical grounding. Some results obtained by the Chair and 
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bound up with the problem discussed in the present paper can be found in [14]. These results are 

characterized by a strong mathematical grounding. 

The experience of investigations bound up with definite computational schemes of mechanical 

systems, and the analysis of their equations of motion have allowed us to propose a generalized 

mathematical model, which is considered in the present paper. In this case, a generalized 

mathematical model for a system of rigid bodies mounted on the Euler-Bernoulli beam with the aid 

of springs is understood as a HSDE of some given structure. On the basis of a unified approach, for 

the case of generalized mathematical model, the theoretical foundations good for investigations of 

free vibrations for a class mechanical systems have been proposed. The scrutinized mechanical 

systems represent diverse systems of interconnected rigid bodies mounted on a Euler-Bernoulli beam 

with the aid of elastic joints. 

2. The principal theoretical assumptions 

The generalized mathematical model for a system of interconnected rigid bodies elastically 

mounted on a Euler-Bernoulli beam, i.e. the HSDE, has the form 

2 4

2 4
1

( ) 0,

( , ) ( , ) ( ( ) ( , )) ( ),
m

iT

i i

i

Aq Cq C Dq u

u u
a x t c x t k d q t u x t x a

t x




    

  

   
 


    (1) 

where x is a variable describing the coordinate axis, which coincides with the beam at rest; 𝑞(𝑡) is 

an n-dimensional vector function, which describes the transition a system of rigid bodies; 𝑢 𝑥, 𝑡  is 

a scalar function, which describes the transversal transitions of points of the beam; 𝑢 (𝑡) is an 

m-dimensional vector function with the components 𝑢 𝑎1𝑡 , 𝑢 𝑎2 , 𝑡 , … , 𝑢(𝑎𝑚 , 𝑡); A, C are the 

given constant 𝑛 × 𝑛 -matrices; 𝐶  is a given constant 𝑛 × 𝑚 -matrix; D is a given constant 

𝑚 × 𝑛 -matrix; 𝑑𝑖  is an n-dimensional vector composed of the rows of matrix D; 𝑎, 𝑐, 𝑎𝑖 , 𝑘𝑖 , (𝑖 =
1,𝑚      )  are given constants, furthermore,0 ≤ 𝑎𝑖 ≤ 𝑙 ; (∙)𝑇  is (from now on) the operation of 

transposition. 

Function 𝑢(𝑥, 𝑡) describes transversal transitions of the beam’s points. In this connection, there 

are some boundary conditions imposed on function 𝑢(𝑥, 𝑡) and corresponding to the techniques of 

attachment of the beam’s ends:  

1 2( (0, )) 0, ( ( , )) 0u t u l t    ,      (2) 

where l  is the beam’s length.  

In particular, in the case of stiff attachment of the beam’s end, we have 

(( ), )

(( ), ) 0, ( 1,2)
(( ), )

i

u t

t iu
t

x

 
       
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;      (3) 

in the case, when there is a hinge-based joint of the beam’s end, we have 

2
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u t
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754 
 

AIMS Mathematics  Volume 4, Issue 3, 751–762. 

in the case of free beam’s end, we have 

2

2

3

3

(( ), )

(( ), ) 0, (1,2)

(( ), )
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u
t

x
t i

u
t
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.      (5) 

Let us introduce the concept of generalized solution of the boundary-value problem (1)–(2). To 

this end let us consider the following set of vector functions: 

    , ,, 0,
( ), ( , ) : ( ) , ( , )n

DT
K v C v C   
         ,     (6) 

where  2( , ) : 0 , 0D x t R x l t T       is a rectangle. Let us call the vector functions of set (6) 

the main vector functions. 

Definition 1. Let us call the vector function  2, ,
( ) n

o T
q C   and the scalar function 

4,2,( , ) Du C    the 

generalized solution of HSDE (1) satisfying the boundary conditions (2) if for any main vector 

function  ( ), ( , )v K      the following identity holds 

 
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Having substituted ( ) sinq t Z t  and ( , ) ( )sinu x t V x t  into (1), we obtain the following 

system of algebraic-differential equations 

2

4
2

4
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
     (7) 

where V  is an m-dimensional vector with the components 1( ), , ( )mV a V a . 

Due to the boundary conditions (2) imposed on function ( , )u x t , function ( )V x  shall satisfy 

some definite boundary conditions 

1 2( (0)) 0, ( ( )) 0V V l   .  (8) 

As far as the functions, which define the boundary conditions (8) are concerned, let us suppose 

that the following property is valid: 

1 1

( ( )) ( ( )), ( 1,2)
m m

j i i i j i

i i

x v x j   
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   ,   (9) 

where i  are constants, ( )i x  are functions. Note, satisfaction of (8) is quite obvious in the 

case of boundary conditions, which correspond to the conditions of attachment of the beam’s 

ends (3)–(5). 

Consider the auxiliary boundary-value problem represented by the following differential 

equation with boundary conditions (8) for some values of   and Z  

4
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Definition 2. The scalar function 
 4, 0,

( )
T

V C   satisfying the boundary conditions (8) is called the 

generalized solution of the auxiliary boundary-value problem if for any component ( , )v    of the main 

vector function  ( ), ( , )v K      the following identity holds for any  0,t T  

4
2

4
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 



 
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Theorem 1. The generalized solution of the auxiliary boundary-value problem ( )V x  has the 

following representation for any values of   and Z  

1

( ) ( ) ( ( )),
m

iT

i i i i

i

V x G x a k d Z V a


         (12) 

where functions ( ), ( 1,..., )iG x i m  are generalized solution of equation  

4
2

4

( )
( ) ( ),i

i
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         ( 1 , . . . , )i m ,      (13) 

which satisfies the boundary conditions  

1 2( ( )) 0, ( ( )) 0i i i iG a G l a     ,          ( 1,..., )i m     (14) 

Proof: The plausibility of satisfaction of the boundary conditions (8) for the function ( )V x , which 

satisfies representation (12), follows immediately from the boundary conditions (14) for the 

functions ( ), ( 1,..., )iG x i m  due to property (9). 

Note, it follows from (11) that if function ( )V x  represents a generalized solution of the 

differential equation of system (10), then for any component ( , )v    of the main vector function the 

following identity holds: 
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Let us rewrite (12) in the following form: 
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Now let us put (16) into the left-hand side of relation (15). Next, by changing the order of 

integration and taking account of (13), we obtain: 
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The latter coincides with the right-hand side of (11). 

Therefore, the representation (12) is valid for the generalized solution ( )V x  of the differential 

equation of system (10). Q.E.D. 

In order to find Z  and ( )V x , having initially substituted the values , 1,2,..., ix a i m
 
, 

sequentially into relation (12), we obtain the following system of linear algebraic equations with 

respect to 1 2( ), ( ), ( )mV a V a V a  

1 1, 1

( ) (1 (0) ) ( ) ( ) ( ) ( ) ,

( 1,..., ).

m m m
iT

i j i i i j j i j i i i i j i i

i i i j i

G a a k d Z G k V a G a a kV a G a a P

j m

   

      



  
 (17) 

Having used matrix denotations, we rewrite system (17) in the following form: 

0NZ MV  ,    (18) 

where M  is an m m -matrix: 

1 1 2 1 2 2 1

1 2 1 1 2 2 2

1 1 1 2 2 2

1 (0) ( ) .......... ( )

( ) 1 (0) .............. ( )

....................................................................................
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, 

N  is an m n  -matrix: 
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 
 
 
 
 
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 



. 

Having joined the first equation of system (7) with system (18), we obtain a homogeneous 

system of linear algebraic equations with respect to ,Z V . 

2( ) 0,

0

A C CD Z CV

NZ MV

     


 
   (19) 

System (19) has nonzero solutions, when its determinant is zero. By equating the determinant of 

system (18) to zero we obtain the equation for finding the eigen-frequencies 

2

det 0
A C CD C

N M

    
 

 
.      (20) 

In order to use the frequency equation (20) for finding the eigen-frequencies, let us find 

1 2( ), ( ),..., ( )mG x G x G x  as generalized solutions of the following equation 
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4
2

4

( )
( ) ( ),

d G x
aG x c x

dx
         (21) 

with the corresponding boundary conditions (14) 

The general solution 1 2 3 4( , , , , )G x c c c c  of equation (21) can be found in the form of a sum of 

the general generalized solution 0 1 2 3 4( , , , , )G x c c c c  of the homogeneous equation 

4
2

4

( )
( ) 0,

d G x
aG x c

dx
          (22) 

and some generalized solution  ( )G x  of the non-homogeneous equation (21), i.e. 

1 2 3 4 0 1 2 3 4( , , , , ) ( , , , , ) ( )G x c c c c G x c c c c G x  .          (23) 

The general solution 0 1 2 3 4( , , , , )G x c c c c  of the homogeneous equation (22) may be written in 

the form 

       0 1 2 3 4 1 1 2 2 3 3 4 4( , , , , )G x c c c c c S x c S x c S x c S x       ,   (24) 

where 1c , 2c , 3c , 4c  are constants of integration, 
4

4

a

c


  , 

       1 2 3 4, , ,S x S x S x S x     are the Krylov functions: 

 

 
   

 
   

 
   

 
   

1 2

3 4

cos sin
, ,

2 2

cos sin
, .

2 2

ch x x sh x x
S x S x

ch x x sh x x
S x S x

   
 

   
 

 
 

 
 

 

In the capacity of the partial generalized solution ( )G x  of equation (21), in accordance with [1], 

let us consider 

( ) ( ) ( )G x g x x ,   (25) 

where ( )g x  is the solution of the homogeneous equation, which satisfies the initial conditions 

 
2 3

2 3

1
(0) 0, (0) 0, (0) 0, (0)

dg d g d y
g

dx dx dx c
    ,   (26) 

( )x  is a classical Heaviside’s function. 

The solution of a homogeneous equation, which satisfies the initial conditions (26), can be 

found in the form 

4

3

( )
( )

S x
g x

c




 . 

Therefore, in accordance with (23)–(25), the general generalized solution 
1 2 3 4( , , , , )G x c c c c  of 

equation (21) may be represented as follows  
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      4
1 2 3 4 1 1 2 2 3 3 3

( )
( , , , , ) ( )

S x
G x c c c c c S x c S x c S x x

c


   


    .   (27) 

Having determined arbitrary constants 1 2 3 4, , ,c c c c , which enter in the general solution (27), 

proceeding from the conditions of satisfaction of the corresponding ( )iG x  boundary conditions  

(14), we can find the generalized solutions 1 2( ), ( ),..., ( )mG x G x G x . 

3. The algorithmic apparatus for investigations of eigen-vibrations 

In order to find eigen-frequencies of a mechanical system, which is described by a generalized 

mathematical model (1), it is necessary to conduct the following undertakings. 

1. Development of a procedure for computing the determinant for the matrix of the system of 

algebraic equations (19) 

 
2

( ) det
A C CD C

N M




    
   

 
.      (28) 

The functions obtained 1 2( ), ( ),..., ( )mG x G x G x  allow one to construct the matrix of the system of 

algebraic equations (19) and organize the computation of its determinant (28) for some fixed value of

 . 

2. Elaboration of the procedure of finding the frequencies  , for which determinant (28) turns zero 

with a given accuracy. 

To the end of finding the eigen-frequencies  , computation of the determinant (28) at the 

points was conducted, while beginning from the value of   equal to zero, with some step 

depending on the accuracy, and until defining the first 5 to 7 intervals of changing the sign of the 

frequency function ( ) . For each particular interval, the process of finding the roots of the 

frequency equation (20) was conducted with the aid one of methods good for finding the roots of the 

monotonous function on the segment.  

The eigen-forms of the beam’s vibrations ( )V x , corresponding to eigen-frequency   can be 

found by formula (12). For this purpose, it is necessary to obtain nontrivial solutions Z  and V  of 

the linear homogeneous algebraic equation (19), which correspond to iegen-ferquency  . 

The method, which realizes the described approach to the investigation of eigen-frequencies, 

has been implemented in the form of a software complex written in Fortran. Testing of the software 

complex has been conducted on the basis of numerical computations for definite computatonal 

schemes and their comparison with available computations, which can be found in the literature, in 

particular, in [2]. 

4. Examples of practical computations 

1. Papers [2–5] describe investigations of mechanical systems, whose computational scheme is 

shown in Figure 1. 
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Figure 1. A beam with an elastically mounted rigid body. 

In the case of [2], the computations were conducted for the following three techniques of 

attaching the beam’s ends: (i) fixed joint (i.e. stiff attachment of the beam’s end), (ii) hinge-based joint 

(attachment) of the beam’s end, (iii) free beam’s end. Note, in Fig. 1 one can see the case, when the 

left end is stiffly fixed, while the right end is free (so, there is a combination of “the fixed end – the 

free end”). The comparative analysis of the results obtained in our investigations to the results given 

in [2] can be found in Table 1. Here FEM means “the method of finite elements”; NAM – “the 

method of numerical assembly”. 

Proceeding from the comparative analysis given in Table 1, it is possible to note that there is a 

good coincidence of the results obtained in our computations with those given in [2]. 

Table 1. Results of the comparative analysis. 

The boundary 

conditions 

Method Eigen-frequencies 

ω1 ω2 ω3 ω4 ω5 

the fixed end – 

the free end  

Proposed method 157.95 978.20 2705.37 5499.73 8441.88 

NAM 157.96 978.39 2704.52 5499.75 8431.55 

FEM 157.95 978.21 2705.41 5500.08 8442.76 

the fixed end – 

the hinge-based 

joint 

Proposed method 678.79 2202.64 4707.25 7660.15 9837.86 

NAM 678.96 2202.13 4706.90 7654.52 9861.08 

FEM 678.79 2202.66 4707.47 7660.90 9838.22 

the hinge-based 

joint – the 

hinge-based joint 

Proposed method 434.69 1747.70 4037.41 6773.29 9632.58 

NAM 434.81 1747.30 4037.45 6768.48 9657.59 

FEM 434.70 1747.71 4037.54 6773.82 9633.12 

the fixed end – 

the fixed end 

Proposed method 983.20 2695.14 5499.03 8449.06 9930.65 

NAM 983.47 2694.21 5499.06 8438.83 9949.97 

FEM 983.20 2695.18 5499.38 8449.96 9930.93 

The results (obtained with the use of formula (12)) for the graphs of vibration forms for the 

beam with a rigid body, which is mounted with the aid of two springs, are given in Figure 2. 
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Figure 2. Different forms of the beam’s vibrations. 

In the left-hand side of Fig. 2, one can find the forms of vibrations with the frequencies 

corresponding to the rows of Table 1, for the case, when one end of the beam is stiffly fixed, and the 

other one is free. The right-hand side of Fig. 2 relates to the forms of vibrations with the frequencies 

corresponding to the rows of Table 1, for the case, when both ends of the beam are stiffly fixed. 

On the whole, the constructed forms of the beam’s vibrations for the first five eigen-frequencies 

correlate with the computations given in paper [2] 

2. The papers [2,3] also presented investigations of the mechanical system, whose computational 

scheme is given below in Figure 3. In this case, each rigid body is attached to an elastic beam with 

the use of two springs characterized by definite rigidity. One end of the beam is fixed, and the other 

end is free. 

 

Figure 3. A beam with three elastically mounted rigid bodies. 

The final results of comparison of the computations for the first five eigen-frequencies of the 

beam with three elastically mounted rigid bodies to the results given in [2] have been summarized in 

Table 2.  
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Table 2. The results of comparative analysis for the first five eigen-frequencies of the beam. 

ωi ANCM [3] FEM [3] Method [2] Method proposed 

ω1 231.9466 231.9355 231.9355 231.9250 

ω2 1415.7972 1415.8251 1415.8221 1415.8200 

ω3 3962.8895 3962.9617 3962.8968 3962.9025 

ω4 7765.4563 7765.8580 7765.3729 7765.0003 

ω5 12836.626 12838.743 12836.568 12836.668 

Here ANSM – analytical-and-numerical-combined-method. 

5. Conclusion 

The generalized mathematical model in the form of HSDE (1) proposed in the present paper 

describes a wide class of mechanical systems, which includes various arbitrary systems of rigid 

bodies mounted on the Euler-Bernoulli beam with the aid of springs. The process of inference of the 

dynamic equations for such systems on the basis of the Hamiltonian variation principle leads to the 

HSDE, which represents a particular case of HSDE (1). The theoretical foundations needed for the 

study of free vibrations of a given class of mechanical systems in the form of a generalized 

mathematical model have been proposed.  

On the basis of our results we have developed a software complex for analysis of free 

vibrations of mechanical systems, which represent various systems of interconnected rigid bodies 

mounted on an Euler-Bernoulli beam with the aid of elastic joints. The software complex 

elaborated is a universal instrument for the study of free vibrations of mechanical systems, whose 

mathematical models can be described by HSDEs of form (1). Noteworthy, when the 

Hamiltonian variation principle is used, the computational schemes of mechanical systems 

considered in papers [2–13] all lead to HSDEs, whose structures coincides with (1). Presently, 

the software complex is complemented with the software aids, which ensure the automation of 

the process of constructing mathematical models in the form of HSDE (1) according to the 

computational scheme. On the whole, the software complex, which is elaborated on the 

principles described in the present paper, allows one to investigate any systems discussed in 

papers [2–13]. Furthermore, now there is no need to conduct investigations bound up with 

elaboration and application of special (each time new) numerical-analytical methods oriented to 

definite computational schemes [2–11].  

The comparison of the results of computations obtained with the aid of our software complex to 

the computational results obtained for the similar objects and available from the literature has shown 

the advantages of the new approach, which is universal and is simpler. The comparison has also 

proved the plausibility and universality of the computations guaranteed by the software complex 

elaborated by our team. 
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