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1. Introduction

Imai and Iséki [14] in 1966 introduced a significant algebraic structure called a BCK-algebra. In
the same year, Iséki [15] introduced the notion of a BCI-algebra as a generalization of a BCK-algebra.
Today, BCK/BCI-algebras have been extensively studied by several researchers and they have been
applied to several fields of mathematics, such as fuzzy set theory, group theory, ring theory, functional
analysis, and so on.

The theory of fuzzy sets (FSs), initiated by Zadeh [28] in 1965, has obtained more attention by
authors in a wide range of scientific domains, including decision theory, robotics, management sciences
and numerous other disciplines. In 1986, Atanassov [11] introduced the notion of intuitionistic fuzzy
sets (IFSs) in which there are two functions, membership function and non-membership function.
In 1994, Zhang [29] introduced the new notion of bipolar fuzzy sets (BFSs) in which there are two
functions, positive membership function and negative membership function. Applications of BFSs
and IFSs appear in different areas, including decision-making, optimization problems, and medical
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diagnosis. In algebraic structures, Xi [27] implemented the idea of FSs into BCK/BCI-algebras and
gave the notions of fuzzy subalgebras and ideals, while Lee [16] generalized the Xi’s idea and gave the
notions of bipolar fuzzy subalgebras and ideals in BCK/BCI-algebras. After that, many researchers
used the ideas of fuzzy sets and hybrid models of fuzzy sets and gave several results in various algebraic
structures, for instance BCK/BCI-algebras [6–8, 22, 23, 25, 26], B-algebras [18, 24], G-algebras [21]
and BG-algebras [19, 20]. In several real-life situations, information sometimes comes from m factors
(m ≥ 2), that is, multi-attribute data arise which cannot be handled using the existing ideals (e.g., fuzzy
ideals, bipolar fuzzy ideals, etc.). For the time being, experts trust that the real world is proceeding to
multipolarity. Multi-polar vagueness in information performs a crucial role in different domains of the
sciences, such as technology and neurobiology.

In view of this motivation, the notion of m-polar fuzzy (m-pF) sets was initiated by Chen et al. [12]
in 2014 which is a generalization of the BFSs. In an m-pF set, the degree of membership of an object
ranges over [0, 1]m, which depicts m distinct characteristics of the object. Akram et al. [3], for the first
time, introduced the new concept of m-pF Lie subalgebras of a Lie algebra, which is a generalization
of BF Lie subalgebras. Al-Masarwah and Ahmad [9] defined the idea of m-pF subalgebras and ideals
in BCK/BCI-algebras and described several properties of m-pF BCK/BCI-algebras. After that, many
authors applied the idea of m-pF sets to other mathematical theories such as groups [13], Lie
algebras [2], BCK/BCI-algebras [10], matroid theory [17] and graph Theory [1, 4, 5].

In this paper, we establish the normalization of m-pF subalgebras in BCK/BCI-algebras. We
introduce the concepts of normal m-pF subalgebras, maximal m-pF subalgebras and completely
normal m-pF subalgebras in BCK/BCI-algebras. We discuss some properties of normal (resp.,
maximal, completely normal) m-pF subalgebras. We prove that any non-constant normal m-pF
subalgebra which is a maximal element of (NO(X),⊆) takes only the values 0̂ = (0, 0, ..., 0) and
1̂ = (1, 1, ..., 1), and every maximal m-pF subalgebra is completely normal. Moreover, we state an
m-pF characteristic subalgebra in BCK/BCI-algebras.

2. Preliminaries

We first recall some elementary aspects which are used to present the paper. In this paper, X always
denotes a BCK/BCI-algebra without any specifications.

By a BCI-algebra we mean an algebra (X; ∗, 0) of type (2, 0) satisfying the axioms:

(a1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(a2) (x ∗ (x ∗ y)) ∗ y = 0,

(a3) x ∗ x = 0,

(a4) x ∗ y = 0 and y ∗ x = 0 imply x = y.

for all x, y, z ∈ X. If a BCI-algebra X satisfies the axiom (a5) 0 ∗ x = 0 for all x ∈ X, then X is called
a BCK-algebra. A partial ordering ≤ on X can be defined by x ≤ y if and only if x ∗ y = 0. Any
BCK/BCI-algebra X satisfies the following axioms:

(1) (x ∗ y) ∗ z = (x ∗ z) ∗ y,

(2) x ∗ y ≤ x,
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(3) (x ∗ y) ∗ z ≤ (x ∗ z) ∗ (y ∗ z),

(4) x ≤ y⇒ x ∗ z ≤ y ∗ z, z ∗ y ≤ z ∗ x.

for all x, y, z ∈ X. A non-empty subset I of X is called a subalgebra of X if x ∗ y ∈ I for any x, y ∈ I.

Definition 2.1. [12] A function Ĥ is defined from X(, φ) to a m-tuple of real number in [0, 1] is said
to be an m-pF set, that is, a mapping Ĥ : X → [0, 1]m. The membership degree of any element x ∈ X
is denoted by

Ĥ(x) = (p1 ◦ Ĥ(x), p2 ◦ Ĥ(x), ..., pm ◦ Ĥ(x))

where p j ◦ Ĥ : [0, 1]m → [0, 1] is defined the j-th projection mapping. The smallest and largest values
in [0, 1]m are 0̂ = (0, 0, ..., 0) and 1̂ = (1, 1, ..., 1), respectively.

By K
Ĥ

we denote the set {x ∈ X | Ĥ(x) = Ĥ(0)}. For any m-pF sets Ĥ and Ĉ in a set X, we define

Ĥ ⊆ Ĉ ⇔ Ĥ(x) ≤ Ĉ(x),∀x ∈ X.

Definition 2.2. [9] Let Ĥ be an m-pF set of X. Then, Ĥt̂ = {x ∈ X | Ĥ(x) ≥ t̂} is said to be the level
cut subset of Ĥ for all t̂ ∈ (0, 1]m.

If M is a nonempty subsets of X, then the m-pF characteristic function ĈM denoted and defined by

ĈM(x) =

 1̂ = (1, 1, ..., 1), if x ∈ M
0̂ = (0, 0, ..., 0), otherwise.

Clearly, the m-pF characteristic function of any subset of X is an m-pF subset of X.

3. Normality of m-polar fuzzy subalgebras

In the current section, we present the concepts of normal m-pF subalgebras, maximal m-pF
subalgebras and completely normal m-pF subalgebras in X and investigate several fundamental
properties.

Definition 3.1. [9] An m-pF set Ĥ in X is called an m-pF subalgebra of X if

Ĥ(x ∗ y) ≥ inf{Ĥ(x), Ĥ(y)},∀x, y ∈ X.

Example 3.1. [9] Consider a BCK-algebra X = {0, a, b, c} with the Cayley table which is given in
Table 1.

Table 1. Cayley table for the operation ∗.

∗ 0 a b c
0 0 0 0 0
a a 0 0 a
b b a 0 b
c c c c 0
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Let Ĥ : X → [0, 1]m be an m-pF set in X defined by:

Ĥ(x) =

{
(0.8, 0.8, ..., 0.8), if x = 0, a, c
(0.5, 0.5, ..., 0.5), if x = b.

By routine computations, we can verify that Ĥ is an m-pF subalgebra of X.

Lemma 3.2 ( [9]). If Ĥ is an m-pF subalgebra of X, then Ĥ(0) ≥ Ĥ(x), ∀x ∈ X.

Theorem 3.3. Let φ , M ⊆ X and let ĤM : X → [0, 1]m be an m-pF set in X defined by

ĤM(x) =

{
α̂ = (α1, α2, ..., αm), if x ∈ M
β̂ = (β1, β2, ..., βm), otherwise,

for all x ∈ X and α̂, β̂ ∈ [0, 1]m with α̂ > β̂. Then, ĤM is an m-pF subalgebra of X if and only if M is a
subalgebra of X. Moreover, in this case K

ĤM
= {x ∈ X | ĤM(x) = ĤM(0)} = M.

Proof. Let Ĥ be an m-pF subalgebra of X. Let x, y ∈ X be such that x, y ∈ M. Then, we have

ĤM(x ∗ y) ≥ inf{ĤM(x), ĤM(y)}
= {α̂, α̂}

= α̂,

and so x ∗ y ∈ M. Hence, M is a subalgebra of X.
Conversely, suppose that M is a subalgebra of X and let x, y ∈ X. Then, we have the following cases:

Case(1). If x, y ∈ M, then x ∗ y ∈ M. Therefore

ĤM(x ∗ y) = α̂ = inf{ĤM(x)ĤM(y)}.

Case(2). If x < M or y < M, then

ĤM(x ∗ y) ≥ β̂ = inf{ĤM(x), ĤM(y)}.

This shows that ĤM is an m-pF subalgebra of X.
Moreover, we have K

ĤM
= {x ∈ X | ĤM(x) = ĤM(0)} = {x ∈ X | ĤM(x) = α̂} = M. �

Now, we introduce and characterize normal m-pF subalgebras of a BCK/BCI-algebra X.

Definition 3.4. An m-pF subalgebra Ĥ of X is said to be normal if there exists x ∈ X such that
Ĥ(x) = 1̂ = (1, 1, ..., 1).

Example 3.2. Let X be a BCK-algebra in Example 3.1. Then, an m-pF subalgebra Ĥ in X defined by

Ĥ(x) =

{
(1, 1, ..., 1), if x = 0, a, c
(0.7, 0.7, ..., 0.7), if x = b,

is a normal m-pF subalgebra of X.

We know that if Ĥ is a normal m-pF subalgebra of X, then clearly Ĥ(0) = 1̂ = (1, 1, ..., 1), and
hence Ĥ is normal if and only if Ĥ(0) = 1̂ = (1, 1, ..., 1).
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Theorem 3.5. Given an m-pF subalgebra Ĥ of X and let Ĥ+ be an m-pF set in X defined by

Ĥ+(x) = Ĥ(x) + Ĥ c(0)),∀x ∈ X.

Then, Ĥ+ is a normal m-pF subalgebra of X which contains Ĥ .

Proof. Let x, y ∈ X. Then, we have

Ĥ+(x ∗ y) = Ĥ(x ∗ y) + Ĥ c(0))
≥ inf{Ĥ(x), Ĥ(y)} + Ĥ c(x)
= inf{Ĥ(x) + Ĥ c(0), Ĥ(y) + Ĥ c(0)}
= inf{Ĥ+(x), Ĥ+(y)}.

Moreover, Ĥ+(0) = Ĥ(0) + Ĥ c(0) = 1̂. Therefore, Ĥ+ is a normal m-pF subalgebra of X. Clearly,
Ĥ ⊆ Ĥ+. Thus, Ĥ+ is a normal m-pF subalgebra of X which contains Ĥ . �

Corollary 3.6. Let Ĥ and Ĥ+ be as in Theorem 3.5. If there is x ∈ X such that Ĥ+(x) = 0̂, then
Ĥ(x) = 0̂.

Proof. Since Ĥ ⊆ Ĥ+, it is straightforward. �

Using Theorem 3.3, we know that for any subalgebra M of X. The m-pF characteristic function ĈM

of M is a normal m-pF subalgebra of X. It is clear that Ĥ is normal if and only if Ĥ+ = Ĥ .

Proposition 3.7. If Ĥ is an m-pF subalgebra of X, then (Ĥ+)+ = Ĥ+. Moreover, if Ĥ is normal, then
(Ĥ+)+ = Ĥ .

Proof. Straightforward. �

Theorem 3.8. If Ĥ and Ĉ are m-pF subalgebras of X, such that Ĥ ⊆ Ĉ and Ĥ(0) = Ĉ(0), then
K
Ĥ
⊆ K

Ĉ
.

Proof. Let x ∈ K
Ĥ
. Then,

Ĉ(x) ≥ Ĥ(x) = Ĥ(0) = Ĉ(0)

and so Ĉ(x) = Ĉ(0), i.e., x ∈ K
Ĉ
. Hence, K

Ĥ
⊆ K

Ĉ
. �

Corollary 3.9. If Ĥ and Ĉ are normal m-pF subalgebras of X such that Ĥ ⊆ Ĉ, then K
Ĥ
⊆ K

Ĉ
.

Theorem 3.10. Let Ĥ be an m-pF subalgebra of X. If there exists an m-pF subalgebra Ĉ of X such
that Ĉ+ ⊆ Ĥ , then Ĥ is normal.

Proof. Suppose that there exists an m-pF subalgebra Ĉ of X such that Ĉ+ ⊆ Ĥ . Then, 1̂ = Ĉ+(0) ≤
Ĥ(0), and so Ĥ(0) = 1̂. This completes the proof. �

Theorem 3.11. Let ψ : [0, 1]m → [0, 1]m be an increasing function and Ĥ be an m-pF set of X. Then,
an m-pF set Ĥψ : X → [0, 1]m defined by

Ĥψ(x) = ψ(Ĥ(x)),∀x ∈ X

is an m-pF subalgebra of X if and only if Ĥ is an m-pF subalgebra of X. In particular, if ψ(Ĥ(0)) = 1̂,
then Ĥψ is normal, and if ψ(̂t) = t̂ for all t̂ ∈ [0, 1]m, then Ĥ is contained in Ĥψ.
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Proof. Let Ĥψ be an m-pF subalgebra of X. Then, for all x, y ∈ X, we have

ψ(Ĥ(x ∗ y)) = Ĥψ(x ∗ y)

≥ inf{Ĥψ(x), Ĥψ(y)}

= inf{ψ(Ĥ(x)), ψ(Ĥ(y))}
= ψ(inf{Ĥ(x), Ĥ(y)}).

Since ψ is an increasing, it follows that

Ĥ(x ∗ y) ≥ inf{Ĥ(x), Ĥ(y)}.

Hence, Ĥ is an m-pF subalgebra of X.
Conversely, if Ĥ is an m-pF subalgebra of X, then for all x, y ∈ X, we have

Ĥψ(x ∗ y) = ψ(Ĥ(x ∗ y))

≥ ψ(inf{Ĥ(x), Ĥ(y)})
= inf{ψ(Ĥ(x)), ψ(Ĥ(y))}
= inf{Ĥψ(x), Ĥψ(y)}.

Hence, Ĥψ is an m-pF subalgebra of X.
Now, if ψ(Ĥ(0)) = 1̂ = (1, 1, ..., 1), then clearly Ĥψ is normal. Assume that ψ(̂t) = t̂ for all

t̂ ∈ [0, 1]m. Then,
Ĥψ(x) = ψ(Ĥ(x)) ≥ Ĥ(x)

for all x ∈ X, which proves that Ĥ is contained in Ĥψ. �

Denote by NO(X) the set of all normal m-pF subalgebras of X. Note that NO(X) is a poset under
the set inclusion.

Theorem 3.12. Let Ĥ ∈ NO(X) be a non-constant such that it is a maximal element of (NO(X),⊆).
Then, Ĥ takes only the values 0̂ = (0, 0, ..., 0) and 1̂ = (1, 1, ..., 1).

Proof. Let Ĥ be a non-constant maximal element of (NO(X),⊆). Since Ĥ is normal, so Ĥ(0) = 1̂.
Let x ∈ X be such that Ĥ(x) , 1̂. We claim that Ĥ(x) = 0̂. If not, then there exists b ∈ X such that
0̂ < Ĥ(b) < 1̂. Let Ĉ : X → [0, 1]m be an m-pF set in X defined by

Ĉ(x) =
1
2

(Ĥ(x) + Ĥ(b)).

for all x ∈ X. Then, clearly Ĉ is well defined, and for all x, y ∈ X, we have

Ĉ(x ∗ y) =
1
2

(Ĥ(x ∗ y) + Ĥ(b))

≥
1
2

(inf{Ĥ(x), Ĥ(y)} + Ĥ(b))

= inf{
1
2

(Ĥ(x) + Ĥ(b)),
1
2

(Ĥ(y) + Ĥ(b))}
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= inf{Ĉ(x), Ĉ(y)}.

Hence, Ĉ is an m-pF subalgebra of X. It follows from Theorem 3.5 that Ĉ+ ∈ NO(X) where Ĉ+ is
defined by Ĉ+(x) = Ĉ(x) + Ĉc(0), ∀x ∈ X. Clearly, Ĉ+(x) ≥ Ĥ(x), ∀x ∈ X. Note that

Ĉ+(b) = Ĉ(b) + Ĉc(0))
= Ĉ(b) + 1̂ − Ĉ(0)

=
1
2

(Ĥ(b) + Ĥ(b)) + 1̂ −
1
2

(Ĥ(0) + Ĥ(b))

=
1
2

(Ĥ(b) + 1̂)

> Ĥ(b)

and Ĉ+(b) < 1̂ = Ĉ+(0). Hence, Ĉ+ is a non-constant and Ĥ is not a maximal element of NO(X). This
is a contradiction. This completes the proof. �

Definition 3.13. Let Ĥ be an m-pF subalgebra of X. Then, Ĥ is said to be maximal if

(i) Ĥ is non-constant.

(ii) Ĥ+ is a maximal element of the poset (NO(X),⊆).

Theorem 3.14. A maximal m-pF subalgebra Ĥ of X is normal and takes the values 0̂ = (0, 0, ..., 0)
and 1̂ = (1, 1, ..., 1).

Proof. Let Ĥ be a maximal m-pF subalgebra of X. Then, Ĥ+ is a non-constant maximal element of the
poset (NO(X),⊆). It follows that from Theorem 3.12 that Ĥ+ takes only the values 0̂ and 1̂. Note that
Ĥ+(x) = 1̂ if and only if Ĥ(x) = Ĥ(0), and Ĥ+(x) = 0̂ if and only if Ĥ(x) = Ĥ(0) − 1̂. By Corollary
3.6, we have Ĥ(x) = 0̂ i.e., Ĥ(0) = 1̂. Hence, Ĥ is normal, and clearly Ĥ+ = Ĥ . This completes the
proof. �

Theorem 3.15. If Ĥ is a maximal m-pF subalgebra of X, then ĤK
Ĥ

= Ĥ .

Proof. Clearly, ĤK
Ĥ
⊆ Ĥ and ĤK

Ĥ
takes only the values 0̂ and 1̂. Let x ∈ X. If Ĥ(x) = 0, then

obviously Ĥ ⊆ ĤK
Ĥ
. If Ĥ(x) = 1, then x ∈ K

Ĥ
, and so ĤK

Ĥ
(x) = 1̂. This shows that Ĥ ⊆ ĤK

Ĥ
. �

Theorem 3.16. For a maximal m-pF subalgebra Ĥ of X, K
Ĥ

is a maximal subalgebra of X.

Proof. Let K
Ĥ

be a proper subalgebra of X because Ĥ is non-constant. Let M be a subalgebra of X
such that K

Ĥ
⊆ M. Noticing that for every subalgebras M and N of X, M ⊆ N if and only if ĤM ⊆ ĤN ,

then we obtain Ĥ = ĤK
Ĥ
⊆ ĤM. Since Ĥ and ĤM are normal and since Ĥ = Ĥ+ is a maximal

element of NO(X), we have that either Ĥ = ĤM or ĤM = 1̂, where 1̂ : X → [0, 1]m is an m-pF set
defined by 1̂(x) = (1, 1, ..., 1) = 1̂ for all x ∈ X. The other case implies that M = X. If Ĥ = ĤM, then
K
Ĥ

= K
ĤM

= M by Theorem 3.3. This proves that K
Ĥ

is a maximal subalgebra of X. This completes
the proof. �

Definition 3.17. A normal m-pF subalgebra Ĥ of X is said to be completely normal if there exists
x ∈ X such that Ĥ(x) = 0̂. Denote by CN(X) the set of all completely normal m-pF subalgebra of X.
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We note that CN(X) ⊆ NO(X) and the restriction of partial ordering ⊆ of NO(X) gives a partial
ordering on CN(X).

Theorem 3.18. A non-constant maximal element of (NO(X),⊆) is also a maximal element of
(CN(X),⊆).

Proof. Let Ĥ be a non-constant maximal element of (N(X),⊆). By Theorem 3.12, Ĥ takes only the
values 0̂ and 1̂. Now, Ĥ(0) = 1̂ and Ĥ(x) = 0̂ for some x ∈ X. Thus, Ĥ ∈ CN(X). Suppose there exists
Ĉ ∈ CN(X) such that Ĥ ⊆ Ĉ. It follows that Ĥ ⊆ Ĉ in NO(X). Since Ĥ is maximal in (NO(X),⊆)
and since Ĉ is non-constant, therefore Ĥ = Ĉ. Hence, Ĥ is maximal element of (CN(X),⊆). This
completes the proof. �

Theorem 3.19. Every maximal m-pF subalgebra of X is completely normal.

Proof. Let Ĥ be a maximal m-pF subalgebra of X. Then, by Theorem 3.14, Ĥ is normal and Ĥ = Ĥ+

takes only the values 0̂ and 1̂. Since Ĥ is a non constant, it follows that Ĥ(0) = 1̂ and Ĥ(x) = 0̂ for
some x ∈ X. Hence, Ĥ is completely normal. This completes the proof. �

4. m-Polar fuzzy characteristic subalgebras

Definition 4.1. For an endomorphism Ψ of X and an m-pF set Ĥ in X. We define a new m-pF set
Ĥ[Ψ] : X → [0, 1]m by Ĥ[Ψ](x) = Ĥ(Ψ(x)) for all x ∈ X.

Theorem 4.2. If Ĥ is an m-pF subalgebra of X, then so is Ĥ[Ψ].

Proof. Let x, y ∈ X. Then,

Ĥ[Ψ](x ∗ y) = Ĥ(Ψ(x ∗ y))
= Ĥ(Ψ(x) ∗ Ψ(y))
≥ inf{Ĥ(Ψ(x)), Ĥ(Ψ)(y)}
= inf{Ĥ[Ψ](x), Ĥ[Ψ](y)}

Hence, Ĥ[Ψ] is an m-pF subalgebra of X. �

Example 4.1. Consider a BCK-algebra X = {0, a, b} with the Cayley table which is given in Table 2.

Table 2. Cayley table for the operation ∗.

∗ 0 a b
0 0 0 0
a a 0 0
b b b 0

Let Ĥ : X → [0, 1]m be an m-pF set in X defined by:

Ĥ(x) =

{
γ̂ = (γ1, γ2, ..., γm), if x = 0, a
δ̂ = (δ1, δ2, ..., δm), if x = b,
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where γ̂ > δ̂. By routine computations, we can verify that Ĥ is an m-pF subalgebra of X. There are
four endomorphisms of X as follows:

Ψ1 : 0→ 0, a→ 0, b→ 0,
Ψ2 : 0→ 0, a→ 0, b→ a,

Ψ3 : 0→ 0, a→ 0, b→ b,

Ψ4 : 0→ 0, a→ a, b→ b.

By Theorem 4.2, we have Ĥ[Ψi] for i = 1, 2, 3, 4 are m-pF subalgebras.

Definition 4.3. A subalgebra K of X is called characteristic if Ψ(K) = K for all Ψ ∈ Aut(X), where
Aut(X) is the set of all automorphisms of X.

Definition 4.4. An m-pF subalgebra Ĥ of X is called an m-pF characteristic if Ĥ[Ψ](x) = Ĥ(x) for all
x ∈ X and Ψ ∈ Aut(X).

Example 4.2. In Example 4.1, Ψ4 is an automorphism of X. It is clear that Ψ4(Ĥ(x)) = Ĥ(x) for all
x ∈ X. Therefore, Ĥ is characteristic. Also, Ĥ[Ψ4](x) = Ĥ(Ψ4(x)) = Ĥ(x) for all x ∈ X. Hence, Ĥ is
an m-pF characteristic.

Lemma 4.5. Let Ĥ be an m-pF subalgebra of X and let x ∈ X. Then, Ĥ(x) = t̂ if and only if x ∈ Ĥt̂

and x < Ĥŝ for all ŝ > t̂.

Proof. Let Ĥ be an m-pF subalgebra of X and let x ∈ X. Suppose Ĥ(x) = t̂, so that x ∈ Ĥt̂. If possible,
let x ∈ Ĥŝ for ŝ > t̂. Then, Ĥ(x) ≥ ŝ > t̂. this contradicts the fact that Ĥ(x) = t̂, concluding that x < Ĥŝ

for all ŝ > t̂.
Conversely, let x ∈ Ĥt̂ and x < Ĥŝ for all ŝ > t̂. Now, let x ∈ Ĥt̂ ⇒ Ĥ(x) ≥ t̂, since x < Ĥŝ for all

ŝ > t̂. Therefore, Ĥ(x) = t̂. �

Theorem 4.6. For an m-pF subalgebra Ĥ of X, the following are equivalent:

(1) Ĥ is an m-pF characteristic.

(2) Each level cut subset Ĥt̂ is characteristic subalgebra.

Proof. Suppose Ĥ is an m-pF characteristic and let t̂ ∈ Im(Ĥ),Ψ ∈ Aut(X) and x ∈ Ĥt̂. Then,

Ĥ[Ψ](x) = Ĥ(Ψ(x)) = Ĥ(x) ≥ t̂,

i.e., Ĥ(Ψ(x)) ≥ t̂. Thus, Ψ(x) ∈ Ĥt̂, i.e., Ψ(Ĥt̂) ⊆ Ĥt̂. Now, let x ∈ Ĥt̂ and y ∈ X be such that Ψ(y) = x.
Then,

Ĥ(y) = Ĥ[Ψ](y) = Ĥ(Ψ(y)) = Ĥ(x).

Hence, y ∈ Ĥt̂, so that x = Ψ(y) ∈ Ψ(Ĥt̂). Consequently, Ĥt̂ ⊆ Ψ(Ĥt̂). Therefore, Ĥt̂ = Ψ(Ĥt̂) and Ĥ
is characteristic.

Conversely, suppose that each level cut subset Ĥt̂ is characteristic subalgebra and let x ∈ X,Ψ ∈
Aut(X) and Ĥ(x) = t̂. Then, by Lemma 4.5, x ∈ Ĥt̂ and x < Ĥŝ for all ŝ > t̂. Thus, Ψ(x) ∈ Ψ(Ĥt̂) = Ĥt̂,

so that Ĥ(Ψ(x)) ≥ t̂. Let t̂1 = Ĥ[Ψ](x) and suppose t̂1 > t̂. Then, Ψ(x) ∈ Ĥt̂1 = Ψ(Ĥt̂1), which implies
from the injectivity of Ψ that x ∈ Ĥt̂1 , a contradiction. Thus, Ĥ(Ψ(x)) = Ĥ(x). Therefore, Ĥ[Ψ] is an
m-pF characteristic. �
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5. Conclusion

The idea of m-pF algebraic structures plays a significant rule in several fields of applied
mathematics, computer sciences and information systems. In [9], we have already introduced the
concepts of m-pF subalgebras and ideals of BCK/BCI-algebras and investigated some of their related
properties. In this study, as a continuation of [9], we have introduced the concepts of normal m-pF
subalgebras, maximal m-pF subalgebras and completely normal m-pF subalgebras in
BCK/BCI-algebras and discussed some of their properties. We have proved that any non-constant
normal m-pF subalgebra which is a maximal element of (NO(X),⊆) takes only the values
0̂ = (0, 0, ..., 0) and 1̂ = (1, 1, ..., 1), and every maximal m-pF subalgebra is completely normal.
Moreover, we have stated an m-pF characteristic subalgebra in BCK/BCI-algebras. In the future, the
results of this work can be further expanded to several algebraic structures, for instance UP-algebras,
BRK-algebras, KU-algebras, etc.
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