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1. Introduction

The problems of completeness of eigenfunctions and associated functions of the operators,
generated by the ordinary differential expressions of fractional order and boundary conditions of
Sturm-Liouville type are in the focus of many researchers. This mainly deals with the fact that such
problems arise in solving boundary value problems for fractional differential equations for
advection-diffusion using the method of separation of variables. In present paper, we resolve this very
important problem by well-known Livshits theorem on spectral decomposition of linear
nonself-adjoint operators.
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2. Main Results

In paper [1] was studied operator in the space L2(0, 1)

Aρu =

1∫
0

G(x, t)u(t) dt =
1

Γ(ρ−1)


x∫

0

(x − t)
1
ρ−1u(t)dt −

1∫
0

x
1
ρ−1(1 − t)

1
ρ−1u(t) dt

 ,
which was first considered in [2, 3], where 0 < ρ < 2 and

G(x, t) =


(1 − t)

1
ρ−1x

1
ρ−1
− (x − t)

1
ρ−1

Γ(ρ−1)
, 0 ≤ t ≤ x ≤ 1

(1 − t)
1
ρ−1x

1
ρ−1

Γ(ρ−1)
, 0 ≤ x ≤ t ≤ 1

is the Green function of the following problem S (with λ = 0):

1
Γ(n − ρ−1)

dn

dxn

x∫
0

(x − s)n−ρ−1−1u(s)ds + λ u = 0,

(n − 1 ≤ ρ−1 < n, n = [ρ−1] + 1, where [ρ−1] is the integer part of ρ−1)

u(0) = 0, u′(0) = 0, · · · , u(n−2)(0) = 0, u(1) = 0.

In this case [1, 4], if γ0 = γ1 = · · · = γn = 1, then problem S takes the form

u(n) + λ u = 0,

u(0) = 0, u′(0) = 0, · · · , u(n−2)(0) = 0, u(1) = 0.

Its Green function G(x, t) (for λ = 0) reads

G(x, t) =


(1 − t)n−1xn−1 − (x − t)n−1

(n − 1)!
, 0 ≤ t ≤ x ≤ 1

(1 − t)n−1xn−1

(n − 1)!
, 0 ≤ x ≤ t ≤ 1

.

In particular, in this paper we provide very important proof of the completeness of the system of
eigenfunctions and associated functions in L2 of the operator Aρ for 0 < ρ < 2 (this fact plays main role
in solving boundary value problems for advection-diffusion equation of fractional order by the method
of separation of variables [5], based on well-known Livshits theorem [6].

Theorem (Livshits):
If K(x, y) (a ≤ x, y ≤ b) – is a limited kernel, and ”real part” 1

2 (K + K∗) of it is non-negative kernel,
then the inequality is hold

∞∑
j=1

Re(
1
λ j

) ≤

b∫
a

ReK(t, t)dt,
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where λ j – is the characteristic numbers of kernel K. The system of main functions of the kernel K is
complete in domain of values of the integral operator K f if and only if, when there is an equal sign in
inequality above.

In his paper [7] M. M. Dzhrbashian wrote, that ”the question about the completeness of the systems
of eigenfunctions of the operator Aρ or a finer question about whether these systems compose a basis in
L2, has a certain interest but its solving is apparently associated with significant analytic difficulties”.
The questions of the completeness of the systems of eigenfunctions and associated functions for similar
problems were studied by A. V. Agibalova in [8,9]. Undoubtedly, we shall note the fundamental results
of M. M. Malamud and L. L. Oridoroga [10–13], obtained in this direction. In [14, 15] (see also [2]),
using the theorem of Matsaev and Palant , it was established that the system of eigenfunctions of the
operator Aρ is complete in L2.

As noted above, in this paper, a similar result was obtained using the well-known Livshchits theorem
[6].

The following proof of the completeness of the system of eigenfunctions is simpler than the
previously presented proofs, which makes the results of this paper very significant.

Now we give the main result of paper.
Theorem 1. The system of eigenfunctions and associated functions of the operator Aρ, where

0 < ρ < 2, is complete in L2.
Proof. Let us designate the kernel of Aρ as K(x, y). In [14] the authors have proved that this kernel

is non-negative by the following way: Let us rewrite Aρ as

Aρu =
1

Γ(ρ−1)


1∫

0

(x − xt)
1
ρ−1u(t)dt −

x∫
0

(x − t)
1
ρ−1u(t) dt

 .
Clearly, for ρ > 1, the kernel of Aρ is non-negative.

By the same way, we may show that the kernel K∗(x, y) for adjoint operator

A∗ρu =
1

Γ(ρ−1)


1∫

0

(t − xt)
1
ρ−1u(x)dx −

1∫
x

(t − x)
1
ρ−1u(x) dx


is non-negative too. Thus 1

2 (K + K∗) is non-negative. Let us show that the following expression holds

∞∑
j=1

Re(
1
λ j

) =

1∫
0

ReK(t, t)dt.

From [14], we know that the value λ j is an eigenvalue of the operator Aρ if and only if λ j is a zero of
the function Eρ(λ j; 1

ρ
), where [7]

Eρ(z; µ) =

∞∑
k=0

zk

Γ(µ + kρ−1)
, ρ > 0.

The asymptotics of zeros for function Eρ(λ j; 1
ρ
) = 0 is well known. In particular, we have the following

well-known Dzhrbaschian-Nersisian lemma [16, p.142].
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Lemma (Dzhrbaschian-Nersisian): 1. All zeros of functions Eρ(z; µ) (where ρ > 1
2 , ρ , 1; Imµ =

0) with largest absolute values, are prime.
2. The following asymptotic formulas are valid

γ±k = e±i π2ρ (2πk)1/ρ
(
1 + O(

logk

k
)
)
, k → ∞.

So, if λ j = α j + iβ j is an eigenvalue of the operator Aρ, the adjoint number λ j = α j − iβ j will be an
eigenvalue of the operator Aρ. Therefore

spAρ =

∞∑
j=1

1
λ j

=

∞∑
j=1

Re(
1
λ j

).

To find the trace spAρ of the operator Aρ, let’s rewrite Aρ as Aρu = A1u − A0u where

A0u =
1

Γ(ρ−1)

x∫
0

(x − t)
1
ρ−1u(t)dt,

A1u =
1

Γ(ρ−1)

1∫
0

x
1
ρ−1(1 − t)

1
ρ−1u(t)dt.

Clearly, for 0 < ρ < 2, the operators A0 and A1 are trace class. Hence

spAρ = sp(A1 − A0) = sp(A1) − sp(A0).

Moreover, it’s clear that sp(A0) = 0. Thus

spAρ = sp(A1).

Since operator A1 is one-dimensional, it’s easy to find a trace. Consider the equation

u(x) −
λ

Γ(ρ−1)

1∫
0

x
1
ρ−1(1 − t)

1
ρ−1u(t)dt = 0

The Fredhold determinant
d(λ) = |1 − λK11|,

where

K11 =
1

Γ(ρ−1)

1∫
0

t
1
ρ−1(1 − t)

1
ρ−1dt =

Γ(2 − ν)
Γ(4 − 2ν)

(ν = 2 − ρ−1).

From above follow that
sp(A1) =

Γ(2 − ν)
Γ(4 − 2ν)

which proves the Theorem 1.
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Remark. Since the operator Aρ doesn’t generate associated functions [17], we proved that the
system of functions

χn(x) = x
1
ρ−1Eρ(λnx

1
ρ ;

1
ρ

)

is complete in L2 (but the system of these functions, unfortunately, is not orthogonal).
Similarly, it is possible to provide a spectral analysis of the operator

A[α−1,ρ]
ρ u =

1
Γ(ρ−1)

1∫
0

x
1
ρ−1(1 − t)α−1u(t)dt −

1
Γ(ρ−1)

x∫
0

(x − t)
1
ρ−1u(t)dt,

considered in ( [14], see the references therein).
Theorem 2. Let 0 < ρ < 2, α < 1

ρ
. Then, the system of eigenfunctions and associated functions of

the operator A[α−1,ρ]
ρ is complete in L2.

Proof. We carry out the proof of Theorem 2 in the same way as the proof of Theorem 1. It can be
easily shown that the kernel M(x, t) of the operator A[α−1,ρ]

ρ is non-negative. Elementary calculations
show that the kernel M∗(x, t) of the operator adjoint to the operator A[α−1,ρ]

ρ will be non-negative too.
Thus 1

2 (M + M∗) will be non-negative too. The fact that

∞∑
j=1

Re(
1
µ j

) =

1∫
0

ReM(t, t)dt

where µ j are eigenvalues of the operator A[α−1,ρ]
ρ , shown in the same way as in Theorem 1.

3. Conclusion

In present paper, we provide the proof of the completeness of eigenfunctions and associated
functions of the operators, generated by the ordinary differential expressions of fractional order and
boundary conditions of Sturm-Liouville type.
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