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In the proof of Theorem 2.5 on pp. 583 in [1], the Brauer’s trick is used wrongly. Here we give
the corrected proof of this. With this correction, Lemma 2.4 will be of independent interest and the
following lemma is crucial.

Lemma 1. Let R be a noncommutative 2-torsion free prime ring and I be a nonzero ideal of R. If R
admits a derivation d and an element 0 , a ∈ R such that a[d(x2), x2] = 0 for all x ∈ I, then d = 0.

Proof. Let us assume that a[d(x2), x2] = 0 for all x ∈ I. Let us set A = {x2 : x ∈ I} and G be the additive
group generated by the set A. Thus we have a[d(u), u] = 0 for all u ∈ G. In view of Chuang [2], either
G ⊆ Z(R) or char(R) = 2 and R satisfies s4 (the standard identity in 4-variables) unless G contains a
noncentral Lie ideal L of R. By our hypothesis either G ⊆ Z(R) or there exists a noncentral Lie ideal
L ⊆ G. The case G ⊆ Z(R) (i.e., x2 ∈ Z(R) for all x ∈ I) forces the commutativity of R, a contradiction
follows. On the other hand if G contains a noncentral Lie ideal L of R, then we have a[d(u), u] = 0 for
all u ∈ L. By Filippis [[3], Theorem 1], we find that d = 0. �

Correction:

After equation (3) in Theorem 2.5 of [3], we have the situation

[u2, v]u2d(u2) = 0 for all u, v ∈ J. (1)

In view of [[3], Lemma 2.2], we may write it as

[u2, v]u2d(u2) = 0 for all u, v ∈ I = 2R[[J, J], J]R. (2)
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Replacing v by d(u2)v in (2), we find

[u2, d(u2)]vu2d(u2) = 0 for all u, v ∈ I. (3)

Taking vu2 instead of v in (3), we find

[u2, d(u2)]vu2(u2d(u2)) = 0 for all u, v ∈ I. (4)

Also we have
[u2, d(u2)]vu2(d(u2)u2) = 0 for all u, v ∈ I. (5)

Combining equation (4) and (5), we find u2[d(u2), u2]vu2[d(u2), u2] = 0 for all u, v ∈ I. It implies that
u2[d(u2), u2] = 0 for all u ∈ I. In view of Lemma 1, we have d = 0, a contradiction. Further the proof
follows from the case Z(R) ∩ J , (0) in Theorem 2.5 of [3].
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