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1. Introduction and preliminaries

Banach contraction fundamental was an authority and a reference for many researchers through the
last decades in the field of nonlinear analysis, it was used to establish the existence of a unique solution
for a nonlinear integral equation [4]. In 1989, Bakthtin [3] initiated the motif of b-metric space after
that Czerwik in [7, 8] defined it such as current structure which is considere generalization of metric
spaces. The complex valued b-metric spaces concept was introduced in 2013 by Rao et al. [13], which
was more general than the well-known complex valued metric spaces that were introduced in 2011
by Azam et al. [2] which proved some common fixed point theorems for mapping satisfying rational
inequalities which are not worthwhile in cone metric spaces [1,10,11,16]. Sundry authors have studied
and proved the fixed point results for mappings with satisfying different type contraction conditions in
the framework of complex valued metric (b-metric) spaces(see [5, 6, 9, 13, 17]).

The main purpose of this paper is to present common fixed point results of four self-mappings to
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satisfy a rational inequality on complex valued b-metric spaces. and we establish the existence and
the uniqueness of a common solution for the system of Urysohn integral equations. Also we prove the
existence and the uniqueness of solution for linear system in complete complex valued b-metric space.
In [2] the authors introduced the notion of complex-valued metric space and obtained a common fixed-
point theorems of contraction type mappings using the partial inequality in a complex-valued metric
space.
To do so, let us recall a natural relation ≤ on C, the set of complex numbers as follows: let z1, z2 in C

z1 ≤ z2 ⇔ Re(z1) ≤ Re(z2) and Im(z1) ≤ Im(z2)
z1 < z2 ⇔ Re(z1) < Re(z2) and Im(z1) < Im(z2)

In [2], the authors defined a partial order relation z1 - z2 on C as follows:

z1 - z2 if and only if Re(z1) ≤ Re(z2) and Im(z1) ≤ Im(z2).

As a result, one can infer that z1 - z2 if one of the following conditions is satisfied:

(i) Re(z1) = Re(z2) , Im(z1) < Im(z2),
(ii) Re(z1) < Re(z2) , Im(z1) = Im(z2),

(iii) Re(z1) < Re(z2) , Im(z1) < Im(z2),
(iv) Re(z1) = Re(z2) , Im(z1) = Im(z2).

In (i), (ii) and (iii) we have |z1| < |z2|. In (iv) we have |z1| = |z2|, so that, |z1| ≤ |z2| In particular, z1 - z2

if z1 , z2 and one of (i), (ii) and (iii) is satisfied. In this case |z1| < |z2|. We will write z1 ≺ z2 if only
(iii) is satisfied. Further,

0 - z1 � z2 ⇒ | z1 |<| z2 |,

z1 - z2 and z2 ≺ z3 ⇒ z1 ≺ z3.

In [2], the authors defined the complex-valued metric space (X, d) in the following way:

Definition 1.1. Let X be a non-empty set. A mapping d : X×X → C is called a complex valued metric
on X if the following conditions are satisfied:

(a) 0 - d(x, y) for all x, y ∈ X and d(x, y) = 0⇔ x = y,

(b) d(x, y) = d(y, x), for all x, y ∈ X,

(c) d(x, y) - d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a complex valued metric in X, and (X, d) is a complex valued metric space.

Example 1. Let X = C define the mapping d : X × X −→ C by:

d(z1, z2) =| z1 − z2 | eiθ, θ ∈
]
0,
π

2

[
.

Then (X, d) is a complex valued metric space.

Definition 1.2. [13] Let X be a nonempty set and let s ≥ 1 be given real number. A mapping d :
X × X → C is called a complex valued b-metric on X if the following conditions are satisfied:
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(a) 0 - d(x, y) for all x, y ∈ X and d(x, y) = 0⇔ x = y,

(b) d(x, y) = d(y, x), for all x, y ∈ X,

(c) d(x, y) - s[d(x, z) + d(z, y)] for all x, y, z ∈ X.

Then (X, d) is a complex valued b-metric space.

Example 2. [13] Let X = C define the mapping d : X × X −→ C by:

d(z1, z2) =| z1 − z2 |
2 +i | z1 − z2 |

2 f or all z1, z2 ∈ X

Then (X, d) is a complex valued b-metric space with s = 2.

Definition 1.3. [13] Suppose that (X, d) is a complex valued b-metric space and {zn} is a sequence in
X and z ∈ X then

(i) We say that a sequence {zn} converges to an element z0 ∈ X if for every 0 ≺ c ∈ C, there exists an
integer N such that d(zn, z0) ≺ c for all n ≥ N. In this case, we write zn −→ z0.

(ii) We say that {zn} is a Cauchy sequence if for every 0 ≺ c ∈ C, there exists an integer N such that
d(zn, zm) ≺ c for all n,m ≥ N.

(iii) We say that (X, d) is complete, if every Cauchy sequence in X converges to a point in X.

Definition 1.4. Let S and T be self mappings of a nonemplty set X. If w = S z = Tz for some z in X,
then z is called a coincidence points of S and T and w is called a point of coincidence of S and T .

Definition 1.5. [15] Let S and T be a self-mappings of a complex valued metric space (X, d). The
mappings S and T are said to be compatible if:

lim
n→∞

d (S Tzn,TS zn) = 0,

whenever {zn} is a sequence in X such that:

lim S
n→∞

zn = lim T
n→∞

zn = t for some t ∈ X.

Definition 1.6. [12] Let S and T be self mappings of a nonemplty set X. S and T are said to be
weakly compatible if they commute at their coincidence points, i.e, S z = Tz for some z in X implies
that S Tz = TS z.

Definition 1.7. A matrix norm induced by vectors norms is given by:

‖A‖∞ = max
1≤i≤n

n∑
i=1

|ai j| where A = (ai j)1≤i, j≤n ∈ Mn(R)

Example 3. Let X = Cn. A vector norm in a complex valued b-metric given by:

d2(z,w) =

 n∑
i=1

(
|zi − wi|

2 + i|zi − wi|
2
)

1
2

,

where z,w ∈ X such that z = (z1, . . . , zn)t and w = (w1, . . . ,wn)t, then (X, d2) is a complex valued
b-metric space.
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Definition 1.8. [14] defined the max function for the partial order relation by:

(i) max{z1, z2} = z2 ⇔ z1 - z2,

(ii) z1 - max{z1, z3} ⇒ z1 - z2, or z1 - z3,

(iii) max{z1, z2} = z2 ⇔ z1 - z2 or |z1| ≤ |z2|.

Using definition (8) we have the following Lemma.

Lemma 1. [14] Let z1, z2, z3,··· ∈ C and the partial order relation - is defined on C, the following
statements are achieve:

(i) if z1 - max{z2, z3} then z1 - z2 if z3 - z2

(ii) if z1 - max{z2, z3, z4} then z1 - z2 if max{z3, z4} - z2,
(iii) if z1 - max {z2, z3, z4, z5} then z1 - z2 if max {z3, z4, z5} - z2, and so on.

2. Main results

In this section, we prove common fixed point theorem for four mappings in a complete complex
valued b-metric spaces using rational type contraction condition and we give some examples. Our first
new result is the following:

Theorem 2.1. Let (X, d) be a complete complex valued b-metric space and S ,T, P,Q : X → X be a
self mappings satisfying the conditions:

C1 S (X) ⊂ Q(X) and T (X) ⊂ P(X),

C2 d(S z,Tw) - λ
s2 R(z,w), if s ≥ 1 and λ ∈ (0, 1) for all z,w ∈ X where

R(z,w) = max{d(Pz,Qw), d(Pz, S z), d(Qw,Tw),
1
2

[d(Qw, S z) + d(Pz,Tw)],
d(Pz, S z)d(Qw,Tw)

1 + d(Pz,Qw)
},

C3 the pair (S , P) is compatible and the pair (T,Q) is weakly compatible,

C4 either P or S is continuous.
Then S ,T, P and Q have a unique common fixed point in X.

Proof. Let z0 ∈ X be arbitrary. From the condition C1, there exist z1, z2 such that w0 = Qz1 = S z0 and
w1 = Pz2 = Tz1. We can construct successively the sequences {wn} and {zn} in X as follows:

w2n = Qz2n+1 = S z2n and w2n+1 = Pz2n+2 = Tz2n+1 (2.1)

Using (2.1) in C2 we get:

d(w2n,w2n+1) = d(S z2n,Tz2n+1) -
λ

s2 R(z2n, z2n+1),

where

R(z2n, z2n+1) = max{d(Pz2n,Qz2n+1), d(Pz2n, S z2n), d(Qz2n+1,Tz2n+1),
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1
2

[d(Qz2n+1, S z2n) + d(Pz2n,Tz2n+1)],

d(Pz2n, S z2n)d(Qz2n+1,Tz2n+1)
1 + d(Pz2n,Qz2n+1)

}

= max{d(w2n−1,w2n), d(w2n−1,w2n), d(w2n,w2n+1),
1
2

[d(w2n,w2n) + d(w2n−1,w2n+1)],

d(w2n−1,w2n)d(w2n,w2n+1)
1 + d(w2n−1,w2n)

},

we have:

1
2

d(w2n−1,w2n+1) -
1
2

[d(w2n−1,w2n) + d(w2n,w2n+1)] (2.2)

- max{d(w2n−1,w2n), d(w2n,w2n+1)}

and we have
d(w2n−1,w2n) - 1 + d(w2n−1,w2n),

which is implies
d(w2n−1,w2n)d(w2n,w2n+1)

1 + d(w2n−1,w2n)
- d(w2n,w2n+1), (2.3)

from (2.2) and (2.3) we get:

R(z2n, z2n+1) = max{d(w2n−1,w2n), d(w2n,w2n+1)}

with
d(w2n,w2n+1) = d(S z2n,Tz2n+1) -

λ

s2 R(z2n, z2n+1).

If
R(z2n, z2n+1) = d(w2n,w2n+1),

then,

d(w2n,w2n+1) -
λ

s2 d(w2n,w2n+1), therefore
(
1 −

λ

s2

)
d(w2n,w2n+1) - 0,

which is a contradiction, since λ ∈ (0, 1), s ≥ 1. We conclude that d(w2n,w2n+1) - λ
s2 d(w2n−1,w2n).

Similarly we get d(w2n+1,w2n+2) - λ
s2 d(w2n,w2n+1).

It follows that
d(wn,wn+1) -

λ

s2 d(wn−1,wn) - · · · -
(
λ

s2

)n

d(w0,w1),

which implies

|d(wn,wn+1)| ≤
λ

s2 |d(wn−1,wn)| ≤ · · · ≤
(
λ

s2

)n

|d(w0,w1)|,

for m < n we have:

|d(wn,wm)| ≤ s
(
λ

s2

)n

|d(w0,w1)| + s2
(
λ

s2

)n+1

|d(w0,w1)| + s3
(
λ

s2

)n+2

|d(w0,w1)| +
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· · · + sm−n−1
(
λ

s2

)m−2

|d(w0,w1)| + sm−n
(
λ

s2

)m−1

|d(w0,w1)|

=

m−n∑
i=1

si
(
λ

s2

)i+n−1

|d(w0,w1)|.

Therefore,

|d(wn,wm)| ≤
m−n∑
i=1

si+n−1
(
λ

s2

)i+n−1

|d(w0,w1)| =
m−1∑
t=n

st
(
λ

s2

)t

|d(w0,w1)|,

≤

∞∑
i=1

(
λ

s

)t

|d(w0,w1)| =

(
λ
s

)n(
1 − λ

s

) |d(w0,w1)|,

hence,

|d(wn,wm)| ≤

(
λ
s

)n(
1 − λ

s

) |d(w0,w1)| → 0 as n→ ∞.

Thus, {wn} is a Cauchy sequence in X. Since X is complete, so there exists some u ∈ X such that
wn → u as n → ∞. For its sub-sequences we also have Qz2n+1 → u, S z2n → u, Pz2n+1 → u and
Tz2n → u
from C4 if P is continuous
as P is continuous, then PPz2n → Pu and PS z2n → Pu, as n → ∞. Also, since the pair (S , P) is
compatible, this implies that S Pz2n → Pu. Indeed,

d(S Pz2n, Pu) - s[d(S Pz2n, PS z2n) + d(PS z2n, Pu)].

So,
|d(S Pz2n, Pu)| ≤ s|d(S Pz2n, PS z2n)| + s|d(PS z2n, Pu)| → 0 as n→ ∞.

We prove Pu = u. On the contrary we suppose that Pu , u

d(Pu, u) - sd(Pu, S Pz2n) + s2d(S Pz2n,Tz2n+1) + s2d(Tz2n+1, u).

using C2 with z = Pz2n,w = z2n+1, we get:

d(S Pz2n,Tz2n+1) - λR(Pz2n, z2n+1),

where

R(Pz2n, z2n+1) = max{d(PPz2n,Qz2n+1), d(PPz2n, S Pz2n), d(Qz2n+1,Tz2n+1),
1
2

[d(Pz2n+1, S Pz2n) + d(QPz2n,Tz2n+1)],

d(PPz2n, S Pz2n)d(Qz2n+1,Tz2n+1)
1 + d(PPz2n,Qz2n+1)

},
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let n→ ∞ we get:

R(Pu, u) = max{d(Pu, u), d(Pu, Pu), d(u, Pu),
1
2

[d(Pu, Pu) + d(Pu, u)],
d(Pu, Pu)d(u, u)

1 + d(Pu, u)
} = d(Pu, u).

Further,

|d(Pu, u)| ≤
λ

s2 |d(Pu, u)|.

So, (1 − λ
s2 )|d(Pu, u)| ≤ 0, which is a contradiction that is |d(Pu, u)| = 0 then Pu = u.

We prove S u = u. On the contrary we suppose that S u , u

d(S u, u) - sd(Pu,Tz2n+1) + sd(Tz2n+1, u).

Using C2 with z = u,w = z2n+1, we get: d(S u,Tz2n+1) - λ
s2 R(u, z2n+1) where

R(u, z2n+1) = max{d(Pu,Qz2n+1), d(Pu, S u), d(Qz2n+1,Tz2n+1),
1
2

[d(Qz2n+1, S u) + d(Pu,Tz2n+1)],

d(Pu, S u)d(Qz2n+1,Tz2n+1)
1 + d(Pu,Qz2n+1)

},

let n→ ∞ we get:

R(u, u) = max{d(u, u), d(u, S u), d(u, u),
1
2

[d(u, S u) + d(u, u)],
d(u, S u)d(u, u)

1 + d(u, u)
} = d(S u, u).

Then, d(S u, u) - λ
s2 d(S u, u), further, |d(S u, u)| ≤ λ

s2 |d(S u, u)|, which is a contradiction that is
|d(S u, u)| = 0 then, S u = u. We prove Qu = Tu, as S (X) ⊂ Q(X), so there exists v ∈ X such that
u = S u = Qv. First, we shall show that Qv = Tv for this we get:

d(Qv,Tv) = d(S u,Tv) -
λ

s2 R(u, v)

where,

R(u, v) = max{d(Pu,Qv), d(Pu, S u), d(Qv,Tv),
1
2

[d(Qv, S u) + d(Pu,Tv)],
d(Pu, S u)d(Qv,Tv)

1 + d(Pu,Qv)
},

then,

R(u, v) = max{d(Qv,Qv), d(u, u), d(Qv,Tv),
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1
2

[d(Qv,Qv) + d(Qv,Tv)],
d(u, u)d(Qv,Tv)
1 + d(Qv,Qv)

}.

Then, d(Qv,Tv) - λ
s2 d(Qv,Tv), further, |d(Qv,Tv)| ≤ λ

s2 |d(Qv,Tv)|, which is a contradiction that is
|d(Qv,Tv)| = 0, then, Qv = Tv = u. As the pair (T,Q) is weakly compatible, so we have T Qv = QTv
,therefore Qu = Tu.
We prove u = Tu, On the contrary we suppose that Tu , u,

d(u,Tu) = d(S u,Tu) -
λ

s2 R(u, u),

where,

R(u, u) = max{d(Pu,Qu), d(Pu, S u), d(Qu,Tu),
1
2

[d(Qu, S u) + d(Pu,Tu)],
d(Pu, S u)d(Qu,Tu)

1 + d(Pu,Qu)
},

then,

R(u, v) = max{d(u,Tu), d(u, u), d(Tu,Tu),
1
2

[d(Tu, u) + d(Tu,Tu)],
d(u, u)d(Tu,Tu)

1 + d(u,Tu)
}.

Then, d(u, u) - λ
s2 d(u, u), further, |d(u,Tu)| ≤ λ

s2 |d(u,Tu)|, which is a contradiction that is
|d(u,Tu)| = 0 then u = Tu.
Now we prove that Qu = u, On the contrary we suppose that Qu , u,, we have:

d(u,Qu) = d(S u,QTu) = d(S u,T Qu),

from C2 we get:

d(u,Qu) = d(S u,T Qu) -
λ

s2 R(u,Qu)

where,

R(u,Qu) = max{d(Pu,QQu), d(Pu, S u), d(QQu,T Qu),
1
2

[d(QQu, S u) + d(Pu,T Qu)],
d(Pu, S u)d(QQu,T Qu)

1 + d(Pu,QQu)
}

= max{d(u,Qu), d(u, u), d(Qu,Qu),
1
2

[d(Qu, u) + d(u,Qu)],
d(u, u)d(Qu,Qu)

1 + d(u,Qu)
} = d(u,Qu).

Further, |d(u,Qu)| ≤ λ
s2 |d(u,Qu)|, which is contradiction that is |d(u,Qu)| = 0 then u = Qu.

On conclude S u = Tu = Pu = Qu = u when P is continuous, we get the same results when S is
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continuous.
Now we prove the uniqueness, Let u∗ be another common fixed point of S ,T, P and Q, then

S u∗ = Tu∗ = Pu∗ = Qu∗ = u∗

Putting z = u,w = u∗ in C2, we get: d(u, u∗) = d(S u,Tu∗) - λ
s2 R(u, u∗), where,

R(u, u∗) = max{d(Pu,Qu∗), d(Pu, S u), d(Qu∗,Tu∗),
1
2

[d(Qu∗, S u) + d(Pu,Tu∗)],
d(Pu, S u)d(Qu∗,Tu∗)

1 + d(Pu,Qu∗)
}

= max{d(u, u∗), d(u, u), d(u∗, u∗),
1
2

[d(u∗, u) + d(u, u∗)],
d(u, u)d(u∗, u∗)

1 + d(u, u∗)
}.

Further, |d(u, u∗)| ≤ λ
s2 |d(u, u∗)|, which is a contradiction that is |d(u, u∗)| = 0, which implies that u = u∗.

Thus u is the unique common fixed point of S ,T, P and Q in X. �

Corollary 1. Let (X, d) be a complete complex valued b-metric space, if we put S = T and P = Q = I
with exceeding the max of the rest of terms, we confirm the inequality of contraction of T in the
complete complex valued b-metric space. So we get: d(Tz,Tw) - λ

s2 d(z,w), where, λ ∈ (0, 1), s ≥ 1
for all z,w ∈ X. Then, T have unique fixed point in X.

Example 4. Let X = [0.1], for all z,w ∈ X. Define d : X × X → C a complex valued b-metric with
s = 2 by:

d(z,w) = |z − w|2 + i |z − w|2 .

Now define the mappings S ,T, P,Q : X → X by:

S z =
z

32
, Tz =

z2

48
, Pz =

z
2
, Qz =

z2

3
,

.

d(S z,Tw) =

∣∣∣∣∣∣ z
32
−

w2

48

∣∣∣∣∣∣2 + i

∣∣∣∣∣∣ z
32
−

w2

48

∣∣∣∣∣∣2
 =

1
256

∣∣∣∣∣∣ z2 − w2

3

∣∣∣∣∣∣2 + i

∣∣∣∣∣∣ z2 − w2

3

∣∣∣∣∣∣2
 ,

d(Pz,Qw) =

∣∣∣∣∣∣ z2 − w2

3

∣∣∣∣∣∣2 + i

∣∣∣∣∣∣ z2 − w2

3

∣∣∣∣∣∣2
 ,

d(S z,Tw) =
1

256
d(Pz,Qw),

Thus all the conditions of Theorem 2.1 are satisfied where λ = 1
64 and s = 2. Then legibly ′0′ is the

unique common fixed point of the mappings S ,T, P and Q.

Example 5. Let X = B(0, r), r > 1, for all z,w ∈ X. Define d : X × X → C by:

d(z(u),w(u)) =
i

2π

∣∣∣∣∣∫
Γ

z(u)
u
−

∫
Γ

w(u)
u

∣∣∣∣∣2 ,
AIMS Mathematics Volume 4, Issue 3, 1019–1033.
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a complete complex valued b-metric where Γ is a closed path in X containing a zero. We prove that d
is a complex b-metric with s = 2

d(z(u),w(u)) =
i

2π

∣∣∣∣∣∫
Γ

z(u)
u
−

∫
Γ

w(u)
u

∣∣∣∣∣2 ,
=

i
2π

∣∣∣∣∣∫
Γ

z(u)
u
−

∫
Γ

x(u)
u

+

∫
Γ

x(u)
u
−

∫
Γ

w(u)
u

∣∣∣∣∣2 ,
-

i
2π

∣∣∣∣∣∫
Γ

z(u)
u
−

∫
Γ

x(u)
u

∣∣∣∣∣2 +
i

2π

∣∣∣∣∣∫
Γ

x(u)
u
−

∫
Γ

w(u)
u

∣∣∣∣∣2 +

2
i

2π

∣∣∣∣∣∫
Γ

z(u)
u
−

∫
Γ

x(u)
u

∣∣∣∣∣ ∣∣∣∣∣∫
Γ

x(u)
u
−

∫
Γ

w(u)
u

∣∣∣∣∣ ,
-

i
2π

∣∣∣∣∣∫
Γ

z(u)
u
−

∫
Γ

x(u)
u

∣∣∣∣∣2 +
i

2π

∣∣∣∣∣∫
Γ

x(u)
u
−

∫
Γ

w(u)
u

∣∣∣∣∣2 +

i
2π

∣∣∣∣∣∫
Γ

z(u)
u
−

∫
Γ

x(u)
u

∣∣∣∣∣2 +
i

2π

∣∣∣∣∣∫
Γ

x(u)
u
−

∫
Γ

w(u)
u

∣∣∣∣∣2 ,
- 2

{
i

2π

∣∣∣∣∣∫
Γ

z(u)
u
−

∫
Γ

x(u)
u

∣∣∣∣∣2 +
i

2π

∣∣∣∣∣∫
Γ

x(u)
u
−

∫
Γ

w(u)
u

∣∣∣∣∣2} ,
d(z(u),w(u)) - 2 {d(z(u), x(u)) + d(x(u),w(u))} .

Now we define the mappings S ,T, P,Q : X → X by:

S z(u) = u,Tz(u) = e
u
2 , Pz(u) = eu − 1,Qz(u) = u2 +

1
2

u.

Using the Cauchy formula when the mappings S ,T, P and Q are analytics we get:

d(S z(u),Tw(u)) =
i

2π

∣∣∣∣∣∫
Γ

u
u
−

∫
Γ

eu − 1
u

∣∣∣∣∣2 = 0,

d(Pz(u),Qw(u)) =
i

2π

∣∣∣∣∣∣
∫

Γ

e
u
2

u
−

∫
Γ

u2 + 1
2u

u

∣∣∣∣∣∣
2

=
(2π)2i

2π
,

d(Pz(u), S z(u)) =
i

2π

∣∣∣∣∣∣
∫

Γ

e
u
2

u
−

∫
Γ

u
u

∣∣∣∣∣∣2 = 0,

d(Qw(u),Tw(u)) =
i

2π

∣∣∣∣∣∣
∫

Γ

u2 + 1
2u

u
−

∫
Γ

eu − 1
u

∣∣∣∣∣∣
2

= 0,

d(Qw(u), S z(u)) =
i

2π

∣∣∣∣∣∣
∫

Γ

u2 + 1
2u

u
−

∫
Γ

u
u

∣∣∣∣∣∣
2

= 0,

d(Pz(u),Tw(u)) =
i

2π

∣∣∣∣∣∣
∫

Γ

e
u
2

u
−

∫
Γ

eu − 1
u

∣∣∣∣∣∣2 =
(2π)2i

2π
,

R(z(u),w(u)) = max{2πi, 0} = 2πi.

Further,

0 = d(S z(u),Tw(u)) -
πλi
2
.
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Thus all the conditions of Theorem 2.1 are satisfied then the mappings S ,T, P and Q have a unique
common fixed point in X.

3. Application to integral equations

Our first new results in this section is the following:

Theorem 3.1. Let X = C([a, b],Rn), a > 0 and d : X × X → C is defined as follows:

d(z,w) = max
u∈[a,b]

‖z(u) − w(u)‖∞
√

1 + a2eitan−1a.

Consider the Urysohn integral equations

z(u) =

∫ b

a
K1(t, s, z(u))ds + g(u), (1)

z(u) =

∫ b

a
K2(t, s, z(u))ds + h(u), (2)

where u ∈ [a, b] ⊂ R and z, g, h ∈ X.
Assume that K1,K2 : [a, b] × [a, b] × Rn → Rn such that Fz,Gz ∈ X for each z ∈ X, where

Fz(u) =

∫ b

a
K1(t, s, z(u))ds, Gz(u) =

∫ b

a
K2(t, s, z(u))ds for all u ∈ [a, b].

If there exist s ≥ 1, λ ∈ (0, 1) such that the inequality:

A(z,w)(u) -
λ

s2 R(z,w)(u), (3.1)

where,

R(z,w) = max{D(z,w)(u), B(z,w)(u),C(z,w)(u),
1
2

[B(z,w)(u) + C(z,w)(u)],
B(z,w)(u)C(z,w)(u)

1 + D(z,w)(u)
},

and

A(z,w)(u) = ‖Fz(u) −Gw(u) + g(u) − h(u)‖
√

1 + a2eitan−1a,

B(z,w)(u) = ‖z(u) − Fz(u) − g(u)‖
√

1 + a2eitan−1a,

C(z,w)(u) = ‖w(u) −Gw(u) − h(u)‖
√

1 + a2eitan−1a,

D(z,w)(u) = ‖z(u) − w(u)‖
√

1 + a2eitan−1a,

holds for all z,w ∈ X. then, the system of Urysohn integral equations has a unique common solution
in X.
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Proof. Define S ,T : X → X by:

S z = Fz + g,Tz = Gz + h.

Then,

d(S z,Tw) = max
u∈[a,b]

‖Fz(u) −Gw(u) + g(u) − h(u)‖∞
√

1 + a2eitan−1a,

d(z, S z) = max
u∈[a,b]

‖z(u) − Fz(u) − g(u)‖∞
√

1 + a2eitan−1a,

d(w,Tw) = max
u∈[a,b]

‖w(u) −Gw(u) − h(u)‖∞
√

1 + a2eitan−1a,

d(z,w) = max
u∈[a,b]

‖z(u) − w(u)‖∞
√

1 + a2eitan−1a.

From assumption 3.1, for each u ∈ [a, b] we have:

A(z,w)(u) -
λ

s2 R(z,w)(u),

-
λ

s2 max{D(z,w)(u), B(z,w)(u),C(z,w)(u),

1
2

[B(z,w)(u) + C(z,w)(u)] ,
B(z,w)(u)C(z,w)(u)

1 + D(z,w)(u)
},

which implies that

max
u∈[a,b]

A(z,w)(u) -
λ

s2 max
u∈[a,b]

max{D(z,w)(u), B(z,w)(u),C(z,w)(u),

1
2

[B(z,w)(u) + C(z,w)(u)] ,
B(z,w)(u)C(z,w)(u)

1 + D(z,w)(u)
}

-
λ

s2 max{max
u∈[a,b]

D(z,w)(u), max
u∈[a,b]

B(z,w)(u),

max
u∈[a,b]

C(z,w)(u),
1
2

[max
u∈[a,b]

B(z,w)(u) + max
u∈[a,b]

C(z,w)(u)],

maxu∈[a,b] B(z,w)(u) maxu∈[a,b] C(z,w)(u)
1 + maxu∈[a,b] D(z,w)(u)

}.

Therefore,

d(S z,Tw) -
λ

s2 max{d(z,w), d(z, S z), d(w,Tw),

1
2

[d(w, S z) + d(z,Tw)] ,
d(z, S z)d(w,Tw)

1 + d(z,w)
}.

Thus all the conditions of Theorem 2.1 with P = Q = IX are satisfied. Therefore, the system of
Urysohn integral equations has a unique common solution in X. �
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4. Application to linear system

In this section we give an application using the Corollary 1 in (X = Cn, d2) the complete complex
valued b-metric space where,

d2(z,w) =

 n∑
i=1

(
|zi − wi|

2 + i|zi − wi|
2
)

1
2

,

Theorem 4.1. Let (X = Cn, d2) a complex valued b-metric space where z = (z1, . . . , zn)t ∈ X and
w = (w1, . . . ,wn)t ∈ X, if β < 1

n where,

βi j =

ai j if i , j

ai j + 1 if i = j
and β = max

{
βi j

}
,∀1 ≤ i, j ≤ n.

then, the following linear system of n equations and n unknowns AZ = B has a unique solution.
a11z1 + a12z2 + . . .+ a1nzn = b1

a21z1 + a22z2 + . . .+ a2nzn = b2
...

an1z1 + an2z2 + . . .+ annzn = bn

⇔


a11 a12 . . . a1n

a21 a22 . . . a2n
...

an1 an2 . . . ann




z1

z2
...

zn

 =


b1

b2
...

bn

 .
Where z = (z1, . . . , zn)t ∈ X and ai j ∈ R where 1 ≤ i, j ≤ n and b1, b2, bn ∈ C

Proof. Define T : X → X by Tz = (A + I)Z − B. for proving that linear system AZ = B have a unique
solution, its enough to prove that T is a contraction.
Since

d2(Tz,Tw) =

 n∑
i=1

(
|(Tz)i − (Tw)i|

2 + i|(Tz)i − (Tw)i|
2
)

1
2

,

=

 n∑
i=1


∣∣∣∣∣∣∣

n∑
j=1

βi j(z j − w j)

∣∣∣∣∣∣∣
2

+ i

∣∣∣∣∣∣∣
n∑

j=1

βi j(z j − w j)

∣∣∣∣∣∣∣
2


1
2

,

where,

βi j =

ai j if i , j

ai j + 1 if i = j
and β = max

{
βi j

}
,∀1 ≤ i, j ≤ n.

Then,

d2(Tz,Tw) -


 n∑

i=1

max
1≤i, j≤n

β2
i j



∣∣∣∣∣∣∣

n∑
j=1

(z j − w j)

∣∣∣∣∣∣∣
2

+ i

∣∣∣∣∣∣∣
n∑

j=1

(z j − w j)

∣∣∣∣∣∣∣
2


1
2

,

-
(
nβ2

) 1
2

n

∣∣∣∣∣∣∣

n∑
j=1

(z j − w j)

∣∣∣∣∣∣∣
2

+ i

∣∣∣∣∣∣∣
n∑

j=1

(z j − w j)

∣∣∣∣∣∣∣
2


1
2

,
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- nβ



∣∣∣∣∣∣∣

n∑
j=1

(z j − w j)

∣∣∣∣∣∣∣
2

+ i

∣∣∣∣∣∣∣
n∑

j=1

(z j − w j)

∣∣∣∣∣∣∣
2


1
2

,

= nβd2(z,w).

So, we get finally that:
d2(Tz,Tw) - nβd2(z,w) or β = max

{
|ai j|, |ai j + 1| ∀1 ≤ i, j ≤ n

}
.

We conclude that T is contraction mapping. by applying Corollary 1, the linear system has a unique
solution. �
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