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1. Introduction

In a thermophysical interpretation, the one-phase models considered in the present work consist of
finding the temperature field, phase transition boundary (e.g., the melting front), and the
temperature-dependent convection coefficient under the assumption that the temperature distribution
and the phase boundary position are given at a final time. As it is known, the determination of any
causal characteristic by some measured effect characteristics in the corresponding physical process (in
our case this is a convection coefficient) leads to inverse restoration problems. Just like most of the
inverse tasks in mathematical physics, the inverse restoration problems (or the so-called identification
problems) are ill-posed in the Tikhonov sense [1]. Their solution need not be unique and stable, i.e.,
continuous depending on the input data. This is a result of the violation of the cause-effect relations in
their statements. Unlike inverse restoration problems for parabolic equations in domains with fixed
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boundaries, such problems for phase transform models are insufficiently studied. Their study is more
difficult because of the presence of the unknown moving phase boundary and the corresponding
publications are not so extensive. In most cases ones are connected with applied investigations in
various technical fields and with methods of approximate solving (see, for example, [2–9] and the
recent related articles [10–13]).

Nevertheless, theoretical justification of this class of inverse restoration problems is important for
the perfection of technologies both in heat processes (e.g., power engineering, metallurgy, and
astronautics) and in hydrology, exploitation of oil-gas fields, etc. Various statements of such problems
with phase transforms must be analyzed depending on the unknown causal characteristic and the type
of additional information. In particular, investigation of one-phase models in the present work is
connected with needs to improve the thermophysical properties of convective heat carries, which is
motivated by the development of innovative technologies. Generally, the determination of
thermophysical properties of materials ( in particular, their temperature dependence) allows one to
make more precise the mathematical models.

The corresponding mathematical formulations are inverse Stefan problems for parabolic equations
in domains with free boundaries with material or energy balance conditions imposed on them. This
paper continues our investigation of such inverse problems begun in [14–17]. The present
mathematical statements are connected with restoration of the unknown convection coefficient and
consist in determining the unknown coefficient multiplying the lowest order derivative in a quasilinear
parabolic equation in a one-phase domain whose external boundary is a phase front with an unknown
time dependence. Additional information is given in the form of final overdetermination.

Our statements for the quasilinear parabolic equation allow one to take into account the
dependence of thermophysical characteristics upon the temperature — such models arise, for
example, in the modeling of the high temperature processes. In order to overcome instability of
solutions in the present inverse restoration problems, the principles of constructing stable approximate
solutions of ill-posed inverse Stefan problems from [14] are applicable. In the present paper, our main
attention is given to the other difficulty connected with ill-posed inverse restoration problems.
Namely, our aim is to obtain sufficient conditions of unique identification of the nonlinear convection
coefficients.

To this end, in Section 2 we justify the mathematical statements of the corresponding inverse Stefan
problems choosing function spaces for the input data and the solution of the restoration problems. This
choice relies on the research of classical solvability of the corresponding direct Stefan problems. This
is important for ill-posed inverse problems — if there is no coordination between the given input data,
the exact solution of the inverse problem does not exist. In order to prove sufficient conditions of unique
identification in a class of smooth functions, we use the duality principle by analogy with [18], where it
was applied to a parabolic equation with an unknown coefficient multiplying the lowest order derivative
in a domain with fixed boundaries. To this end, the “straightening phase boundaries” substitution is
carried out, which transforms the phase domain into a rectangular domain of fixed width. In Sections
3 and 4 the proposed approach allows one to establish uniqueness theorems for the corresponding
statements of the inverse restoration problems. In Section 5 sets of admissible solutions preserving the
uniqueness property are indicated. It is shown that this property may be lost if the desired nonlinear
convection coefficient depends not only on the temperature and the spatial variable but also on the time.
Finally, a short conclusion in Section 6 summarizes the results obtained in this work.
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The following remarks must be added.
In our analysis we use standard definitions for the function spaces from [19]. In particular, the

following definitions are used.
0
C [0, l] is the space of functions u(x) continuous on the interval [0, l] with u|x=0 = 0, u|x=l = 0.
H2+λ[0, l] is the space of functions u(x) continuous on the interval [0, l] together with their

derivatives uxx which satisfy the Hölder condition with the exponent λ.
H1+λ/2[0,T ] is the space of functions u(t) continuous on the interval [0,T ] together with their

derivatives ut which satisfy the Hölder condition with the exponent λ/2.
Hλ,λ/2(Q) is the space of functions u(x, t) continuous on the closed set Q = {0 ≤ x ≤ l, 0 ≤ t ≤ T }

which satisfy the Hölder conditions in x and t with the corresponding exponents λ and λ/2.
H2+λ,1+λ/2(Q) is the space of functions u(x, t) continuous for (x, t) ∈ Q together with their derivatives

uxx, ut which satisfy the Hölder conditions in x and t with the corresponding exponents λ and λ/2.

2. Mathematical statements of one-phase models with unknown convection coefficients

Consider a one-phase quasilinear Stefan problem in the direct statement: to find a function u(x, t)
in the domain Q = {0 ≤ x ≤ ξ(t), 0 ≤ t ≤ T } and a phase boundary ξ(t) for 0 ≤ t ≤ T satisfying the
equation

c(x, t, u)ut − Lu = f (x, t), (x, t) ∈ Q, (1)

with the boundary condition for x = 0, x = ξ(t)

u|x=0 = v(t), 0 < t ≤ T, (2)

u|x=ξ(t) = u∗(t), 0 < t ≤ T, (3)

the initial condition
u|t=0 = ϕ(x), 0 ≤ x ≤ l0, (4)

and the conditions on the phase boundary

a(x, t, u)ux + χ(x, t, u)|x=ξ(t) = −γ(x, t, u)|x=ξ(t)ξt(t), 0 < t ≤ T, (5)

ξ|t=0 = l0, l0 > 0, (6)

where Lu is a uniformly elliptic operator of the form

Lu ≡ (a(x, t, u)ux)x − b(x, t, u)ux − d(x, t, u), (7)

a ≥ amin > 0, b, c ≥ cmin > 0, d, f , v, u∗, γ ≥ γmin > 0, χ, and ϕ are known functions, amin, cmin, γmin,
and l0 = const > 0.

If the function b(x, t, u) in (7) is unknown but the additional information of the solution of the direct
Stefan problem (1)–(6) is given at t = T

u|t=T = g(x), 0 ≤ x ≤ l, ξ|t=T = l, l > 0, (8)

then the following statement of the inverse restoration problem with final overdetermination arises: to
find a function u(x, t) in the domain Q, a phase boundary ξ(t) for 0 ≤ t ≤ T , and a coefficient b(x, t, u)
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for (x, t) ∈ Q and u ∈ [−M0,M0] (where M0 > 0 is the constant from the maximum principle for the
boundary value problem (1)–(4)) that satisfy conditions (1)–(7) and the additional condition (8).

In what follows, we assume that b(x, t, u) has one of the structures

b(x, t, u) = p(u)b0(x, t),
b(x, t, u) = p(x, u)b0(x, t)

(9)

where b0(x, t) is a given function and p is an unknown coefficient.
According to [14], the following theorem formulates requirements on the input data, which imply

the assumptions for the corresponding inverse restoration problem.

Theorem 2.1. Let the following conditions hold.

(i) For (x, t) ∈ Q, |u| < ∞, the functions a, ax, au, b0, c, d, and f are uniformly bounded, a ≥ amin > 0,
c ≥ cmin > 0.

(ii) For (x, t, u) ∈ D = Q × [−M0,M0] the function a, its derivatives ax and au, the functions c, d, γ,
and χ have continuous x- and u-derivatives and, moreover, are Hölder continuous in t with the
exponent λ/2; the functions b0 and f have continuous x-derivatives and are Hölder continuous
in t with the exponent λ/2; γ ≥ γmin > 0.

(iii) The functions v(t), u∗(t), and ϕ(x) belong to H1+λ/2[0,T ] and H2+λ[0, l0], respectively, and satisfy
the matching conditions

c(x, 0, ϕ)vt − Lϕ|x=0,t=0 = f (x, 0)|x=0,

c(x, 0, ϕ)u∗t − Lϕ|x=l0,t=0 = f (x, 0)|x=l0 .
(10)

(iv) The input data provide the nondegeneracy of the domain Q, i.e., the phase boundary does not
intersect the external boundary x = 0: β0 < ξ(t) for 0 ≤ t ≤ T, where β0 = const > 0.

(v) The final function g(x) belongs to H2+λ[0, l] and satisfies the matching conditions g|x=0 = v|t=T ,
g|x=l = u∗|t=T .

Then for any coefficient p from the structure (9) that belongs to the corresponding class

p(u) ∈ C1[−M0,M0], p(x, u) ∈ C1,1(Ω),

Ω = [0, β1] × [−M0,M0], β1 = max
0≤t≤T

ξ(t),

and satisfies the matching conditions (10), the quasilinear Stefan problem in the direct statement (1)–
(6) has a unique solution in the Hölder spaces u(x, t) ∈ H2+λ,1+λ/2(Q), ξ(t) ∈ H1+λ/2[0,T ] for which the
uniform estimates are valid

|u|2+λ,1+λ/2
Q

≤ M, |ξ|1+λ/2
[0,T ] ≤ M, M,M = const > 0. (11)

Theorem 2.1 allows one to define a solution of the corresponding inverse restoration problem as a
collection of functions {u(x, t), ξ(t), p(u)} or {u(x, t), ξ(t), p(x, u)} that belong to the above-mentioned
classes and satisfy relations (1)–(8) in the usual sense. For this ill-posed problem we examine the
conditions under which its solution is uniquely determined.
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3. Unique restoration of the convection coefficient p(u)

3.1. The proposed approach to the proof

We use a contradiction argument. Assume that {u1(x, t), ξ1(t), p1(u)} and {u2(x, t), ξ2(t), p2(u)} are
two solutions of the inverse problem in the classes H2+λ,1+λ/2(Q) × H1+λ/2[0,T ] × C1[−M0,M0]. The
functions {u1(x, t), ξ1(t)} and {u2(x, t), ξ2(t)} can be treated as the solutions of the direct Stefan
problem (1)–(6) that correspond to the coefficients p1(u) and p2(u) in the operator Lu (see (7) and
(9)). Therefore, they satisfy estimates (11) in the Hölder classes H2+λ,1+λ/2(Q) × H1+λ/2[0,T ].

Before proving that u1(x, t) ≡ u2(x, t) in Q, ξ1(t) ≡ ξ2(t) for 0 ≤ t ≤ T , and p1(u) ≡ p2(u) for
u ∈ [−M0,M0], we make “straightening phase boundary” substitution y = xξ−1(t). This substitution
transforms the phase domain Q into a rectangular domain of fixed width Π = {0 ≤ y ≤ 1, 0 ≤ t ≤ T }.

In variables (y, t) the inverse Stefan problem (1)–(8) becomes

cut − ξ
−2(t)(auy)y + ξ−1(t){pb0 + cyξt(t)}uy + d = f , (y, t) ∈ Π, (12)

u|y=0 = v(t), u|y=1 = u∗(t), 0 < t ≤ T, (13)

u|t=0 = ϕ(yl0), ξ|t=0 = l0, 0 ≤ y ≤ 1, (14)

ξ−1(t)auy + χ|y=1 = −γ|y=1ξt(t), 0 < t ≤ T, (15)

u|t=T = g(yl), ξ|t=T = l, 0 ≤ y ≤ 1. (16)

The coefficients in the equation (12) and in the Stefan condition (15) are the values of the corresponding
functions at the point (yξ(t), t, u). In view of (12)–(16) the differences ∆u = u2 − u1, ∆ξ = ξ2 − ξ1, and
∆p = p2 − p1 satisfy relations that can be represented in the form

c∆ut − ξ
−2
2 (t)(a∆uy)y +A∆uy + B∆u

= C∆ξ(t) +D∆ξt(t) − ξ−1
2 (t)b0u2y∆p(u2), (y, t) ∈ Π, (17)

∆u|y=0 = 0, ∆u|y=1 = 0, 0 < t ≤ T, (18)

∆u|t=0 = 0, 0 ≤ y ≤ 1, (19)

ξ−1
2 (t)a∆uy|y=1 = −γ|y=1∆ξt(t) + F |y=1∆ξ(t), 0 < t ≤ T, ∆ξ|t=0 = 0, (20)

with additional conditions at t = T

∆u|t=T = 0, 0 ≤ y ≤ 1, ∆ξ|t=T = 0. (21)

Here a, b0, c, γ, etc., are the values of these functions at the point (yξ2(t), t, u2). The coefficients A,
B, C, D, and F depend appropriately on u2, its derivatives u2y, u2yy, and u2t. Moreover, A, B, C, D,
and F depend appropriately on the y- and u-derivatives of the coefficients in the equation (12) and
the Stefan condition (15) at the intermediate point (yξ(t), t, u) with ξ(t) = σξ1(t) + (1 − σ)ξ2(t) and
u = θu1 + (1 − θ)u2 for 0 < σ < 1 and 0 < θ < 1. All these coefficients regarded as functions of
(y, t) are in Hλ,λ/2 in the domain Π = {0 ≤ y ≤ 1, 0 ≤ t ≤ T } in view of smoothness conditions (i)–(iii)
of Theorem 2.1 and estimates (11) in the Hölder classes. In particular, the coefficient A(y, t) has the
formA(y, t) = ξ−1(t){p2b0 + cyξt(t)− auuy} and is in Hλ,λ/2(Π) in view of condition (ii) on b0, c, and au,
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estimates (11) for u1, u2, and since p2 ∈ C1[−M0,M0]. Moreover, y-derivative ofA(y, t) is continuous
in Π.

In order to prove that ∆u ≡ 0 in Π, ∆ξ ≡ 0 for 0 ≤ t ≤ T , and ∆p ≡ 0 for u ∈ [−M0,M0], we use
the duality principle by analogy with [18], where it was applied for the coefficient inverse problem in
a domain with fixed boundary.

3.2. The duality principle and properties of adjoint problems

We remark that the relations (17)–(19) are linear with respect to ∆u, ∆ξ, and ∆p. This allows one
to start with the study of the corresponding boundary value problem for the equation

c∆ut − L∆u = −ξ−1
2 (t)b0u2y∆p(u2), (y, t) ∈ Π, (22)

L∆u ≡ ξ−2
2 (t)(a∆uy)y −A∆uy − B∆u.

Consider the boundary value problem adjoint to (22), (18), (19),

(cψ)t +L∗ψ = 0, 0 < y < 1, 0 ≤ t < T, (23)

ψ|y=0 = 0, ψ|y=1 = 0, 0 ≤ t < T, (24)

ψ|t=T = η(y), 0 ≤ y ≤ 1, (25)

where η(y) is an arbitrary function from
0
C [0, 1] and

L∗ψ ≡ ξ−2
2 (t)(aψy)y + (Aψ)y − Bψ

is the operator adjoint to the operator L∆u.
The solution of this linear boundary value problem is defined by ψ(y, t; η). Next we investigate the

properties of ψ(y, t; η).

Lemma 3.1. Assume that conditions (i)–(v) of Theorem 2.1 hold and, moreover, the derivative b0x is
in Hλ,λ/2(Q), the derivative ct is Hölder continuous in x and t with the corresponding exponents λ and

λ/2, its derivative with respect to u is continuous for (x, t, u) ∈ D. Then, for any function η(y) ∈
0
C [0, 1],

the corresponding solution ψ(y, t; η) of the adjoint problem (23)–(25) belongs to C(Π) ∩ C2,1(Π) and
satisfies the relation

T∫
0

1∫
0
ψ(y, t; η)h(y, t) dy dt = 0 ∀η ∈

0
C [0, 1],

h(y, t) = −ξ−1
2 (t)b0u2y∆p(u2).

(26)

Proof. Unique solvability of the problem (23)–(25) in C(Π) ∩ C2,1(Π) for any η ∈
0
C [0, 1] follows

from [19] thanks to the corresponding smoothness of the coefficients in the equation (23); in particular,
y-derivative of the coefficientA(y, t) belongs to Hλ,λ/2(Π).

To prove (26) we consider the expression

I =

T∫
0

1∫
0

ψ{c∆ut − L∆u} dy dt +

T∫
0

1∫
0

∆u{(cψ)t +L∗ψ} dy dt.
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On the one hand, from (22) and (23) it follows that

I =

T∫
0

1∫
0

ψ(y, t; η)h(y, t) dy dt.

On the other hand, integrating by parts and taking into account (18), (19) and (24), (25), and the final
condition (21) for ∆u|t=T , we obtain

I =

1∫
0

{cψ∆u}
∣∣∣∣t=T

t=0
dy = 0.

This yields the relation (26). Lemma 3.1 is proved.
It should be noted that the condition ∆u|t=T = 0 is just what η(y) in (25) can be an arbitrary function

from
0
C [0, 1]. As a result, the adjoint problem (23)–(25) have the same properties as a control problem

with a control function in the initial condition. The role of this function is played by η(y). The change
of variable t′ = T − t in (23)–(25) gives a usual control problem for a linear parabolic equation.

The following lemmas show that ψ(y, t; η) posses density properties (by analogy with a solution of
the control problem).

Lemma 3.2. Let the conditions of Lemma 3.1 be satisfied; in addition, let the derivative at be

continuous in the domain D. Then, as the function η(y) ranges over the space
0
C [0, 1], the

corresponding set of values
{
ψ(y, t; η)|t=τ

}
is everywhere dense in L2[0, 1] at any time t = τ; i.e., the

relation
1∫

0

ψ(y, t; η)|t=τ w(y) dy = 0, 0 < τ ≤ T,

for some function w(y) ∈
0
C [0, 1] implies that w(y) = 0 for 0 ≤ y ≤ 1.

Proof. To establish Lemma 3.2 we again use the duality principle but now for the problem (23)–
(25). Namely, we consider the linear boundary value problem adjoint to (23)–(25) in the domain
Πτ = {0 ≤ y ≤ 1, τ ≤ t ≤ T }

czt − Lz = 0, 0 < y < 1, τ < t ≤ T, (27)

z|y=0 = 0, z|y=1 = 0, τ < t ≤ T, (28)

z|t=τ = θ(y; τ), 0 ≤ y ≤ 1, (29)

where the operator Lz has the same form as L∆u and

θ(y; τ) =
{
c(yξ2(t), t, u2)|t=τ

}−1w(y).

Its solution z(y, t; τ) belongs to
0
C (Πτ)∩C2,1(Πτ) and is a continuous function of the parameter τ in

view of its stability with respect to the input data [19]. For it we obtain the additional final condition
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z(y, t; τ)|t=T = 0 with the use of the continuous function

F(τ) =

T∫
τ

1∫
0

z{(cψ)t +L∗ψ} dy dt +

T∫
τ

1∫
0

ψ{czt − Lz} dy dt.

In fact, by virtue of (23)–(25) and (27)–(29), F(τ) can be reduced to the form

F(τ) =

1∫
0

c|t=T z(y,T ; τ)η(y) dy −

1∫
0

c|t=τθ(y; τ)ψ(y, τ; η) dy = 0 (30)

for any η ∈
0
C [0, 1]. From here, taking into account the form of θ(y; τ) and the assertion about w(y), we

conclude that z(y, t; τ)|t=T = 0 (thanks to the assumption c ≥ cmin > 0 and density of the space
0
C [0, 1]

in L2[0, 1]).
This final condition permits one to treat the equation (27) with the conditions (28) as a homogeneous

boundary value problem for a linear parabolic equation in inverse time. By smoothness and uniform
boundedness in Πτ, the coefficients of the equation (27) considered as functions of (y, t) satisfy the
requirements [20, 21] that provide the so-called inverse uniqueness property for such a problem. Hence
z(y, t; τ) ≡ 0 in Πτ including t = τ; i.e., θ(y; τ) = 0 and w(y) = 0 for 0 ≤ y ≤ 1. Thus, the fact that
the set

{
ψ(y, t; η)|t=τ

}
is dense follows from the inverse uniqueness property. The proof of Lemma 3.2

is completed.
The following result is a generalization of Lemma 3.2 for an arbitrary time interval [0,T0],

0 < T0 ≤ T .

Lemma 3.3. Let the conditions of Lemma 3.2 for the input data hold. Assume that for any function

η ∈
0
C [0, 1], the corresponding solution ψ(y, t; η) of the adjoint problem satisfies the relation on some

interval [0,T0], 0 < T0 ≤ T,

T0∫
0

1∫
0

ψ(y, t; η)α(y, t) dy dt = 0 ∀η ∈
0
C [0, 1], (31)

where α(y, t) is a function of constant signs with respect to t ∈ [0,T ] and, moreover, α(y, t) is in
Hλ,λ/2(Π). Then α(y,T0) = 0 for 0 ≤ y ≤ 1.

Proof. Just as in the proof of Lemma 3.2, consider the problem (27)–(29) in the domain Πτ but for
θ(y; τ) of the form

θ(y; τ) =
{
c(yξ2(t), t, u2)|t=τ

}−1
α(y, τ)

and for all τ such that 0 ≤ τ ≤ T0.
The function F(τ) (see (30)) satisfies the relation

T0∫
0

F(τ) dτ =

1∫
0

T0∫
0

z(y,T ; τ) dτ c|t=Tη(y) dy −

T0∫
0

1∫
0

ψ(y, τ; η)c|t=τθ(y; τ) dy dτ = 0.
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In view of the form of θ(y; τ) this means (together with (31), the arbitrary choice of the function η(y),
and positiveness of the coefficient c) that

T0∫
0

z(y,T ; τ) dτ = 0, 0 ≤ y ≤ 1,

where the integrand z(y,T ; τ) is the solution of the problem (27)–(29) at the final time t = T . By using
Green’s function G(y, x, t, τ) [19] for representation of the solution z(y, t; τ) of this problem, we obtain

T0∫
0

z(y,T ; τ) dτ =

T0∫
0

1∫
0

G(y, x,T, τ)θ(x; τ) dx dτ = 0, 0 ≤ y ≤ 1.

We can write this equality in the form

T∫
0

1∫
0

G(y, x,T, τ)Θ(x; τ) dx dτ = 0, 0 ≤ y ≤ 1, (32)

where Θ(x; τ) =

{
θ(x; τ) for 0 < τ ≤ T0,

0 for T0 < τ ≤ T.
Now we consider the boundary value problem in the domain Π = {0 ≤ y ≤ 1,

0 ≤ t ≤ T } for the nonhomogeneous equation

cZt − LZ = Θ(y, τ), 0 < y < 1, 0 < t ≤ T, (33)

Z|y=0 = 0, Z|y=1 = 0, 0 < t ≤ T, (34)

Z|t=0 = 0, 0 ≤ y ≤ 1, (35)

and show that its solution Z(y, t) is a smooth function in Π.
In fact, for 0 < y < 1, 0 < t ≤ T0 we have Θ(y, t) = θ(y, t) and θ(y, t) ∈ Hλ,λ/2, hence Z(y, t) belongs

to C2,1 for such values of y and t [19]. On the other hand, for T0 < t ≤ T the function Θ(y, t) = 0.
This means that for T0 < t ≤ T Z(y, t) can be represented as a solution z(y, t; T0) of the boundary value
problem in the domain ΠT0 = {0 ≤ y ≤ 1,T0 ≤ t ≤ T } for the homogeneous equation

czt − Lz = 0, 0 < y < 1, T0 < t ≤ T,

with the homogeneous boundary conditions at y = 0, y = 1, and with the initial condition

z|t=T0 = Z(y,T0), 0 ≤ y ≤ 1,

where Z(y,T0) is a solution of the problem (33)–(35) obtained at t = T0. Since Z(y,T0) ∈
0
C [0, 1] ∩

C2(0, 1) then z(y, t; T0) belongs to
0
C (ΠT0)∩C2,1(ΠT0) [19]. This allows one to conclude that Z(y, t) also

belongs to
0
C (ΠT0) ∩ C2,1(ΠT0) as Z(y, t) coincides with z(y, t; T0) in this domain. Thus, the solution
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Z(y, t) of the problem (33)–(35) is continuous everywhere in the domain Π = {0 ≤ y ≤ 1, 0 ≤ t ≤ T },
and Z(y, t) belongs to C2,1 in the above-mentioned subdomains of this domain.

Since the equality (32) is a representation of this solution at the final time t = T [19], then from (32)
it follows that Z(y,T ) = 0 for 0 ≤ y ≤ 1. But Z(y,T ) = z(y,T ; T0), hence z(y,T ; T0) is also equal to 0 for
0 ≤ y ≤ 1. Thus, in the domain ΠT0 the solution of the homogeneous equation with the homogeneous
boundary conditions satisfies the final condition z(y, t; T0)|t=T = 0 for 0 ≤ y ≤ 1. Just as in the proof
of Lemma 3.2 we can use results of [20,21] on the inverse uniqueness property; i.e., z(y, t; T0) ≡ 0 in
ΠT0 . Then it follows from the initial condition z|t=T0 = Z(y,T0) that Z(y,T0) = 0 for 0 ≤ y ≤ 1. But
Z(y,T0) satisfies the nonhomogeneous equation (33) with the right hand side Θ(y, t) = θ(y, t) for t = T0.
Hence, θ(y,T0) = 0 for 0 ≤ y ≤ 1. This means (see the form of the function θ(y, t)) that α(y,T0) = 0
for 0 ≤ y ≤ 1. Lemma 3.3 is proved.

3.3. Conditions of unique restoration of p(u)

The density properties for the adjoint problem (23)–(25) established with the help of the duality
principle permit one to investigate the uniqueness of a solution of the inverse restoration problem (1)–
(8) with an unknown coefficient p(u).

Theorem 3.1. Let the following conditions be satisfied.

1. There hold assumptions of Theorem 2.1 for the input data; in addition, the coefficient b0 is positive
for (x, t) ∈ Q, its derivative b0x is in Hλ,λ/2(Q), the derivative at is in C(D), the derivative ct is
Hölder continuous in x and t with the corresponding exponents λ and λ/2, its derivative with
respect to u is continuous for (x, t, u) ∈ D; the derivative of the final function g(x) is a sign-
definite function: |gx(x)| > 0 for 0 ≤ x ≤ l.

2. There exists a solution {u(x, t), ξ(t), p(u)} of the considered inverse restoration problem possessing
the properties

u(x, t) ∈ H2+λ,1+λ/2(Q), p(u) ∈ C1[−M0,M0], 0 < λ < 1,

u(x, t)x is a function of constant signs with respect to t ∈ [0,T ],

ξ(t) ∈ H1+λ/2[0,T ], 0 < β0 < ξ(t) ≤ β1 for 0 ≤ t ≤ T,

and satisfying the relations (1)–(7), the final observation (8), and the matching conditions (10).

Then this solution is unique in the mentioned classes of smooth functions under one of the following
conditions

(j) p(u) is defined for u ∈ [−M0, gmin) and u ∈ (gmax,M0], where gmin = min0≤x≤l g(x) and gmax =

max0≤x≤l g(x),

(jj) p(u) is an analytic function for u ∈ (−M0,M0).

Proof. To prove this theorem, first we consider the equation (22) with conditions (18), (19) and the
corresponding adjoint boundary value problem (23)–(25). The assumptions on the input data allow one
to apply Lemma 3.3 to the integral relation (26) of Lemma 3.1 with α(y, t) = h(y, t), where we suppose
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that ∆p is a function of constant signs with respect to u ∈ [M0,M0] (see the form of the function h(y, t)).
Hence, we conclude that

{ξ−1
2 (t)b0u2y∆p(u2)}

∣∣∣∣
t=T

= 0, 0 ≤ y ≤ 1.

Since ξ(t)|t=T = l then taking into account this fact and the inequalities b0(yl,T ) > 0 and |gy(yl)| > 0
for 0 ≤ y ≤ 1, we obtain ∆p(g(yl)) = 0 for 0 ≤ y ≤ 1. Since the function g(x) is continuous for
0 ≤ x ≤ l, we have ∆p(g) = 0 for g ∈ [gmin, gmax]. Under either of assumptions (j) and (jj), this means
that ∆p(u) = 0 for u ∈ [−M0,M0]. Then the equation (22) together with the conditions (18), (19)
implies ∆u(x, t) ≡ 0 in Q (in variables (x, t)) [19].

Now we return to the equation (17) and consider its other linear part, namely

c∆ut − ξ
−2
2 (t)(a∆uy)y +A∆uy + B∆u = C∆ξ(t) +D∆ξt(t), (y, t) ∈ Π. (36)

But from the equation (36) and the relations (18)–(20) it follows that ∆u(x, t) ≡ 0 in Q (in variables
(x, t)), ∆ξ(t) ≡ 0 for 0 ≤ t ≤ T since the direct quasilinear Stefan problem (1)–(7) with the coefficient
b = p(u)b0(x, t) has a unique solution (see [14]).

Thus, results obtained for the equations (22) and (36) with the corresponding boundary and initial
conditions allow one to complete the proof of Theorem 3.1.

4. Unique restoration of the convection coefficient p(x, u)

Conditions for the uniqueness of the solution {u(x, t), ξ(t), p(x, u)} of inverse restoration problem
(1)–(8) with the unknown convection coefficient dependent on the temperature u and the spatial variable
x are established by the following theorem.

Theorem 4.1. Let assumption 1 of Theorem 3.1 be satisfied. In addition, suppose that there exists a
solution {u(x, t), ξ(t), p(x, u)} satisfying the relations (1)–(7), the final observation (8), and the matching
conditions (10) and having the properties

u(x, t) ∈ H2+λ,1+λ/2(Q), ξ(t) ∈ H1+λ/2[0,T ], p(x, u) ∈ C1,1(Ω), 0 < λ < 1,

u(x, t)x is a function of constant signs with respect to t ∈ [0,T ],

0 < β0 < ξ(t) ≤ l0 = β1 for 0 ≤ t ≤ T, Ω = [0, β1] × [−M0,M0].

Then this solution is unique in the mentioned classes of smooth functions under one of the following
conditions

(jjj) p(x, u) is defined in Ω outside the domain {(x, u) : 0 ≤ x ≤ l, gmin ≤ u ≤ gmax}, where gmin =

min0≤x≤l g(x) and gmax = max0≤x≤l g(x),

(jv) p(x, u) is an analytic function in the domain Ω.

The proof of these claims is similar to that of Theorem 3.1. In particular, an analog of the equation
(17) is given by the equation

c∆ut − ξ
−2
2 (t)(a∆uy)y +A∆uy + B∆u

= C∆ξ(t) +D∆ξt(t) − ξ−1
2 (t)b0u2y∆p(yξ2(t), u2), (y, t) ∈ Π. (37)
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Hence, the corresponding form of the equation (22) becomes

c∆ut − L∆u = −ξ−1
2 (t)b0u2y∆p(yξ2(t), u2), (y, t) ∈ Π. (38)

Next, taking into account the assumptions of Theorem 4.1 on the input data and the solution of this
inverse problem, we can apply Lemma 3.3 with α(y, t) = h(y, t) to the integral relation (26) of Lemma
3.1. Now the function h(y, t) has the form

h(y, t) = −ξ−1
2 (t)b0u2y∆p(yξ2(t), u2),

and is a function of constant signs with respect to t ∈ [0,T ]. This claim is valid if we take into account,
in particular, that yξ2(t) ∈ [0, l0] for any t ∈ [0,T ] and ∆p is a function of constant signs with respect
to u ∈ [M0,M0] (according to our supposition). This leads to

{ξ−1
2 (t)b0u2y∆p(yξ2(t), u2)}|t=T = 0, 0 ≤ y ≤ 1.

From here it follows that ∆p(yl, g(yl)) = 0 for 0 ≤ y ≤ 1 since ξ(T ) = l, b0(yl,T ) > 0, and |gy(yl)| > 0
for 0 ≤ y ≤ 1. This, together with the continuity of the final function g(x), implies that ∆p(x, g) ≡ 0
for 0 ≤ x ≤ l, g ∈ [gmin, gmax]. Hence, any of the assumptions (jjj) and (jv) allows one to conclude that
∆p(x, u) ≡ 0 in the entire domain Ω. But this means that the equation (38) with the conditions (18),
(19) have a unique solution ∆u(x, t) ≡ 0 in Q (in variables (x, t)) [19].

Investigation of the other linear part of the equation (37) completely repeats the corresponding
claims for the equation (36) and implies identities ∆u(x, t) ≡ 0 in Q (in variables (x, t)), ∆ξ(t) ≡ 0 for
0 ≤ t ≤ T since the direct quasilinear Stefan problem (1)–(7) with the coefficient b = p(x, u)b0(x, t)
has a unique solution (see [14]).

This completes the proof of Theorem 4.1 on uniqueness of the solution {u(x, t), ξ(t), p(x, u)}.

5. Admissible solutions of the inverse restoration problem

The function spaces chosen for the input data and the solution {u, ξ, p} of the considered inverse
problems are natural in the sense that they are associated with the exact differential dependences in
Hölder classes for the corresponding direct statement of the one-phase quasilinear Stefan problem (1)–
(7) [14]. However, if the set of admissible solutions is expanded by assuming that the desired coefficient
p in (9) also depends on the variable t, the uniqueness property may be lost. This is illustrated by the
following examples.
Example 1. Two function sets 

u1(x, t) = x(2 − t),
ξ1(t) = 2 − t2,

p1(t, u) = u + t2 + 0.5,
u2(x, t) = x(2 − t2),
ξ2(t) = 2 − t,
p2(t, u) = u + t2 + t,

are solutions of the following inverse restoration problem in the one-phase domain Q = {0 ≤ x ≤
ξ(t), 0 ≤ t ≤ 1}:

ut − uxx + xp(t, u)ux − 2xu = 2xt2, (x, t) ∈ Q,
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u|x=0 = 0, u|x=ξ(t) = (2 − t2)(2 − t), 0 < t ≤ 1,

u|t=0 = 2x, 0 ≤ x ≤ 2, ξ|t=0 = 2,

u|t=1 = x, 0 ≤ x ≤ 1, ξ|t=1 = 1,

ux + χ(x, t)|x=ξ(t) = ξt(t), 0 < t ≤ 1,

where the function χ(x, t)|x=ξ(t) has the form

χ(x, t)|x=ξ(t) = ξ(t)
1 − 2t
t(1 − t)

+
2t(2 − t) − (2 − t2)

t(1 − t)
− 2.

Example 2. Two function sets 
u1(x, t) = x(2 − t)(x + t2),
ξ1(t) = 2 − t2,

p1(x, t, u) =
u+2(t−2)+x(4t−3t2−x)

(t−2)(2x+t2) ,
u2(x, t) = x(2 − t2)(x + t),
ξ2(t) = 2 − t,
p2(x, t, u) =

u+2(t2−2)+x(2−3t2−2xt)
(t2−2)(2x+t) ,

are solutions of the following inverse restoration problem in the one-phase domain Q = {0 ≤ x ≤
ξ(t), 0 ≤ t ≤ 1}:

ut − uxx + p(x, t, u)ux + u = 0, (x, t) ∈ Q,

u|x=0 = 0, u|x=ξ(t) = 2(2 − t2)(2 − t), 0 < t ≤ 1,

u|t=0 = 2x2, 0 ≤ x ≤ 2, ξ|t=0 = 2,

u|t=1 = x(x + 1), 0 ≤ x ≤ 1, ξ|t=1 = 1,

ux + χ(x, t)|x=ξ(t) = ξt(t), 0 < t ≤ 1,

where the function χ(x, t)|x=ξ(t) has the form

χ(x, t)|x=ξ(t) = (2t − 1)
ξ(t) − (2 − t)

t(t − 1)
− 1 − (ξ(t) + 2)(4 − t2 − t − ξ(t)).

Therefore, the function sets in the corresponding statements of the inverse restoration problems in
the one-phase domain

{u(x, t), ξ(t), p(u)} ∈ H2+λ,1+λ/2(Q) × H1+λ/2[0,T ] ×C1[−M0,M0],

{u(x, t), ξ(t), p(x, u)} ∈ H2+λ,1+λ/2(Q) × H1+λ/2[0,T ] ×C1,1(Ω)

form natural sets of admissible solutions preserving the uniqueness property. The extension of these
sets by the inclusion of nonlinear convection coefficients also depending on time t leads to the possible
failure of this property.

Namely, the present examples show: there exist differing time-dependent convection coefficients
such that the corresponding temperature distribution and phase boundary with the identical initial
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conditions arrive at the identical final conditions but by the different ways. Such a situation is possible
for some inverse problems because of the violation of the cause-effect relations in their statements.
Moreover the corresponding problem in the direct statement with all the given input data (i.e., causal
characteristics) has a unique solution.

Note that the uniqueness property may be lost not only for inverse Stefan problems. In [22] it is
shown for some boundary regimes of the specific form that the corresponding direct statements of
Stefan problems have multiple solutions for both the one and two phase models. Thus, loss of the
uniqueness property is connected with the specific form of one of the causal characteristics.

6. Conclusion

The mathematical models of one-phase heat transform processes with unknown
temperature-dependent convection coefficients are investigated. The following results of this analysis
can be formulated.

1. The statements of the corresponding inverse problems on the identification of nonlinear
convection coefficients are justified under the assumption that additional information is given in
the form of final observation of the temperature distribution and the phase boundary position.
The choice of function spaces for the input data and the solution of such inverse problems relies
on unique solvability of the corresponding direct Stefan problems in Hölder classes.

2. For these statements the conditions ensuring the uniqueness of the smooth solution are obtained.
The corresponding proof relies on the ”straightening phase boundaries” substitution, the next
application of the duality principle, and the study of the density properties for the corresponding
adjoint problems.

3. The sets of admissible solutions of the inverse restoration problems preserving the uniqueness
property are indicated. The corresponding examples show that this property may be lost if the
desired convection coefficient depends not only on the temperature and the spatial variable but
also on the time.

Investigation of uniqueness property for the inverse restoration problems is important both for the
mathematical modeling and numerical solving complicated nonstationary processes and for theory of
free boundary problems for parabolic equations.
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