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1. Introduction

Balancing numbers are originally obtained from a simple Diophantine equation. They are the
solutions of the Diophantine equation 1 + 2 + 3 + . . .+ (n− 1) = (n + 1) + (n + 2) + . . .+ (n + r), where
r is a balancer corresponds to a balancing number n [1, 3]. Balancing numbers satisfy the recurrence
relation

Bn+1 = 6Bn − Bn−1, n ≥ 1,

with B0 = 0 and B1 = 1, where Bn denotes the nth balancing number [1]. On the other hand, Lucas-
balancing numbers Cn are obtained from the formula Cn =

√
8B2

n + 1 and are the terms of the sequence
{1, 3, 17, 99, 577, . . .} [7]. They are recursively defined same as that of balancing numbers but with
different initial values, that is,

Cn+1 = 6Cn −Cn−1, n ≥ 1,

with C0 = 1 and C1 = 3 [7].

Balancing numbers are generalized in many ways. For details review of some recent works, one
can go through [2, 4–6, 8–10]. One of the generalization of balancing numbers called as k-balancing
numbers depending on one real parameter k, are recently introduced by Ray in [9]. The nth k-balancing
numbers Bk,n are terms of the sequence {0, 1, 6k, 36k2 − 1, 216k3 − 12k, . . .} and are recursively defined
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by
Bk,0 = 0, Bk,1 = 1 and Bk,n+1 = 6kBk,n − Bk,n−1 for k ≥ 1.

Notice that, for k = 1, balancing numbers 0, 1, 6, 35, 204, . . . are obtained.

On the other hand, k-Lucas-balancing numbers that are the natural extension of Lucas-balancing
numbers extensively studied in [9]. The sequence of k-Lucas-balancing numbers {Ck,n} = {1, 3k, 18k2−

1, 108k3 − 9k, . . .} satisfies the same recurrence relation as that of k-balancing numbers with different
initial conditions, i.e.,

Ck,0 = 1,Ck,1 = 3k and Ck,n+1 = 6kCk,n −Ck,n−1 for k ≥ 1.

Few properties that the k-balancing numbers satisfy are summarized below.
• Binet formula for k-balancing numbers: Bk,n =

λn
k−λ

−n
k

λk−λ
−1
k

, where λk = 3k +
√

9k2 − 1.

• Catalan identity for k-balancing numbers: B2
k,n − Bk,n−rBk,n+r = B2

k,r.

• Simson’s identity for k-balancing numbers: B2
k,n − Bk,n−1Bk,n+1 = 1.

• D’ Ocagne identity for k-balancing numbers: Bk,mBk,n+1 − Bk,m+1Bk,n = B2
k,m−n.

• For odd k-balancing numbers, Bk,2n+1 = B2
k,n+1 − B2

k,n.

• For even k-balancing numbers, Bk,2n = 1
6k [B2

k,n+1 − B2
k,n−1].

• Generating function for k-balancing numbers: fk(x) = x
1−6kx−x2 .

• First combinatorial formula for k-balancing numbers:

Bk,n =

b n−1
2 c∑

i=0

(−1)i

(
n − 1 − i

i

)
(6k)n−2i−1.

• Second combinatorial formula for k-balancing numbers:

Bk,n =
1

2n−1

b n−1
2 c∑

i=0

(
n

2i + 1

)
(6k)n−2i−1(36k2 − 4)i.

2. Identities concerning k-balancing numbers of arithmetic indexes

In this section, we study different sums of k-balancing numbers of arithmetic indexes, say an+ p for
fixed integers a and p with 0 ≤ p ≤ a − 1. Several identities concerning such numbers are established
straightforwardly.

The following lemmas are useful while proving the subsequent results.

Lemma 2.1. For all integers n ≥ 1, λn
k1

+ λn
k2

= Bk,n+1 − Bk,n−1.

Proof. The proof of this result can be easily shown by using Binet formula for k-balancing numbers
and the fact λn

k1
λn

k2
= 1. �

AIMS Mathematics Volume 4, Issue 2, 308–315.



310

Lemma 2.2. Bk,a(n+2)+p = (Bk,a+1 − Bk,a−1)Bk,a(n+1)+p − Bk,an+p.

Proof. Using Binet formula for k-balancing numbers and the result from Lemma 2.1, the first term of
the right hand side expression reduces

(Bk,a+1 − Bk,a−1)Bk,a(n+1)+p =
1

λk1 − λk2

[
λ

a(n+2)+p
k1

− λ
a(n+2)+p
k2

+ λ
an+p
k1
− λ

an+p
k2

]
=
λ

a(n+2)+p
k1

− λ
a(n+2)+p
k2

λk1 − λk2

+
λ

an+p
k1
− λ

an+p
k2

λk1 − λk2

= Bk,a(n+2)+p + Bk,an+p,

and the result follows. �

Since Bk,n+1 − Bk,n−1 = 2Ck,n [9], the previous formula reduces to an identity

Bk,a(n+2)+p = 2Ck,aBk,a(n+1)+p − Bk,an+p.

This identity gives the general term of the sequence of k-balancing numbers {Bk,an+p} as a linear
combination of two preceding terms. Iterative application of this result gives the general term as a
combination of first two terms as follows:

Bk,an+p =


b n−1

2 c∑
i=0

(−1)a+i

(
n − 1 − i

i

)
(2Ck,a)n−1−2i

 Bn−1−2i
k,an+p

+


b n−2

2 c∑
i=0

(−1)(a + 1)(1 + i)
(

n − 2 − i
i

)
(2Ck,a)n−2−2i

 Bn−2−i
k,p .

In particular, for a = 1, then r = 0 and we have the corresponding identity for k-balancing numbers,

Bk,n =

b n−1
2 c∑

i=0

(−1)i

(
n − 1 − i

i

)
(6k)n−2−2i.

Now we will find the generating function for the sequence {Bk,an+p}. Let G(k, a, p, x) be the generating
function for the sequence {Bk,an+p}, where 0 ≤ p ≤ a − 1, then

G(k, a, p, x) =

∞∑
n=0

Bk,an+pxn = Bk,p + Bk,a+px + Bk,2a+px2 + Bk,3a+px3 + . . . . (2.1)

Multiplying 2Ck,ax and x2 in (2.1) by turns and subtracting the first one from (2.1) and then adding the
second one, we obtain

(1 − 2Ck,ax + x2)G(k, a, p, x) = Bk,p + (Bk,a+p − 2Bk,pCk,a)x (2.2)

+

∞∑
n=2

(Bk,a(n+2)+p − (Bk,a+1 − Bk,a−1)Bk,a(n+1)+p + Bk,an+p)xn.
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The expression within the summation vanishes in view of Lemma 2.2. On the other hand, using the
convolution identity Bk,a+p = Bk,pBk,a+1 − Bk,p−1Bk,a and the fact Bk,n+1 − Bk,n−1 = 2Ck,n, the expression
Bk,p + (Bk,a+p − 2Bk,pCk,a) reduces to

Bk,p + (Bk,a+p − 2Bk,pCk,a) = Bk,pBk,a−1 − Bk,aBk,p−1 = −Bk,a−p.

Therefore, (2.2) gives

G(k, a, p, x) =
Bk,p + Bk,a−px

1 − 2Ck,ax + x2 .

For a = 1, then p = 0 and G(k, 1, 0, x) = x
1−6kx+x2 which is indeed the generating function for

k-balancing numbers. While Choosing a = 2, p will be 0 and 1 and we have G(k, 2, 0, x) = 6kx
1−6kx+x2

and G(k, 2, 1, x) = 1+x
1−6kx+x2 .

The following theorem establishes the sum for k-balancing numbers of the type an + p.

Theorem 2.3. Let a be any integer and 0 ≤ p ≤ a − 1, then

n∑
i=0

Bk,ai+p =
Bk,a(n+1)+p − Bk,an+p − Bk,p − Bk,a−p

Bk,a+1 − Bk,a−1 − 2
.

Proof. Using Binet formula, the formula for geometric series and the fact λn
k1
λn

k2
= 1, we get

n∑
i=0

Bk,ai+p =
1

λk1 − λk2

 n∑
i=0

λ
ai+p
k1
−

n∑
i=0

λ
ai+p
k2


=

1
λk1 − λk2

λan+p+a
k1

− λ
p
k1

λa
k1
− 1

−
λ

an+p+a
k2

− λ
p
k2

λa
k2
− 1


=

1
(λk1 − λk2)[(λk1λk2)a − λa

k1
− λa

k2
+ 1]

[
λ

an+p
k1

(λk1λk2)
a

− λ
an+p+a
k1

− λ
p
k1
λa

k2
+ λ

p
k1
− λ

an+p
k2

(λk1λk2)
a + λ

an+p+a
k2

+ λ
p
k2
λa

k1
− λ

p
k2

]
=

1
(λk1 − λk2)[2 − (λa

k1
+ λa

k2
)]

[λan+p
k1
− λ

an+p
k2

λk1 − λk2

−
λ

an+p+a
k1

− λ
an+p+a
k2

λk1 − λk2

λ
p
k1
− λ

p
k2

λk1 − λk2

+
λa

k1
λ

p
k2
− λ

p
k1
λa

k2

λk1 − λk2

]
.

By virtue of Lemma 2.1 and by Binet formula, we get the desired result. �

The following results are immediate consequence of Theorem 2.3 by setting a = 2t + 1 and a = 2t
respectively.

Corollary 2.4. The sum of odd k-balancing numbers of the kind an + p is

n∑
i=0

Bk,(2t+1)i+p =
Bk,(2t+1)(n+1)+p − Bk,(2t+1)n+p − Bk,p − Bk,(2t+1)−p

Bk,2t+2 − Bk,2t − 2
.
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Corollary 2.5. The sum of even k-balancing numbers of the kind an + p is

n∑
i=0

Bk,2ti+p =
Bk,2t(n+1)+p − Bk,2tn+p − Bk,p − Bk,2t−p

Bk,2t+1 − Bk,2t−1 − 2
.

Obsevation 2.6. Let t = 0, then a = 1 and p = 0. Therefore from Corollary 2.4, we obtain

n∑
i=0

Bk,i =
Bk,n+1 − Bk,n − 1

6k − 2
.

For k = 1, the sum of balancing numbers is
n∑

i=0

Bk,i =
Bn+1 − Bn − 1

4
. Similarly, for t = 1, a = 3, we

have
n∑

i=0

Bk,3i+p =
Bk,3(n+1)+p − Bk,3n+p − Bk,p − Bk,3−p

Bk,4 − Bk,2 − 2
.

For p = 0,
n∑

i=0

Bk,3i =
Bk,3(n+1) − Bk,3n − Bk,3

Bk,4 − Bk,2 − 2
,

and for k = 0,
n∑

i=0

B3i =
B3n+3 − B3n − 35

196
. For p = 1,

n∑
i=0

Bk,3i+1 =
Bk,3n+4 − Bk,3n+1 − Bk,2 − 1

Bk,4 − Bk,2 − 2
.

For k = 0, the sum formula for balancing numbers is given by
n∑

i=0

B3i+1 =
B3n+4 − B3n+1 − 7

196
.

Finally, for p = 2,
n∑

i=0

Bk,3i+2 =
Bk,3n+5 − Bk,3n+2 − Bk,2 − 1

Bk,4 − Bk,2 − 2
.

Again, k = 0 gives
n∑

i=0

B3i+2 =
B3n+5 − B3n+2 − 7

196
. Similarly, by virtue of Corollary 2.5, for t = 1,

then a = 2 implies that for p = 0,
n∑

i=0

Bk,2i =
Bk,2n+2 − Bk,2n − 6k

36k2 − 4
. For p = 1, we have

n∑
i=0

Bk,2i+1 =

Bk,2n+3 − Bk,2n+1 − 2
36k2 − 4

and so on.

Now we will find the recurrence relation for the sequence {Bk,an+p}. For that, let us denote
n∑

i=0

Bk,ai+p

as S k,an+p. In view of Lemma 2.2, we have

S k,an+p =

n∑
i=0

Bk,ai+p
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= Bk,p + Bk,a+p +

n∑
i=2

Bk,ai+p

= Bk,p + Bk,a+p +

n∑
i=2

(2Ck,pBk,a(i−1)+p − Bk,a(i−2)+p)

= Bk,p + Bk,a+p + 2Ck,p

n−1∑
i=1

Bk,ai+p −

n−2∑
i=0

Bk,ai+p

= Bk,p + Bk,a+p + 2Ck,p(S k,a(n−1)+p − Bk,p) − S k,a(n−2)+p.

It follows that,
S k,a(n+1)+p = Bk,p + Bk,a+p + 2Ck,p(S k,an+p − Bk,p) − S k,a(n−1)+p.

Consequently,

S k,a(n+1)+p = (2Ck,p + 1)S k,an+p − (2Ck,p + 1)S k,a(n−1)+p + S k,a(n−2)+p,

which is the desired recurrence relation for the sequence {Bk,an+p}.

3. Identities concerning k-Lucas-balancing numbers of arithmetic indexes

In this section, we study the k-Lucas-balancing numbers of arithmetic indexes of the form an + p.
A repeated application of the formula in Lemma 2.2 gives an identity that relates k-Lucas-balancing

numbers with k-balancing numbers, that is, for natural numbers n and l,

Ck,n = Ck,n−(l−1)Bk,p −Ck,n−lBk,l−1.

But for l = −n, Ck,n = Ck,2nBk,n+1 −Ck,2n+1Bk,n. Also it is observed that Ck,−n = Ck,n.

Lemma 3.1. Let a , 0 and 0 ≤ p ≤ a − 1, then Ck,a(n+1)+p = 2Ck,aCk,an+p −Ck,a(n−1)+p.

Proof. Clearly 2Ck,a(n+1)+p = Bk,a(n+1)+p+1 − Bk,a(n+1)+p−1. Therefore, using Lemma 2.2, we get

2Ck,a(n+1)+p = (Bk,a+1 − Bk,a−1)Bk,an+p+1 − Bk,a(n−1)+p+1

−(Bk,a+1 − Bk,a−1)Bk,an+p−1 + Bk,a(n−1)+p−1

= 2Ck,a(Bk,an+p+1 − Bk,an+p−1) − (Bk,a(n−1)+p+1 − Bk,a(n−1)+p−1)
= 2Ck,a × 2Ck,an+p − 2Ck,a(n−1)+p,

and we obtain the desired result. �

In particular, for p = 0 the above identity reduces to Ck,an+a = 2Ck,aCk,an − Ck,an−a. Applying
iteratively the identity in Lemma 3.1 gives rise to the following sum formula.

Ck,an+p =

m∑
i=0

(−1)i

(
m
i

)
(2Ck,a)m−iCk,a(n−m−i)+p, 0 ≤ m ≤ n.
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Further, for m = n, this formula reduces to Ck,an+p =

n∑
i=0

(−1)i

(
n
i

)
(2Ck,a)n−iCk,p−ai.

In order to find the generating function of the sequence {Ck,an+p}, we proceed in the following way.
Let g(k, a, p, x) be the generating function for the sequence {Ck,an+p}, where 0 ≤ p ≤ a − 1, then

g(k, a, p, x) =

∞∑
n=0

Ck,an+pxn = Ck,p + Ck,a+px + Ck,2a+px2 + Ck,3a+px3 + . . . . (3.1)

Multiply (3.1) by 2Ck,ax and x2 and proceed as in case of the sequence {Bk,an+p}, we get the generating
function for the sequence {Ck,an+p} as

g(k, a, p, x) =
Ck,p + [Ck,a+p − 2Ck,aCk,p]x

1 − 2Ck,ax + x2 .

It is observed that for a = 1, then r = 0 and we have the generating function for k-Lucas-balancing
numbers, g(k, x) = 1−3kx

1−6kx+x2 . Further, for k = 1, the generating function for Lucas-balancing numbers
g(x) = 1−3x

1−6x+x2 is obtained.

Theorem 3.2. Let a be any integer and 0 ≤ p ≤ a − 1, then

n∑
i=0

Ck,ai+p =
Ck,an+p −Ck,a(n+1)+p + Ck,p −Ck,a−p

2(1 −Ck,a)
.

Proof. The proof of this theorem is analogous to Theorem 2.3. �

As an observation, one can see that, for a = 1 then r = 0 gives the identity
n∑

i=0

Ci =
Cn+1 −Cn + 2

4
=

cn + 1
2

, where cn is the nth Lucas-cobalancing number with

Cn+1 −Cn = 2cn [2].

We end this section by establishing an important relation between k-balancing and
k-Lucas-balancing numbers.

Theorem 3.3. For t ≥ 1,
Bk,2tn

Bk,n
= 2t

t−1∏
i=0

Ck,2tn.

Proof. Using Binet formula and Lemma 2.1, the left side expression becomes

Bk,2tn

Bk,n
=
λ2tn

k1
− λ2tn

k2

λn
k1
− λn

k2

= (λ2t−1n
k1

+ λ2t−1n
k2

)
λ2t−1n

k1
− λ2t−1n

k2

λn
k1
− λn

k2

= 2Ck,2t−1n(λ2t−2n
k1

+ λ2t−2n
k2

)
λ2t−2n

k1
− λ2t−2n

k2

λn
k1
− λn

k2
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= 22Ck,2t−1nCk,2t−2n(λ2t−3n
k1

+ λ2t−3n
k2

)
λ2t−3n

k1
− λ2t−3n

k2

λn
k1
− λn

k2

.

Continuing in this way, we finally get

Bk,2tn

Bk,n
= 2t

t−1∏
i=0

Ck,2tn.

This completes the proof. �

In particular, for t = 1, the above identity reduces to Bk,2n = 2Bk,nCk,n, a known identity for k-
balancing numbers.
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