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Abstract: The fractional input stability of the electrical circuit equations described by the fractional
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1. Introduction

Recently, the electrical circuit equations as Resistor-Capacitor (RC) and Resistor-Inductor (RL)
have attracted many mathematicians [3, 15]. The analytical solutions of the electrical circuit
equations described by a singular and a no-singular fractional derivative operators have been
proposed. In [6], Aguilar et al. have introduced the electrical circuit equations considering the Caputo
fractional derivative. They have proposed the analytical solutions of the electrical RC and RL
equations described by the Caputo fractional derivative. In [6], the authors have proposed the
graphical representations to illustrate the main results. The Caputo fractional derivative is a fractional
derivative with a regular kernel. Recently, the fractional derivative operators with no-singular kernels
were introduced in the literature. The Caputo-Fabrizio fractional derivative and the Atangana-Baleanu
fractional derivative. In [5], Aguilar et al. have introduced electrical equations considering the
fractional derivative operators with two parameters. They have proposed the solutions of the electrical
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RL and RC circuit equations described by the fractional derivative operators with two parameters
α, β ∈ (0, 1]. In [5], the authors have introduced electrical circuit equations using the
Atangana-Baleanu fractional derivative. They have proposed the analytical solutions using the
Laplace transform. They have presented the numerical scheme of the Atangana-Baleanu fractional
derivative of getting the analytical solutions of the electrical RC and RL circuit equations. In [4],
Aguilar et al. have presented the electrical circuit equations using the Caputo-Fabrizio fractional
derivative. They have proposed the graphical representations of the analytical solutions. In [8],
Aguilar et al. have investigated of getting the analytical solution of the RLC circuit equation
described by the Caputo fractional derivative. In [7], Aguilar et al. have analyzed and proved the jerk
dynamics can be obtained with the electrical circuit equations. There exist many other works related
to the analytical solutions, seen in [11, 20]. The stability problem interests many mathematicians. The
stability problem studies the behaviors of the analytical solutions of the fractional differential
equations. The analytical solution of the electrical circuit described by the singular and the
no-singular fractional derivative operators is an open problem in fractional calculus and continues to
receive many investigations. The analytical solutions of the electrical circuits exist. We can get them.
The problem is how to analyze the behaviors of these solutions using stability notions. In [14], the
authors have analyzed the stability of the electrical RLC circuit equation. The electrical RL and RC
circuit equations contain source terms. The source terms have some properties. The source term of
the electrical circuit equations can be constant [10]. The source term can be sinusoidal [5]. They exist
some source terms which converge in the times [10]. In stability problems, there exists a novel notion
of studying the behaviors the fractional differential equations with these characteristics. This notion is
called the fractional input stability recently introduced in the literature by Sene in [18, 19]. In this
paper, the function containing the source term will be considered as the exogenous input. The
contribution of our paper is to recall the analytical solutions of the electrical RL and RC circuit
equations described by the Riemann-Liouville and the Caputo fractional derivative using the Laplace
transform. Secondly, we will analyze the behaviors of the obtained analytical solutions of the
electrical RL and RC circuit equations using the fractional input stability. In other words, we
investigate the fractional input stability of the electrical RL and RC circuit equations described by the
Riemann-Liouville and the Caputo fractional derivative. The fractional input stability resumes three
properties. Firstly, when the considered exogenous input converges, then the analytical solution of the
considered electrical circuit converges as well. In other words, a converging input generates a
converging state. That is the CICS property of the fractional input stability. Secondly, when the
exogenous input is bounded, then the analytical solution of the considered electrical circuit is
bounded as well. In other words, a bounded input generates a bounded state. That is the BIBS
property of the fractional input stability. And at last, when the the exogenous input is null, then the
trivial solution of the unforced electrical circuit is globally asymptotically stable. A fractional
differential equation is said to be fractional input stable when the norm of the analytical solution at all
times is bounded by a function proportional to the initial state and converging to zero in times plus a
positive function depending to the norm of the exogenous input.

In stability problems in fractional calculus, the asymptotic stability is provided in many
manuscripts. Using the fractional input stability, we can study the uniform global asymptotic stability
of the fractional differential equations. Presently, the stability conditions for the asymptotic stability
were provided in the literature. This paper offers an alternative to study the (uniform) global
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asymptotic stability of the fractional differential equations. It is the main contribution of this paper.
The application of the fractional input stability of the fractional differential equations is the second
contribution of this paper.

The paper is described as the following form. In Section 2, we recall preliminary definitions of
the fractional derivative operator and recall the definitions of the stability notions. In Section 3, we
investigate the analytical solutions of the electrical RL, RC and LC circuit equations described by the
Riemann-Liouville fractional derivative and the Caputo fractional derivative. We analyze the fractional
input stability of the obtained analytical solutions. In Section 4, we give the graphical representations
of the fractional input stability of the electrical RC and RL circuit equations described by the Caputo
fractional derivative operator. In Section 5, we give the conclusions and the remarks.

Notation: PD denotes the set of all continuous functions χ : R≥0 → R≥0 satisfying χ(0) = 0 and
χ(s) > 0 for all s > 0. A class K function is an increasing PD function. The class K∞ denotes the set
of all unbounded K function. A continuous function β : R≥0 × R≥0 → R≥0 is said to be class KL if
β(., t) ∈ K for any t ≥ 0 and β(s, .) is non increasing and tends to zero as its arguments tends to infinity.

Let x ∈ Rn, ‖x‖ stands for its Euclidean norm: ‖x‖ :=
√

x2
1 + . . . + x2

n.

2. Preliminary definitions

In this section, we recall the definitions of the fractional derivative operators and the definition of
the fractional input stability introduced in the literature [18, 19] of fractional calculus. We recall the
definition of the Caputo fractional derivative.

Definition 1. [9, 16, 17] Consider a function f : [0,+∞[−→ R, the Caputo fractional derivative of the
function f of order α is formulated as the following form

Dc
α f (t) =

1
Γ(1 − α)

∫ t

0

f ′(s)
(t − s)α

ds (2.1)

for all t > 0, we consider α ∈ (0, 1) and Γ(.) is the gamma function.

The Riemann-Liouville fractional derivative is recalled in the following definition.

Definition 2. [9, 13] Consider a function f : [0,+∞[−→ R, the Riemann-Liouville fractional
derivative of the function f of order α is formulated as the following form

DRL
α f (t) =

1
Γ(1 − α)

d
dt

∫ t

0

f (s)
(t − s)α

ds (2.2)

for all t > 0, we consider α ∈ (0, 1) and Γ(.) is the gamma function.

The Riemann-Liouville fractional integral is recalled in the following definition.

Definition 3. [12, 18, 19] Consider a function f : [0,+∞[−→ R, the Riemann-Liouville fractional
integral of the function f of order α is represented as the following form

IRL
α f (t) =

1
Γ(1 − α)

∫ t

0
(t − s)α−1 f (s)ds (2.3)

for all t > 0, we consider α ∈ (0, 1) and Γ(.) is the gamma function.
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Definition 4. [1, 2] The MittagLeffler function with two parameters is expressed as the following form

Eα,β (z) =

∞∑
k=0

zk

Γ(αk + β)
(2.4)

where α > 0, β ∈ R and z ∈ C.

We consecrate this section of recalling some stability notions introduced in [18, 19]. In general, the
fractional differential equation under consideration is defined by

Dc
αx = f (t, x, u) (2.5)

where x ∈ Rn, a continuous and locally Lipschitz function f : R+ × Rn × Rm −→ Rn and u ∈ Rm

represents the exogenous input. Note that the solution of the fractional differential equation (2.5)
exists under the assumption ”the function f is continuous and locally Lipschitz”. The existence of
the solution is fundamental in the stability problems. It is not necessary to study the stability of the
fractional differential equation when we are not sure its the solution exists.

Definition 5. [18, 19] The fractional differential equation (2.5) is fractional input stable if for any
exogenous input u ∈ Rm, there exists a function β ∈ KL, a function γ ∈ K∞ such that for any initial
state x0 the solution of (2.5) satisfies

‖x(t, x0, u)‖ ≤ β(‖x0‖ , t) + γ(‖u‖∞). (2.6)

The function γ is a class K∞ function and the function β is a class KL. Thus, from equation
(2.6), when the exogenous input u of the fractional differential equation (2.5) is bounded it follows
its solution is bounded as well, that is the BIBS property. See the proof in the next section or in the
original paper [18]. We can also notice, when the exogenous input of the fractional differential equation
(2.5) converges, when t tends to infinity, then its solution converges as well, that is CICS property, see
in [18] for more details. At last, we observe from equation (2.6) when the exogenous input into the
fractional differential equation (2.5) is null; we recover the definition of the global asymptotic stability
described in the following definition.

Definition 6. [16] The trivial solution of the unforced fractional differential equation defined by Dc
αx =

f (t, x, 0) is said to be (uniform) globally asymptotically stable if there exist a function β ∈ KL, such
that for any initial condition x0 the solution of Dc

αx = f (t, x, 0) satisfies

‖x(t, x0, 0)‖ ≤ β(‖x0‖ , t). (2.7)

The last remark is the main contribution of the fractional input stability of the fractional
differential equations. We finish this section by recalling the following lemma. It will be used to
introduce comparison functions.

Lemma 1. [21] Let α ∈ (0, 2), β is a real number, a matrix A ∈ Cn×n, µ is such that πα2 < µ < min {π, πα}
and C > 0 is a real, then it holds that ∥∥∥Eα,β (A)

∥∥∥ ≤ C
1 + ‖A‖

(2.8)

where µ ≤ arg (λ(A)) ≤ π, λ(A) represents the eigenvalues of the matrix A.
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3. Fractional input stability of the electrical circuits equations described by certain fractional
derivative operators

In this section, we address the fractional input stability of the electrical circuit equations described
by the Riemann-Liouville and the Caputo fractional derivative operators. The electrical circuit
equations under consideration are the electrical RL circuit equation, the electrical LC circuit equation,
and the electrical RC circuit equation. We analyze the bounded input bounded state (BIBS), the
converging input converging state (CICS) and the (uniform) global asymptotic stability of the
unforced fractional electrical circuit equations, properties derived to the fractional input stability of
the electrical circuit equations. It is important to note, in the rest of the paper, the second term of all
the fractional electrical circuit equations is considered as a single function which represents the
exogenous input.

3.1. Fractional input stability of the electrical RL circuit equation described by the
Riemann-Liouville fractional derivative

In this section, we address the fractional input stability of the electrical RL circuit described by
the Riemann-Liouville fractional derivative. We consider the electrical RL circuit represented by the
following fractional differential equation

Dα
RLI(t) +

σ1−αR
L

I(t) = u(t) (3.1)

with the initial boundary condition defined by
(
I1−αI

)
(a) = I0. I represents the current across the

inductor. The parameter σ is associated with the temporal components in the system, see more details
in [5, 6]. R represents the resistance, and L represents the inductance. In the second member, u(t) is
considered as the exogenous input. It contains the source term E(t) (eventually depend on time), the
function 1/L and the temporal coefficient σ1−α. Summarizing u(t) =

σ1−αE(t)
L .

Theorem 1. The electrical RL circuit defined by equation (3.1) described by the Riemann-Liouville
fractional derivative is fractional input stable.

Proof: We first determine the analytical solution of the fractional differential equation defined by
equation (3.1). Applying the Laplace transform to both sides of equation (3.1), we obtain the following
relationships

sαL(I(t)) −
(
I1−αI

)
(0) +

σ1−αR
L
L(I(t)) = L(u(t))

sαL(I(t)) − I0 +
σ1−αR

L
L(I(t)) = L(u(t))

L(I(t))
{

sα +
σ1−αR

L

}
= I0 +L(u(t))

L(I(t)) =
I0

sα + σ1−αR
L

+
L(u(t))

sα + σ1−αR
L

L(I(t)) = I0L

(
tα−1Eα,α

(
−
σ1−αR

L
tα
))

+ L

(
tα−1Eα,α

(
−
σ1−αR

L
tα
))
L (u(t))
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L(I(t)) = I0L

(
tα−1Eα,α

(
−
σ1−αR

L
tα
))

+ L

(
tα−1Eα,α

(
−
σ1−αR

L
tα
)
∗ u(t)

)
(3.2)

where L represents the usual Laplace transform and ”∗” represents the usual convolution product.
Applying the inverse of Laplace transform to both sides of equation (3.2), we obtain the following
analytical solution

I(t) = I0tα−1Eα,α

(
−
σ1−αR

L
tα
)

+

∫ t

0
(t − s)α−1 Eα,α

(
−
σ1−αR

L
(t − s)α

)
u(s)ds. (3.3)

From which it follows by applying the euclidean norm

‖I(t)‖ ≤

∥∥∥∥∥∥I0tα−1Eα,α

(
−
σ1−αR

L
tα
)∥∥∥∥∥∥ + ‖u‖

∫ t

0

∥∥∥∥∥∥(t − s)α−1 Eα,α

(
−
σ1−αR

L
(t − s)α

)∥∥∥∥∥∥ ds. (3.4)

We know the term −σ
1−αR
L ≤ 0, then there exists a positive constant M such that we have the following

inequality [17] ∫ t

0

∥∥∥∥∥∥(t − s)α−1 Eα,α

(
−
σ1−αR

L
(t − s)α

)∥∥∥∥∥∥ ds ≤ M. (3.5)

Using Lemma 1 and inequality (3.5), we obtain the following inequality

‖I(t)‖ ≤
I0C1∥∥∥t1−α

∥∥∥ + σ1−αR
L ‖t‖

+ ‖u‖M. (3.6)

Let the function β (I0, t) = I0C1

‖t1−α‖+σ1−αR
L ‖t‖

. We observe the function β (., t) is a class K function.

Furthermore, β (s, .) decays with the time and converges to zero when t tends to infinity, thus β (s, .) is
a class L function. In conclusion the function β is a class KL function. Let the function
γ (‖u‖) = ‖u‖M, it is straightforward to see γ is a class K∞ function. Finally, equation (3.6) is
represented as follows

‖I(t)‖ ≤ β (I0, t) + γ (‖u‖) . (3.7)

It follows from equation (3.7) the electrical RL circuit described by the Riemann-Liouville fractional
derivative is fractional input stable.

Let the exogenous input ‖u‖ = 0 then γ (0) = 0 (because γ is a class K∞ function), thus equation
(3.7) becomes

‖I(t)‖ ≤ β (I0, t) . (3.8)

Then the equilibrium point I = 0 of the electrical RL circuit defined by

Dα
RLI(t) +

σ1−αR
L

I(t) = 0 (3.9)

is (uniformly) globally asymptotically stable. Then, the fractional input stability of the electrical RL
circuit equation (3.1) implies the global asymptotic stability of the unforced electrical RL circuit
equation (3.9). Proving the global asymptotic stability of the equilibrium point I = 0 of the unforced
electrical RL circuit equation (3.9) using the fractional input stability is essential. The classical tools
give the asymptotic stability of the equilibrium point I = 0. Its don’t give the global asymptotic
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stability. Thus, the fractional input stability is a good compromise in the stability problems. We
observe when the exogenous input of equation (3.1) converges; then from equation (3.7), we notice
the analytical solution of the electrical RL circuit equation (3.1) converges as well. That is the CICS
property. Furthermore, from equation when the exogenous input equation (3.1) is bounded, then the
analytical solution of the electrical RL circuit equation (3.1) is bounded as well. We give the proof.
Let the exogenous input ‖u‖ ≤ η then from the fact γ is a class K∞, there exists ε such that γ (‖u‖) ≤ ε.
Then equation (3.7) becomes

‖I(t)‖ ≤ β (I0, t) + ε ≤ β (I0, 0) + ε. (3.10)

Thus the analytical solution is bounded as well.

3.2. Fractional input stability of the electrical RL circuit described by the Caputo fractional
derivative

In this section, we replace the Riemann-Liouville fractional derivative by the Caputo fractional
derivative. We address the fractional input stability of the electrical RL circuit described by the Caputo
fractional derivative. The following fractional differential equation defines the electrical RL circuit
equation described by the Caputo fractional derivative

Dα
c I(t) +

σ1−αR
L

I(t) = u(t) (3.11)

with the initial boundary condition defined by I(0) = I0. The term u(t) represents the exogenous input
as defined in the previous section.

Theorem 2. The electrical RL circuit defined by equation (3.11) described by the Caputo fractional
derivative is fractional input stable.

Proof: We apply the Laplace transform to both sides of equation (3.11), we obtain the following
relationships

sαL(I(t)) − sα−1I(0) +
σ1−αR

L
L(I(t)) = L(u(t))

sαL(I(t)) − sα−1I0 +
σ1−αR

L
L(I(t)) = L(u(t))

L(I(t))
{

sα +
σ1−αR

L

}
= sα−1I0 +L(u(t))

L(I(t)) =
sα−1I0

sα + σ1−αR
L

+
L(u(t))

sα + σ1−αR
L

L(I(t)) = I0L

(
Eα

(
−
σ1−αR

L
tα
))

+ L

(
tα−1Eα,α

(
−
σ1−αR

L
tα
))
L (u(t))

L(I(t)) = I0L

(
Eα

(
−
σ1−αR

L
tα
))

+ L

(
tα−1Eα,α

(
−
σ1−αR

L
tα
)
∗ u(t)

)
(3.12)

where L represents the usual Laplace transform and ”∗” represents the usual convolution product. We
apply the inverse of Laplace transform to both sides of equation ((3.12). We obtain the following
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analytical solution

I(t) = I0Eα

(
−
σ1−αR

L
tα
)

+

∫ t

0
(t − s)α−1 Eα,α

(
−
σ1−αR

L
(t − s)α

)
u(s)ds. (3.13)

We apply the usual euclidean norm to equation ((3.13). It follows the following inequality

‖I(t)‖ ≤

∥∥∥∥∥∥I0Eα

(
−
σ1−αR

L
tα
)∥∥∥∥∥∥ + ‖u‖

∫ t

0

∥∥∥∥∥∥(t − s)α−1 Eα,α

(
−
σ1−αR

L
(t − s)α

)∥∥∥∥∥∥ ds (3.14)

The characteristic term −σ
1−αR
L ≤ 0, then there exists a positive constant M such that the following

inequality is held ∫ t

0

∥∥∥∥∥∥(t − s)α−1 Eα,α

(
−
σ1−αR

L
(t − s)α

)∥∥∥∥∥∥ ds ≤ M (3.15)

Using Lemma 1 and the inequality defined by equation (3.15), we obtain the following inequality

‖I(t)‖ ≤
I0C1

1 + σ1−αR
L ‖tα‖

+ ‖u‖M (3.16)

Let the function β (I0, t) = I0C1

1+σ1−αR
L ‖tα‖

. We observe the function β (., t) is a class K function.

Furthermore, β (s, .) decays in time and converges to zero when t tends to infinity, thus the function
β (s, .) is a class L function. In conclusion the function β is a class KL function. Let the function
γ (‖u‖) = ‖u‖M. The function γ is a class K∞ function. Finally, equation (3.16) is represented as the
following form

‖I(t)‖ ≤ β (I0, t) + γ (‖u‖) (3.17)

It follows from equation (3.17) the electrical RL circuit equation described by the Caputo fractional
derivative is fractional input stable.

Let the exogenous input u = 0. From the fact γ is a class K∞ function, we have γ (0) = 0. Equation
(3.17) is represented as the following form

‖I(t)‖ ≤ β (I0, t) (3.18)

From equation (3.18), the equilibrium point I = 0 of the electrical RL circuit equation described by the
Caputo fractional derivative defined by

Dα
c I(t) +

σ1−αR
L

I(t) = 0 (3.19)

is globally asymptotically stable. Then, the fractional input stability of equation (3.11) implies the
global asymptotic stability of the unforced electrical RL circuit equation (3.19). We observe when the
exogenous input of equation (3.11) converges, then from equation (3.17), we notice the analytical
solution of the electrical RL circuit equation (3.11) converges as well. From equation (3.17), the
analytical solution of the electrical RL circuit equation (3.11) described by the Caputo fractional
derivative is bounded as well when the exogenous input is bounded.
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3.3. Fractional input stability of the electrical LC circuit described by the Riemann-Liouville
fractional derivative

In this section, we study the fractional input stability of the electrical LC circuit described by the
Riemann-Liouville fractional derivative. The electrical LC circuit equation under consideration is
defined by the following fractional differential equation

D2α
RLI(t) +

σ1−α

√
LC

I(t) = u(t) (3.20)

with the initial boundary condition defined by
(
I1−2αI

)
(0) = I0 and α ≤ 1/2 (in this paper). I

represents the current across the inductor. The parameter σ is associated with the temporal
components in the system, see more details in [6]. In the second member, u(t) represents the
exogenous input. It is expressed using the source term E(t) (eventually depend on time), the function
C/
√

LC and the temporal coefficient σ1−α. Summarizing, we have u(t) =
σ1−αCE(t)
√

LC
. We make the

following theorem.

Theorem 3. The electrical LC circuit equation defined by equation (3.20) described by the Riemann-
Liouville fractional derivative is fractional input stable.

Proof: Let β = 2α. We apply the Laplace transform to both sides of equation (3.20), we obtain the
following relationships

sβL(I(t)) −
(
I1−βI

)
(0) +

σ1−α

√
LC
L(I(t)) = L(u(t))

sβL(I(t)) − I0 +
σ1−α

√
LC
L(I(t)) = L(u(t))

L(I(t))
{

sβ +
σ1−α

√
LC

}
= I0 +L(u(t))

L(I(t)) =
I0

sβ + σ1−α
√

LC

+
L(u(t))

sβ + σ1−α
√

LC

L(I(t)) = I0L

(
tβ−1Eβ,β

(
−
σ1−α

√
LC

tβ
))

+ L

(
tβ−1Eβ,β

(
−
σ1−α

√
LC

tβ
))
L (u(t))

L(I(t)) = I0L

(
tβ−1Eβ,β

(
−
σ1−α

√
LC

tβ
))

+ L

(
tβ−1Eβ,β

(
−
σ1−α

√
LC

tβ
)
∗ u(t)

)
(3.21)

where L represents the usual Laplace transform and ”∗” represents the usual convolution product.
We apply the inverse of Laplace transform to both sides of equation (3.21). We obtain the following
analytical solution

I(t) = I0tβ−1Eβ,β

(
−
σ1−α

√
LC

tβ
)

+

∫ t

0
(t − s)β−1 Eβ,β

(
−
σ1−α

√
LC

(t − s)β
)

u(s)ds (3.22)

We apply the euclidean norm to both sides of equation (3.22). We get the following relationship

‖I(t)‖ ≤

∥∥∥∥∥∥I0tβ−1Eβ,β

(
−
σ1−α

√
LC

tβ
)∥∥∥∥∥∥ + ‖u‖

∫ t

0

∥∥∥∥∥∥(t − s)β−1 Eβ,β

(
−
σ1−α

√
LC

(t − s)β
)∥∥∥∥∥∥ ds (3.23)
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From the assumption −σ1−α
√

LC
≤ 0, there exists a positive constant M such that we have the following

inequality. ∫ t

0

∥∥∥∥∥∥(t − s)β−1 Eβ,β

(
−
σ1−α

√
LC

(t − s)β
)∥∥∥∥∥∥ ds ≤ M (3.24)

We use Lemma 1 and inequality (3.23), we obtain the following inequality

‖I(t)‖ ≤
I0C1∥∥∥t1−β

∥∥∥ + σ1−α
√

LC
‖t‖

+ ‖u‖M. (3.25)

Let the function µ (I0, t) = I0C1

‖t1−β‖+σ1−α
√

LC
‖t‖

. We observe the function µ is a class KL function. Let the

function γ (‖u‖) = ‖u‖M, it is straightforward to verify the function γ is a class K∞ function. Finally,
equation (3.25) is represented as follows

‖I(t)‖ ≤ µ (I0, t) + γ (‖u‖) (3.26)

It follows from equation (3.26) the electrical LC circuit described by the Riemann-Liouville fractional
derivative is fractional input stable.

Let the exogenous input ‖u‖ = 0. From the fact γ (0) = 0, equation (3.26) becomes

‖I(t)‖ ≤ µ (I0, t) . (3.27)

Thus the equilibrium point I = 0 of the electrical LC circuit defined by

D2α
RLI(t) +

σ1−α

√
LC

I(t) = 0 (3.28)

is globally asymptotically stable. As in the previous sections, the fractional input stability of equation
(3.20) implies the global asymptotic stability of the unforced electrical LC circuit equation (3.28).
We observe when the exogenous input of equation (3.20) converges, it follows from equation (3.26),
the analytical solution of the electrical LC circuit equation (3.20) converges as well. It follows from
equation (3.26), the analytical solution of the electrical LC circuit equation (3.20) is bounded as well
when its exogenous input of equation is bounded.

3.4. Fractional input stability of the electrical LC circuit described by the Caputo fractional
derivative

We consider the Caputo fractional derivative in this section. We investigate the fractional input
stability of the electrical LC circuit equation defined by the following fractional differential equation

D2α
c I(t) +

σ1−α

√
LC

I(t) = u(t) (3.29)

with the initial boundary condition defined by I(0) = I0 and α ≤ 1/2. The exogenous input is u(t).

Theorem 4. The electrical LC circuit equation defined by equation (3.29) described by the Caputo
fractional derivative is fractional input stable.
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Proof: Let β = 2α. We determine the analytical solution of the fractional differential equation
defined by (3.29). We apply the Laplace transform to both sides of equation (3.29). We obtain the
following relationships

sβL(I(t)) − sβ−1I(0) +
σ1−α

√
LC
L(I(t)) = L(u(t))

sβL(I(t)) − sβ−1I0 +
σ1−α

√
LC
L(I(t)) = L(u(t))

L(I(t))
{

sβ +
σ1−α

√
LC

}
= sβ−1I0 +L(u(t))

L(I(t)) =
sβ−1I0

sβ + σ1−α
√

LC

+
L(u(t))

sβ + σ1−α
√

LC

L(I(t)) = I0L

(
Eβ

(
−
σ1−α

√
LC

tβ
))

+ L

(
tβ−1Eβ,β

(
−
σ1−α

√
LC

tβ
))
L (u(t))

L(I(t)) = I0L

(
Eβ

(
−
σ1−α

√
LC

tβ
))

+ L

(
tβ−1Eβ,β

(
−
σ1−α

√
LC

tβ
)
∗ u(t)

)
(3.30)

where L represents the usual Laplace transformation and ”∗” represents the usual convolution product.
We apply the inverse of Laplace transform to both sides of equation (3.30). We obtain the following
analytical solution

I(t) = I0Eβ

(
−
σ1−α

√
LC

tβ
)

+

∫ t

0
(t − s)β−1 Eβ,β

(
−
σ1−α

√
LC

(t − s)β
)

u(s)ds (3.31)

We apply the euclidean norm to both sides of equation (3.31). We obtain the following inequality

‖I(t)‖ ≤

∥∥∥∥∥∥I0Eβ

(
−
σ1−α

√
LC

tβ
)∥∥∥∥∥∥ + ‖u‖

∫ t

0

∥∥∥∥∥∥(t − s)β−1 Eβ,β

(
−
σ1−α

√
LC

(t − s)β
)∥∥∥∥∥∥ ds (3.32)

From the assumption −σ1−α
√

LC
≤ 0, there exists a positive constant M such that the following inequality

is held ∫ t

0

∥∥∥∥∥∥(t − s)β−1 Eβ,β

(
−
σ1−α

√
LC

(t − s)β
)∥∥∥∥∥∥ ds ≤ M (3.33)

We use Lemma 1 and equation (3.33), we obtain the following inequality

‖I(t)‖ ≤
I0C1

1 + σ1−α
√

LC
‖tβ‖

+ ‖u‖M (3.34)

Let the function µ (I0, t) = I0C1

1+σ1−α
√

LC ‖t
β‖

. We observe the function µ (., t) is a class K function.

Furthermore, µ (s, .) decays in time and converges to zero when t tends to infinity. Thus µ (s, .) is a
class L function. In conclusion the function µ is a class KL function. Let the function
γ (‖u‖) = ‖u‖M, it is straightforward to see γ is a class K∞ function. Finally equation (3.34) is
represented as follows

‖I(t)‖ ≤ µ (I0, t) + γ (‖u‖) (3.35)
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It follows from equation (3.35) the electrical LC circuit equation (3.29) described by the Caputo
fractional derivative is fractional input stable.

Let’s analyze the BIBS, the CICS properties and the global asymptotic stability of the unforced
electrical LC circuit equation. Let the exogenous input ‖u‖ = 0. From the fact γ is a classK∞ function,
we have γ (0) = 0. Then the equation (3.35) becomes

‖I(t)‖ ≤ µ (I0, t) (3.36)

That is the trivial solution of the electrical LC circuit equation described by the Caputo fractional
derivative defined by

D2α
c I(t) +

σ1−α

√
LC

I(t) = 0 (3.37)

is globally asymptotically stable. That is to say the fractional input stability implies the global
asymptotic stability of the unforced electrical RL circuit described by the Caputo fractional derivative.
From equation (3.35), when the exogenous input of equation (3.29) converges then the analytical
solution of the electrical LC circuit equation (3.29) converges as well. We notice from equation
(3.35), when the exogenous input of equation (3.29) is bounded, then the analytical solution of the
electrical LC circuit equation (3.29) described by the Caputo fractional derivative is bounded as well.

3.5. Fractional input stability of the electrical RC circuit equation described by the
Riemann-Liouville fractional derivative

In this section, we investigate the fractional input stability of the electrical RC circuit equation
described by the Riemann-Liouville fractional derivative. Let the electrical RC circuit equation defined
by the following fractional differential equation

Dα
RLV(t) +

σ1−α

RC
V(t) = u(t) (3.38)

with the initial boundary condition defined by
(
I1−αV

)
(0) = V0. C represents the capacitance and R

represents the resistance. V represents the voltage across the capacitor. The parameterσ is associated to
the temporal components in the system, see more details in [5]. The second member, u(t) is considered
as the exogenous input. It contains the source term E(t) (eventually depend on time), the function
1/RC and the temporal coefficient σ1−α. Summarizing u(t) =

σ1−αE(t)
RC . We make the following theorem.

Theorem 5. The electrical RC circuit defined by equation (3.38) described by the Riemann-Liouville
fractional derivative is fractional input stable.

Proof: Applying the Laplace transform to both sides of equation (3.38), we get the following
relationships

sαL(V(t)) −
(
I1−αV

)
(0) +

σ1−α

RC
L(V(t)) = L(u(t))

sαL(V(t)) − V0 +
σ1−α

RC
L(V(t)) = L(u(t))

L(V(t))
{

sα +
σ1−α

RC

}
= V0 +L(u(t))
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L(V(t)) =
V0

sα + σ1−α

RC

+
L(u(t))

sα + σ1−α

RC

L(V(t)) = I0L

(
tα−1Eα,α

(
−
σ1−α

RC
tα
))

+ L

(
tα−1Eα,α

(
−
σ1−α

RC
tα
))
L (u(t))

L(V(t)) = I0L

(
tα−1Eα,α

(
−
σ1−α

RC
tα
))

+ L

(
tα−1Eα,α

(
−
σ1−α

RC
tα
)
∗ u(t)

)
(3.39)

where L represents the usual Laplace transform and ”∗” represents the usual convolution product.
Applying the inverse of Laplace transform to both sides of equation (3.39), we obtain the following
analytical solution

V(t) = V0tα−1Eα,α

(
−
σ1−α

RC
tα
)

+

∫ t

0
(t − s)α−1 Eα,α

(
−
σ1−α

RC
(t − s)α

)
u(s)ds (3.40)

Applying the euclidean norm on equation (3.40), we have

‖V(t)‖ ≤

∥∥∥∥∥∥V0tα−1Eα,α

(
−
σ1−α

RC
tα
)∥∥∥∥∥∥ + ‖u‖

∫ t

0

∥∥∥∥∥∥(t − s)α−1 Eα,α

(
−
σ1−α

RC
(t − s)α

)∥∥∥∥∥∥ ds (3.41)

From the assumption −σ
1−α

RC ≤ 0, there exists a positive constant M such that we have the following
inequality ∫ t

0

∥∥∥∥∥∥(t − s)α−1 Eα,α

(
−
σ1−α

RC
(t − s)α

)∥∥∥∥∥∥ ds ≤ M (3.42)

We use Lemma 1 and the inequality (3.42), we obtain the following inequality

‖V(t)‖ ≤
V0C1∥∥∥t1−α
∥∥∥ + σ1−α

RC ‖t‖
+ ‖u‖M (3.43)

Let the function β (V0, t) = V0C1

‖t1−α‖+σ1−α
RC ‖t‖

. We observe the function β is a class KL function. Let the

function γ (‖u‖) = ‖u‖M. It is straightforward to see γ is a class K∞ function. Finally, equation (3.43)
is represented as the following form

‖V(t)‖ ≤ β (V0, t) + γ (‖u‖) (3.44)

It follows from equation (3.44) the electrical RC circuit equation described by the Riemann-Liouville
fractional derivative is fractional input stable.

Let the exogenous input ‖u‖ = 0, then we have γ (0) = 0. Thus the equation (3.44) becomes

‖V(t)‖ ≤ β (I0, t) (3.45)

Then the equilibrium point V = 0 of the electrical RC circuit equation defined by

Dα
RLV(t) +

σ1−α

RC
V(t) = 0 (3.46)

is (uniformly) globally asymptotically stable. Thus the fractional input stability implies the global
asymptotic stability of the unforced electrical RC circuit described by the Riemann-Liouville fractional
derivative. We observe from (3.44) when the exogenous input of equation (3.38) converges, we notice
the analytical solution of the electrical RC circuit equation (3.38) converges as well. From (3.44), when
the exogenous input term of equation (3.38) is bounded, then the analytical solution of the electrical
RC circuit equation (3.38) is bounded as well.
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3.6. Fractional input stability of the electrical RC circuit equation described by the Caputo fractional
derivative

In this section, we investigate the fractional input stability of the electrical RC circuit equation
described by the Caputo fractional derivative defined by the following fractional differential equation

Dα
c V(t) +

σ1−α

RC
V(t) = u(t) (3.47)

with the initial boundary condition defined by V(0) = V0. The term u(t) represents the exogenous input
as defined in the previous section.

Theorem 6. The electrical RC circuit defined by equation (3.47) described by the Caputo fractional
derivative is fractional input stable.

Proof: Applying the Laplace transform to both sides of equation (3.47), we obtain the following
relationships

sαL(V(t)) − sα−1V(0) +
σ1−α

RC
L(V(t)) = L(u(t))

sαL(V(t)) − sα−1V0 +
σ1−α

RC
L(V(t)) = L(u(t))

L(V(t))
{

sα +
σ1−α

RC

}
= sα−1V0 +L(u(t))

L(V(t)) =
sα−1V0

sα + σ1−α

RC

+
L(u(t))

sα + σ1−α

RC

L(V(t)) = V0L

(
Eα

(
−
σ1−α

RC
tα
))

+ L

(
tα−1Eα,α

(
−
σ1−α

RC
tα
))
L (u(t))

L(V(t)) = V0L

(
Eα

(
−
σ1−α

RC
tα
))

+ L

(
tα−1Eα,α

(
−
σ1−α

RC
tα
)
∗ u(t)

)
(3.48)

where L represents the usual Laplace transform and ”∗” represents the usual convolution product.
Applying the inverse of Laplace transform to both sides of equation (3.48), we obtain the following
analytical solution

V(t) = V0Eα

(
−
σ1−α

RC
tα
)

+

∫ t

0
(t − s)α−1 Eα,α

(
−
σ1−α

RC
(t − s)α

)
u(s)ds (3.49)

From which we have the following inequality

‖V(t)‖ ≤

∥∥∥∥∥∥V0Eα

(
−
σ1−α

RC
tα
)∥∥∥∥∥∥ + ‖u‖

∫ t

0

∥∥∥∥∥∥(t − s)α−1 Eα,α

(
−
σ1−α

RC
(t − s)α

)∥∥∥∥∥∥ ds (3.50)

From the assumption −σ
1−α

RC ≤ 0, there exists a positive constant M such that the following inequality is
held ∫ t

0

∥∥∥∥∥∥(t − s)α−1 Eα,α

(
−
σ1−α

RC
(t − s)α

)∥∥∥∥∥∥ ds ≤ M (3.51)
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We use Lemma 1 and equation (3.51), we obtain the following relationships

‖V(t)‖ ≤
V0C1

1 + σ1−α

RC ‖t
α‖

+ ‖u‖M (3.52)

Let the function β (V0, t) = V0C1

1+σ1−α
RC ‖t

α‖
. We observe the function β is a class KL function. Let the

function γ (‖u‖) = ‖u‖M. It is straightforward to see γ is a class K∞ function. Finally, equation (3.52)
is represented as follows

‖V(t)‖ ≤ β (V0, t) + γ (‖u‖) (3.53)

From equation (3.53) the electrical RC circuit equation (3.47) described by the Caputo fractional
derivative is fractional input stable.

Let the exogenous input ‖u‖ = 0. From the fact γ is a class K∞ function, we have γ (0) = 0. Then
equation (3.53) becomes

‖V(t)‖ ≤ β (V0, t) (3.54)

We conclude the equilibrium point V = 0 of the electrical RC circuit equation described by the Caputo
fractional derivative defined by

Dα
c V(t) +

σ1−α

RC
V(t) = 0 (3.55)

is globally asymptotically stable. We observe when the input term of equation (3.47) converges; then
from equation (3.53), we notice the analytical solution of the electrical RC circuit equation (3.47)
described by the Caputo fractional derivative converges as well. We notice when the exogenous input
of equation (3.47) is bounded, then the analytical solution of the electrical RC circuit equation (3.47)
described by the Caputo fractional derivative is bounded as well.

4. Numerical simulations

In this section, we analyze the CICS and the global asymptotic stability properties obtained with
the fractional input stability. Let’s the electrical RL circuit equation described by the Caputo fractional
derivative defined by

Dα
c I(t) +

σ1−αR
L

I(t) = u(t) (4.1)

with numerical values: the resistance R = 10Ω and induction L = 10H. Let’s the exogenous input
u(t) = 0. The current across the inductor is depicted in Figure 1. We observe all the analytical
solutions I decay everywhere except at the equilibrium point itself, thus the equilibrium point I = 0 of
the electrical RL circuit equation (4.1) is (uniformly) globally asymptotically stable.

In Figure 2, we observe the behavior of the current in the inductor when the electrical RL circuit
equation is fractional input stable.

Let’s the electrical RC circuit equation described by the Caputo fractional derivative with numerical
values defined by

Dα
c V(t) +

σ1−α

RC
V(t) = u(t) (4.2)

with the resistance R = 10kΩ and the capacitance C = 1000µF. Let’s the exogenous input u(t) = 0,
we can, observe all the analytical solutions V decay everywhere except at the equilibrium point itself,
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Figure 1. I = 0 the electrical RL circuit equation (4.1) is globally asymptotically stable.

Figure 2. Fractional input stability of the electrical RL circuit equation.
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thus the equilibrium point V = 0 of the electrical RL circuit equation (4.2) is globally asymptotically
stable, see figure 3.

Figure 3. V = 0 of the electrical RC circuit equation is globally asymptotically stable.

In Figure 4, we observe the behavior of the analytical solution of the electrical RC circuit equation
when it is fractional input stability.

Figure 4. Fractional input stability of the electrical RC circuit.
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5. Conclusion

In this paper, we have discussed the fractional input stability of the electrical circuit equation
described by the Riemann-Liouville and the Caputo fractional derivative operators. This paper is the
application of the fractional input stability in the electrical circuit equations. And we have noticed the
fractional input stability is an excellent compromise to study the behavior of the analytical solution of
the electrical RL, RC and LC circuit equations.
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3. J. F. Gómez-Aguilar, Behavior characteristics of a cap-resistor, memcapacitor, and a memristor
from the response obtained of RC and RL electrical circuits described by fractional differential
equations, Turk. J. Elec. Eng. Comp. Sci., 24 (2016), 1421–1433.
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