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1. Introduction

In the rational number fieldQ, we say two prime numbers p, q have gap k if p−q = ±k for a positive
integer k. Two prime numbers are called twin primes if and only if their gap is 2. Studying the pair of
prime numbers of a given gap is a main subject in analytic number theory. In this paper, we generalize
the definition of gap to a number field.

First, we define the gap function GK in a number field K.

Definition 1.1. Let K be a number field, OK the ring of integers in K, and Spec(OK) the set of prime
ideals of OK . The gap function GK for K is the map:

GK : Spec(OK) × Spec(OK)→ Z ; GK(p, q) = Np − Nq

for p, q ∈ Spec(OK), Np = (OK : p) is the norm of p.

Then we consider the following questions:
Question 1: Given a number field K and a positive number N, do there exist infinitely many pairs

of prime ideals such that their gap GK = N?
Question 1 can be difficult even though K = Q. For example, Question 1 becomes the twin prime

conjecture when K = Q and N = 2. To study the above question, we first need to study the following
question:
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Question 2: Given a number field K and a positive number N, do there exist two distinct prime
ideals such that their gap GK = N?

Note that if K = Q,N = 1, the only pair of prime numbers satisfying GQ = 1 is (2, 3). However,
when K is a number field and K , Q, we will show that there may not exist two prime ideals whose
gap is 1.

In this paper, we study a very special case of Question 2: K is a quadratic number field or cyclotomic
field and N = 1. Moreover, we show that if K is a quadratic number field or cyclotomic field that has
two distinct prime ideals of gap 1, then the number of such pairs of prime ideals is finite. Thus we give
an answer to the Question 1 for a special case.

In particular, we prove the following two results:

Theorem 1.2. Let d , 1 be a square-free integer, and K the quadratic field Q[
√

d]. Then the pairs of
prime ideals p, q with gap 1 in K are as follows: let p ∩ Z = (p), q ∩ Z = (q),

1. p = 3 and q = 2, where d ≡ 1, 3, 6, 7, 9, 10 mod 12;
2. p = 5 and q = 2, where d ≡ 5, 21, 29 mod 40.

Theorem 1.3. Let N be a positive integer (N , 1, 2, 3, 4, 6), K the cyclotomic field Q(ζN), and OK the
ring of integers of K. Then there exist two distinct prime ideals p, q of OK such that GK(p, q) = 1 if and
only if N = q, 2q, where q is a Mersenne prime number and q , 3.

The proofs of above results are given in section 3. The principal method here is to calculate the
decomposition of the prime number in the quadratic field and the cyclotomic field. In section 4 we
give several examples. Section 2 is a summary of some results from algebraic number theory which
are used throughout the paper.

2. Preliminaries

In this section, we review all the facts we need in the rest of the paper. To study the gap between
prime ideals for quadratic fields and cyclotomic fields, we need to know how the prime number p
decomposes in their ring of integers.

Lemma 2.1. Let d , 1 be a square-free integer, K the quadratic field Q[
√

d], disc(OK/Z) be the
discriminant of K, and p an odd prime number. Then we have the following results.

1. If p divides disc(OK/Z), then (p) ramifies in OK .
2. For p not dividing the d, we have

(p) is the product the two distinct ideals if and only if d is a square mod p.
(p) is a prime ideals in Q[

√
d] if and only if d is not a square mod p.

3. For the prime number 2 when d ≡ 1 mod 4, we have
(2) is the product the two distinct ideals in Q[

√
d] if and only if d ≡ 1 mod 8.

(2) is a prime ideals in Q[
√

d] if and only if d ≡ 5 mod 8.

The proof of Lemma 2.1 can be found in [1].

Lemma 2.2. Let N = Πp pvp be the prime factorization of the positive integer N, and let fp be the
smallest positive integer such that

p fp ≡ 1 mod
N
pvp
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Then one has in the cyclotomic field Q(ζN) the factorization

p = (p1p2...pr)ϕ(pvp )

where p1, p2, ...pr are distinct prime ideals, all of degree fp.

The proof of Lemma 2.2 can be found in [2]. The following result helps us treat the case when K is
a cyclotomic field. And the proof can be found in [3] and [4].

Theorem 2.3 (Mihǎilescu). The only solutions of the equation

xa − yb = 1

in integers a, b ≥ 2 and non-zero integers x, y are given by (±3)2 − 23 = 1.

3. Proof of the main results

3.1. Proof of Theorem 1.2

Proof. Let p, q be two distinct prime ideals in K = Q[
√

d]. Then p ∩ Z = pZ, q ∩ Z = qZ, where p, q
are two prime numbers in Z. Now we have

GK(p, q) = Np − Nq = p fp − q fq

where fp = (OK : p), fq = (OK : q) are the degree of residue fields. Note that the degree of field
extension [Q[

√
d] : Q] = 2 is divided by fp and fq, then fp, fq can only be 1 or 2. We suppose that

GK(p, q) = p fp − q fq = 1. Then

p = 3, q = 2, fp = fq = 1; p = 2, q = 3, fp = 2, fq = 1 or p = 5, q = 2, fp = 1, fq = 2.

Let
(
·

p

)
denotes the Legendre symbol. We list all possible cases:

1. p = 3, q = 2; fp = fq = 1

(a) Both 2 and 3 split in Q[
√

d]. By Lemma 2.1, we have

(
d
3

) = 1, d ≡ 1 mod 8

Therefore d ≡ 1 mod 24.
(b) 2 splits in Q[

√
d], 3 ramifies in Q[

√
d]. Then

d ≡ 1 mod 8, d ≡ 0 mod 3

Therefore, d ≡ 9 mod 24.
(c) Both 2 and 3 ramify in Q[

√
d]. Then

d ≡ 0 mod 3, d ≡ 2, 3 mod 4

Therefore, d ≡ 3, 6 mod 12.
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(d) 2 ramifies in Q[
√

d], 3 splits in Q[
√

d]. Then

(
d
3

) = 1, d ≡ 2, 3 mod 4

Therefore, d ≡ 7, 10 mod 12.

2. p = 2, q = 3; fp = 2, fq = 1

(a) 2 is a prime ideal in Q[
√

d], 3 ramifies in Q[
√

d]. Then

d ≡ 0 mod 3, d ≡ 5 mod 8

Therefore, d ≡ 21 mod 24.
(b) 2 is a prime ideal in Q[

√
d], 3 splits in Q[

√
d]. Then

(
d
3

) = 1, d ≡ 5 mod 8

Therefore, d ≡ 13 mod 24.

3. p = 5, q = 2; fp = 1, fq = 2

(a) 2 is a prime ideal in Q[
√

d], 5 ramifies in Q[
√

d]. Then

d ≡ 0 mod 5, d ≡ 5 mod 8

Therefore, d ≡ 5 mod 40.
(b) 2 is a prime ideal in Q[

√
d], 5 splits in Q[

√
d]. Then

(
d
5

) = 1, d ≡ 5 mod 8

Therefore, d ≡ 21, 29 mod 40.

In summary, d ≡ 1, 3, 6, 7, 9, 10 mod 12, or d ≡ 5, 21, 29 mod 40.

�

3.2. Proof of Theorem 1.3

Proof. Let N = Πp pvp be the prime factorization of the positive integer N, N , 1, 2, 3, 4, 6. And let
p, q be two distinct prime ideals in K = Q(ζN). Then p∩ Z = pZ, q∩ Z = qZ, where p, q are two prime
numbers in Z. We suppose that:

GK(p, q) = Np − Nq = p fp − q fq = 1 (3.1)

where fp, fq are the degree of residue fields.

1. fp, fq > 1: By Theorem 2.3, p = 3, f3 = 2; q = 2, f2 = 3. Lemma 2.2 implies that

32 ≡ 1 mod
N
3v3
, 23 ≡ 1 mod

N
2v2

In other words, N
3v3 |8, N

2v2 |7. The second equation implies that N = 2v2 · 7 or 2v2 .
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(a) If N = 2v2 : then N
3v3 |8 implies that v3 = 0 and N = 2v2 , v2 ≤ 3. Then we have v2 = 1, N = 2,

K = Q; v2 = 2, N = 4, K = Q[
√
−1]; v2 = 3, N = 8, K = Q(ζ8). However, when K = Q(ζ8),

2 totally ramifies in K, f2 = 1 , 3. So K = Q(ζ8) is impossible.
(b) If N = 7 · 2v2: then N

3v3 = 7 · 2v2 doesn’t divide 8. So N = 7 · 2v2 is impossible.

Therefore, fp, fq > 1 is impossible.
2. fp = 1: (3.1) becomes p − q fq = 1. Now q fq + 1 = p is an odd prime number. Then q = 2, f2 = 2n

for some nonnegative integer n and p is a Fermat prime number. Lemma 2.2 implies that

p ≡ 1 mod
N
pvp

, 22n
≡ 1 mod

N
2v2

In other words, N
pvp |(p − 1) and N

2
v2
|(p − 2). Therefore, N = 2v2 , 2 totally ramifies in K and

f2 = 22n
= 1. From n = 0, we obtain p = 22n

+ 1 = 2 + 1 = 3, and 2v2 |2. So N = 1, 2.
Therefore, fp = 1 is impossible.

3. fq = 1: (3.1) becomes 2 f2 − q = 1. Now q = 2 f2 − 1 is a Mersenne prime number. Again, Lemma
2.2 implies that

2 f2 ≡ 1 mod
N
2v2
, q ≡ 1 mod

N
qvq

From the first equation, we obtain N = 2v2qvq . The second equation shows that 2v2 |(2 f2 − 2). Note
that f2 , 1, otherwise vq = 0, v2 = 0, 1 and N = 1, 2. And 2 f2 − 2 = 2(2 f2−1 − 1), 2 f2−1 − 1 is an
odd number. Then

(a) If v2 = 0: N|(2 f2 − 1) implies that N = q. Now we show that f2 is indeed the smallest positive
integer such that

2 f2 ≡ 1 mod
N
2v2

If there is a positive integer d, satisfying d| f2 and 2d ≡ 1 mod q, then 2d < 2 f2 = q + 1,
which leads to a contradiction. Therefore, N = q.

(b) If v2 = 1: N
2 |(2

f2 − 1) implies that N = 2q. Similarly, f2 is indeed the smallest positive integer
such that

2 f2 ≡ 1 mod
N
2v2

Therefore, N = 2q.

In summary, there exist two distinct prime ideals p, q of OK such that GK(p, q) = 1 if and only if
N = q, 2q, where q is a Mersenne prime number and q , 3. �

Remark 3.1. Let K = Q(ζq) or Q(ζ2q), where q is a Mersenne prime not equal to 3. According to the
proof of Theorem 1.3, if p and q satisfy GK(p, q) = 1, then p ∩ Z = 2Z, q ∩ Z = qZ, and q = 2 f2 − 1
is a Mersenne prime. And let ϕ be the Euler’s totient function. By Lemma 2.2, we have the following
decomposition in OK

(2) = p1p2 · · · pg, (q) = qq−1

where g is determined by

g =
ϕ(q)

f2
=
ϕ(2q)

f2
=

q − 1
f2
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Let AK
p,q be the set of pairs of prime ideals of gap 1, which is

AK
p,q = {(p, q)|p, q are prime ideals in OK ,GK(p, q) = 1}

Then the above discussion shows that #AK
p,q = g =

q−1
f2

.

4. Examples

In this section, we give some examples of cyclotomic fields satisfying the Theorem 1.3. Recall that
a Mersenne prime is of the form Mn = 2n − 1 for some positive integer n. For n > 2, the smallest
Mersenne prime is 23 − 1 = 7. Then we obtain the following example:

Example 4.1. Let K = Q[ζ7]. According to Theorem 1.3, there exists two distinct prime ideals p, q
such that GK(p, q) = 1, where p ∩ Z = 2Z, q ∩ Z = 7Z. The degree of residue field f2 is the order of
2 in (Z/7Z)×, that is f2 = 3. Therefore, 2 decomposes into ϕ(7)

f2
= 2 distinct prime ideals p1, p2 in OK .

Moreover, 7 ramifies in OK with ramification index e7 = ϕ(7) = 6. Explicitly,

(2) = p1p2, (7) = q6; GK(p, q) = 23 − 7 = 1

Example 4.2. M7 = 213 − 1 = 8191 is a Mersenne prime. According to Theorem 1.3, K = Q[ζ2·8191]
has two distinct prime ideals p, q such that GK(p, q) = 1, where p ∩ Z = 2Z, q ∩ Z = 8191Z. 2
decomposes into ϕ(2·8191)

f2
= 8190

13 = 630 distinct prime ideals p1, p2, ..., p630 in OK . 8191 ramifies in OK

with ramification index e8191 = ϕ(8191) = 8190. Explicitly,

(2) = p1p2 · · · p630, (8191) = q8190; GK(p, q) = 213 − 8191 = 1
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