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Abstract: We consider the equation −∆u = f (u) − 1
|Ω|

∫
Ω

f (u)dx, where the domain Ω = TN , the
N-dimensional torus, with N = 2 or N = 3. And f is a given smooth function of u for u(x) ∈ G ⊂ R.
We prove that there exists a solution u to this equation which is unique if | d f

du (u0)| is sufficiently small,
where u0 ∈ G is a given constant. And we prove that the solution u is not unique if d f

du (u0) is a simple
eigenvalue of −∆.
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1. Introduction

In this paper, we consider the following equation for u

− ∆u = f (u) − 1
|Ω|

∫
Ω

f (u)dx (1.1)

under periodic boundary conditions. The domain Ω = TN , the N-dimensional torus, with N = 2, 3.
Here f is a given smooth function of u for u(x) ∈ G ⊂ R.

We will prove that there exists a solution u to equation (1.1) which is unique if | d f
du (u0)| < 1

(C0)2 ,
where u0 ∈ G is a given constant and where C0 is the constant from Poincaré’s inequality. And we will
prove that the solution u is not unique if d f

du (u0) is a simple eigenvalue of −∆.
In previous related work, many researchers have studied the equation −∆u = f (u) + g. Existence

of a solution u to the equation −∆u = f (u) + g has been proven for a Dirichlet boundary condition
u|∂Ω = 0 (see, e.g., [1,2,5,7]) under certain conditions on f and, g. And existence of a solution u to the
equation −∆, , u = f (u) + g has been proven for a Neumann boundary condition ∂u

∂n |∂Ω = h (see, e.g.,
[3,4,6]) under certain conditions on f and g. We have not seen any work by other researchers on the
existence of a solution u to equation (1.1) under periodic boundary conditions. And we have not seen
any work by other researchers which contains the particular condition that |d f

du (u0)| < 1
(C0)2 , where C0 is
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the constant from Poincaré’s inequality and where u0 is a given constant in the domain of the function
d f
du .

2. Existence theorem

In the proof that follows, we use the standard notation for the L2(Ω) norm of a function g, namely,
∥g∥20 =

∫
Ω
|g|2dx. And we denote the inner product as (g, h) =

∫
Ω

ghdx. Also, we let Du denote the
gradient of a function u. We also use the notation | d f

du |0,G1
= max{| d f

du (u∗)| : u∗ ∈ G1}, where d f
du is a

function of u and where G1 ⊂ R is a closed bounded interval.
The purpose of this article is to prove the following theorem.

Theorem 2.1. Consider the following equation for u

− ∆u = f (u) − 1
|Ω|

∫
Ω

f (u)dx (2.1)

where the domain Ω = TN , the N-dimensional torus, with N = 2 or N = 3, and where f is a given
smooth function of u for u(x) ∈ G ⊂ R. Let u0 ∈ G be a given constant. Then we have the following
two cases:

(1) If |d f
du (u0)| < 1

(C0)2 , where C0 is the constant from Poincaré’s inequality, then there exists a unique
classical solution u(x) ∈ G1 to equation (2.1) which satisfies the condition u(x0) = u0, where G1 ⊂ G ⊂
R and where u0 ∈ G1 and where x0 ∈ Ω is a given point. This unique classical solution is u = u0.

(2) If d f
du (u0) is a simple eigenvalue of −∆ then there exists a solution u of equation (2.1) which is

not the constant function u0. This solution u may not necessarily satisfy the condition u(x0) = u0.

Proof.
We will consider separately each of the two cases from the statement of the theorem. First, we will

consider Case 1 from the statement of Theorem 2.1.
Suppose that | d f

du (u0)| < 1
(C0)2 , where C0 is the constant from Poincaré’s inequality and where u0 ∈ G

is a given constant. It follows that there exists a closed bounded interval G1 ⊂ G such that u0 ∈ G1

and such that | d f
du |0,G1

< 1
(C0)2 , where |d f

du |0,G1
= max{| d f

du (u∗)| : u∗ ∈ G1}. Suppose that u is a classical
solution of equation (2.1) such that u(x) ∈ G1 for all x ∈ Ω and u satisfies the condition u(x0) = u0,
where x0 ∈ Ω is a given point. We will now prove that this solution is u = u0.

From equation (2.1), and from using integration by parts and Poincaré’s inequality, we obtain the
following estimate for ∥Du∥20:

∥Du∥20 = (−∆u, u − 1
|Ω|

∫
Ω

udx)

= ( f (u) − 1
|Ω|

∫
Ω

f (u)dx, u − 1
|Ω|

∫
Ω

udx)

≤ ∥ f (u) − 1
|Ω|

∫
Ω

f (u)dx∥0∥u −
1
|Ω|

∫
Ω

udx∥0

≤ (C0)2∥D f (u)∥0∥Du∥0 (2.2)

where we used Poincaré’s inequality to obtain ∥u− 1
|Ω|

∫
Ω

udx∥0 ≤ C0∥Du∥0 and ∥ f (u)− 1
|Ω|

∫
Ω

f (u)dx∥0 ≤
C0∥D f (u)∥0.
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From (2.2) we obtain the inequality

∥Du∥20 ≤ (C0)4∥D f (u)∥20
≤ (C0)4

∣∣∣∣d f
du

∣∣∣∣2
L∞(Ω)
∥Du∥20

≤ (C0)4
∣∣∣∣d f
du

∣∣∣∣2
0,G1
∥Du∥20 (2.3)

where we used the assumption that u(x) ∈ G1 for all x ∈ Ω, and so it follows that |d f
du |L∞(Ω) ≤ | d f

du |0,G1
,

where | d f
du |0,G1

= max{| d f
du (u∗)| : u∗ ∈ G1}.

Since
∣∣∣∣ d f

du

∣∣∣∣2
0,G1
< 1

(C0)4 , it follows from (2.3) that ∥Du∥0 = 0 and so the solution u of equation (2.1) is

a constant. Therefore the solution u = u0 is the unique classical solution of equation (2.1) in G1 which
satisfies the condition u(x0) = u0. This completes the proof of Case 1 in the statement of Theorem 2.1.

Next, we consider Case 2 in the statement of Theorem 2.1. We now prove that if d f
du (u0) is a simple

eigenvalue of −∆ then there exists a solution u of equation (2.1) which is not the constant solution u0.
We remark that this solution u may not necessarily satisfy the condition that u(x0) = u0, where x0 ∈ Ω
is a given point.

We begin by letting v = u − u0 and write equation (2.1) equivalently as

− ∆v = −∆u = f (u) − 1
|Ω|

∫
Ω

f (u)dx

= ( f (u) − f (u0)) − 1
|Ω|

∫
Ω

( f (u) − f (u0))dx

=
(d f
du

(u0 + t1(u − u0))
)
(u − u0) − 1

|Ω|

∫
Ω

(d f
du

(u0 + t1(u − u0))
)(

u − u0

)
dx

=
(d f
du

(u0 + t1v)
)
v − 1
|Ω|

∫
Ω

(d f
du

(u0 + t1v)
)
vdx (2.4)

where t1 ∈ (0, 1). Here we used the mean value theorem.
We next obtain the identity

d f
du

(u0 + t1v) =
d f
du

(u0 + t1v) − d f
du

(u0) +
d f
du

(u0)

=
(d2 f
du2 (u0 + t2(t1v))

)
t1v +

d f
du

(u0) (2.5)

where t2 ∈ (0, 1). And we again used the mean value theorem.
Substituting (2.5) into (2.4) yields

− ∆v =
d f
du

(u0)v +
(d2 f
du2 (u0 + t2(t1v))

)
t1v2 − 1

|Ω|

∫
Ω

(d f
du

(u0 + t1v)
)
vdx (2.6)

where v = u − u0, where t1 ∈ (0, 1), and where t2 ∈ (0, 1).
We can write equation (2.6) in the form

∆v + λv = g(v) (2.7)
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where λ = d f
du (u0) and where g(v) = −

(
d2 f
du2 (u0 + t2(t1v))

)
t1v2 + 1

|Ω|

∫
Ω

(
d f
du (u0 + t1v)

)
vdx.

Let F(v, λ) = ∆v + λv − g(v). We will apply the the implicit function theorem to the equation
F(v, λ) = 0. Note that g(0) = 0 and g′(0) = 0.

If λ = d f
du (u0) is not an eigenvalue of −∆, it follows from the implicit function theorem that v = 0 is

the only small solution to the equation F(v, λ) = 0 when F(v, λ) = ∆v + λv − g(v) and when g(0) = 0
and g′(0) = 0 (see, e.g., [7]). Therefore u = u0 is the only solution of equation (2.1) in a neighborhood
of u0.

If λ = d f
du (u0) is a simple eigenvalue of −∆, it follows from the implicit function theorem that there

exists a non-trivial solution v to the equation F(v, λ) = 0 when F(v, λ) = ∆v + λv − g(v) and when
g(0) = 0 and g′(0) = 0 (see, e.g., [7]). Therefore there exists a solution u to equation (2.1) which is not
the constant function u0.

This completes the proof of Theorem 2.1. �
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