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Abstract: We consider the equation —Au = f(u) — ﬁ fQ f(u)dx, where the domain Q = TV, the
N-dimensional torus, with N = 2 or N = 3. And f is a given smooth function of u for u(x) € G C R.
We prove that there exists a solution u to this equation which is unique if |Z—£(uo)l is sufficiently small,

where uy € G is a given constant. And we prove that the solution u is not unique if %(uo) is a simple
eigenvalue of —A.
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1. Introduction

In this paper, we consider the following equation for u

1
—Au = f(u) — @ fgf(u)dx (L.1)

under periodic boundary conditions. The domain Q = TV, the N-dimensional torus, with N = 2, 3.
Here f is a given smooth function of u for u(x) € G Cc R.

We will prove that there exists a solution u« to equation (1.1) which is unique if |%(u0)| < @
where uy € G is a given constant and where Cy is the constant from Poincaré’s inequality. And we will
prove that the solution u is not unique if j—i(uo) is a simple eigenvalue of —A.

In previous related work, many researchers have studied the equation —Au = f(u) + g. Existence
of a solution u to the equation —Au = f(u) + g has been proven for a Dirichlet boundary condition
ulsga = 0 (see, e.g., [1,2,5,7]) under certain conditions on f and, g. And existence of a solution u to the
equation —A,,u = f(u) + g has been proven for a Neumann boundary condition S—ZbQ = h (see, e.g.,
[3,4,6]) under certain conditions on f and g. We have not seen any work by other researchers on the
existence of a solution u to equation (1.1) under periodic boundary conditions. And we have not seen
any work by other researchers which contains the particular condition that IZ—‘L’:(uo)l < ﬁ where Cy is
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the constant from Poincaré’s inequality and where u is a given constant in the domain of the function
df
du”

2. Existence theorem

In the proof that follows, we use the standard notation for the L*(Q) norm of a function g, namely,
||g||§ = fg lgl’dx. And we denote the inner product as (g, ) = fg ghdx. Also, we let Du denote the
gradient of a function u. We also use the notation |%|0’5] = max{l%(u*)l : u, € Gy}, where Z—z is a
function of u and where G; C R is a closed bounded interval.

The purpose of this article is to prove the following theorem.

Theorem 2.1. Consider the following equation for u

1
- Au = f(u) - Q ff(u)dx 2.1
where the domain Q = TV, the N-dimensional torus, with N = 2 or N = 3, and where f is a given
smooth function of u for u(x) € G C R. Let uy € G be a given constant. Then we have the following
two cases:

(1) If | (uo)l < (c T where C is the constant from Poincaré’s inequality, then there exists a unique

classical solution u(x) € G, to equation (2.1) which satisfies the condition u(xy) = uy, where G, cGcC
R and where uy € G, and where xo € Q is a given point. This unique classical solution is u = u.

(2) If %(uo) is a simple eigenvalue of —A then there exists a solution u of equation (2.1) which is
not the constant function uy. This solution u may not necessarily satisfy the condition u(Xy) = uy.

Proof.

We will consider separately each of the two cases from the statement of the theorem. First, we will
consider Case 1 from the statement of Theorem 2.1.

Suppose that | (uo)l < (C o where Cj is the constant from Poincaré’s inequality and where uy € G

is a given constant. It follows that there exists a closed bounded interval G; c G such that Uy € G,
and such that |Z—£|0’5| < (CL)Z’ where |- ds og, = max{l (u )| : u. € Gi}. Suppose that u is a classical

solution of equation (2.1) such that u(x) € G, for all x € Q and u satisfies the condition u(xo) = uo,
where x; € Q is a given point. We will now prove that this solution is u = u.

From equation (2.1), and from using integration by parts and Poincaré’s inequality, we obtain the
following estimate for ||Du||g:

1
IDullz = (Auu—@ udx)

= (f(u)—@ f f(wadx, u—@ udx)

< IIf(u)—@ f fwadx|lollu — — IQI udxllo

< (Co)’ D @)llollDullo (2.2)

where we used Poincaré’s inequality to obtain ||u— ﬁ fg udx|lg < Col|Dully and || f(u) — Ilﬁl fQ f(wydx||y <
CollD f(u)llo-
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From (2.2) we obtain the inequality

2
| Dullg

IA

(Co'IDf @)l

df
4(=2J 2
(Co |2 1wl

IA

IA

df 2
4@ 2
(Co)'|ZE]_ IDul; 2.3)

where we used the assumption that u(x) € G, for all x € Q, and so it follows that I%I Q) < |%|o,61 ,
where |d |oc = max{l f(u ) :us € Gy

df‘

Since ‘E - it follows from (2.3) that ||Dul|p = 0 and so the solution u of equation (2.1) is
1

(C )4 ’
a constant. Therefore the solution u = u is the unique classical solution of equation (2.1) in G, which
satisfies the condition u(xy) = uy. This completes the proof of Case 1 in the statement of Theorem 2.1.

Next, we consider Case 2 in the statement of Theorem 2.1. We now prove that if %(uo) is a simple
eigenvalue of —A then there exists a solution u of equation (2.1) which is not the constant solution uy.
We remark that this solution # may not necessarily satisfy the condition that u(xy) = uy, where xy € Q
is a given point.

We begin by letting v = u — uy and write equation (2.1) equivalently as

—Av = —Au= f(u)—@ f F(u)dx

= (W)~ fug) — — f (F) — fuo))dx

1€

d 1 d
= (—f(blo + 11 — 1p)) ) (u — p) — a . (—f(uo + 11 — ) )(u = o)l

d 1 d
= (d—f(uo + tlv))v - @ (—f(uo + tlv))vdx 2.4)

where t; € (0, 1). Here we used the mean value theorem.
We next obtain the identity
af af af

d
d—i:(uo +1v) E(uo +1v) - E(MO) + E(MO)

d’ d
(#(“0 + t2(tlv)))tlv + d_i(u()) (2.5)

where 1, € (0, 1). And we again used the mean value theorem.
Substituting (2.5) into (2.4) yields

d d’ 1 d
~Av = —f(uo)v + (—f(u0 + h())ny’ - — (—f(u0 + 1v) Jvdx (2.6)
1|
where v = u — ug, where t; € (0, 1), and where t, € (0, 1).
We can write equation (2.6) in the form
Av+ v =g©) 22.7)
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where A = Z—Z(uo) and where g(v) = —(%{(uo + tz(t]v)))tlv2 +ﬁ fQ (;l—j:(uo + t]v))vdx.

Let F(v,d1) = Av + Av — g(v). We will apply the the implicit function theorem to the equation
F(v, 1) = 0. Note that g(0) = 0 and g’(0) = 0.

Ifa= %(uo) is not an eigenvalue of —A, it follows from the implicit function theorem that v = 0 is
the only small solution to the equation F (v, 1) = 0 when F(v,1) = Av + Av — g(v) and when g(0) = 0
and g’'(0) = 0 (see, e.g., [7]). Therefore u = u is the only solution of equation (2.1) in a neighborhood
of Ugp.

Ifa= Z—f:(uo) is a simple eigenvalue of —A, it follows from the implicit function theorem that there
exists a non-trivial solution v to the equation F(v,4d) = 0 when F(v,1) = Av + Av — g(v) and when
g(0) = 0and g’(0) = O (see, e.g., [7]). Therefore there exists a solution u to equation (2.1) which is not
the constant function u.

This completes the proof of Theorem 2.1. O
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