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Abstract: In this study, natural convection in a cavity filled with a nanofluid is solved numerically uti-
lizing a radial basis function pseudo spectral (RBF-PS) approach in the space domain and a differential
quadrature method (DQM) in the time domain. The governing dimensionless equations are solved in
terms of stream function, temperature and vorticity. In the cavity, thermally insulated top and bottom
walls are maintained while the left and right walls are at constant temperatures. Numerical solutions
present the average Nusselt number variation as well as streamlines, isotherms and vorticity contours.
The non-dimensional problem parameters, Rayleigh number Ra, solid volume fraction χ and aspect
ratio AR are varied as 103 ≤ Ra ≤ 106, 0 ≤ χ ≤ 0.2 and AR = 0.25, 0.5, 1, 2, 4, respectively. It is
found that the fluid velocity and the heat transfer are enhanced in presence of nanoparticles, and the
convective heat transfer is reduced in a rectangular cavity.

Keywords: radial basis functions; multiquadrics; differential quadrature method; nanofluid; natural
convection

1. Introduction

Natural convective heat transfer has seen a great deal of interest in the last decades due to many
engineering applications such as insulation of buildings, solar energy collectors, cooling systems for
electronic devices, etc. In order to improve the heat transfer characteristics of traditional liquids,
nanosized metallic particles are inserted into the liquid. This increases the thermal conductivity of the
fluid.

There are a considerable amount of contributions modelling the heat transfer of the nanofluid by
using appropriate numerical approaches. The most common numerical approach is the finite volume
method [6,8,10,12,15,17,19]. Jou et al. [9] implemented a finite difference solution with the line it-
erative method. Fattahi et al. [5] and Ashorynejad et al. [1] employed the Lattice Boltzmann method
to simulate the heat transfer comparing different nanofluids, and considering the presence of magnetic
field, respectively. Gumgum and Tezer-Sezgin showed the effeciency of dual reciprocity boundary el-
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ement method on natural convection flow of nanofluids. A novel approach is seen in Serna et al. [16]
with the usage of the network simulation method to show the influence of a pulsating flow in a heated
lid-driven cavity filled with a nanofluid.

To the best of the author’s knowledge, this is the first application of RBF-PS and DQM to simulate
natural convection in an enclosure filled with a nanofluid. The main effect of this process is to be able
to use a small number of grid points in the space domain, and to find the solution both in the space and
the time domain at once. The average Nusselt number variation in different nanofluids with different
solid volume fractions, and in different aspect ratios is presented. Streamlines, isotherms and vorticity
contours are also illustrated.

2. Problem Setup
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Figure 1. Problem Configu-
ration.

The problem geometry is described in Figure 1.
No-slip boundary conditions on the walls
(u = v = ψ = 0) are imposed while the left wall is
the hot wall and right wall is the cold wall. The top
and bottom walls are adiabatic.
Aspect ratio of the cavity is W : H.

The nanofluid in the enclosure is laminar, incompressible and Newtonian. The nanoparticles are
assumed to be in spherical shape, and the nanoparticles and the fluid are assumed to be in thermal
equilibrium. Thermophysical properties of the nanofluid are also assumed constant except the density
variation in the buoyancy force term treated by the Boussinesq approximation. The radiation effect and
viscous dissipation are negligible.

For some nanoparticles copper (Cu), silver (Ag), aluminium oxide (Al2O3), silicon oxide (S iO2),
titanium oxide (TiO2), copper oxide (CuO), thermophysical properties are given in the Table 1.

Table 1. Physical properties of fluid and solid phases.
Property Water Cu Ag Al2O3 S iO2 TiO2 CuO

Cp (J/kgK) 4179 385 235 765 765 686.2 535.6
ρ (kg/m3) 997.1 8933 10500 3970 3970 4250 6320
k (W/mK) 0.613 401 429 25 36 8.95 76.5

β × 10−5(K−1) 21 1.67 1.89 0.85 0.63 0.9 1.8
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3. Governing Equations

The continuity, momentum and energy equations are [2,13,19]

∂u
∂x
+
∂v
∂y
= 0 (3.1a)

∂u
∂t
+ u

∂u
∂x
+ v

∂u
∂y
= − 1

ρn f
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+
µn f

ρn f

(
∂2u
∂x2 +

∂2u
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)
(3.1b)
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∂T
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+ u

∂T
∂x
+ v

∂T
∂y
= αn f

(
∂2T
∂x2 +

∂2T
∂y2

)
, (3.1d)

where

the effective density of the nanofluid is ρn f = (1 − χ)ρ f + χρs ,

the effective dynamic viscosity is µn f =
µ f

(1 − χ)2.5 ,

the thermal expansion coefficient of the nanofluid is βn f ,

the heat capacity of the nanofluid is (Cp)n f ,

the thermal diffusivity of the nanofluid is αn f =
kn f

(ρCp)n f
,

the effective thermal conductivity of the nanofluid is kn f = k f
ks + 2k f − 2χ(k f − ks)
ks + 2k f + χ(k f − ks)

,

and χ is the solid volume fraction, subindices f and s refer to fluid and nanosized solid particle,
respectively. Also, the nanofluid has the following properties

(ρβ)n f = (1 − χ)(ρβ) f + χ(ρβ)s , (3.2)
(ρCp)n f = (1 − χ)(ρCp) f + χ(ρCp)s . (3.3)

In order to get the non-dimensional form of the governing equations, the non-dimensional parame-
ters are defined as

x′ =
x
ℓ
, y′ =

y
ℓ
, u′ =

uℓ
α f
, v′ =

vℓ
α f
, P =

pℓ2

ρn fα
2
f

, T ′ =
T − Tc

Th − Tc
, (3.4)

in which ℓ is the characteristic length.
Substituting these parameters in Eq.(3.4) into the governing equations Eq.(3.1), and then dropping

the prime notation, the following dimensionless equations are obtained

∂u
∂x
+
∂v
∂y
= 0 (3.5a)
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+ u
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The definitions of velocity components in terms of stream function ψ, u = ∂ψ/∂y, v = −∂ψ/∂x

(which satisfy the continuity equation) and of vorticity result inω = ∇×u =
∂v
∂x
− ∂u
∂y
= −∇2ψ. Pressure

terms in Eqs.(3.5b)-(3.5c) are eliminated by applying the definition of vorticity to these equations. By
this way, vorticity equation is derived. Thus, the dimensionless governing equations in terms of stream
function ψ, temperature T and vorticity ω are

∇2ψ = −ω (3.6a)

∇2T =
α f

αn f

(
∂T
∂t
+ u

∂T
∂x
+ v

∂T
∂y

)
(3.6b)

∇2ω =
ρn fµ f

µn fρ f Pr

(
∂ω
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+ u
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∂ω

∂y

)
−
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µn fρ fβ f
Ra
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, (3.6c)

where Pr =
ν f

α f
is the Prandtl number and Ra =

gβ f (Th − Tc)ℓ3

α f ν f
is the Rayleigh number.

4. RBF-PS in space and DQM in time

The diffusion-convection type partial differential equation

∇2φ = u
∂φ

∂x
+ v

∂φ

∂y
(4.1)

may be approximated by RBFs of the form

φi =

Ni+Nb∑
j=1

α j fi j, (4.2)

where φ is an unknown (ψ, T or ω), α j’s are initially unknown coefficients, f ’s are approximating
functions formed by RBFs depending on radial distance r = ||x − x j|| in which x = (x, y) is the field
point and x j = (x j, y j) is the collocation point , Ni is the number of interior nodes, and Nb is the number
of boundary nodes.

In matrix-vector form, Eq.(4.2) may also be written as

φ = Fα ⇒ α = F−1φ. (4.3)

The matrix F of size (Ni + Nb) × (Ni + Nb) is the matrix formed by f j’s columnwise, and α =

{α1, α2, . . . , αNi+Nb} is the coefficient vector.
The first and second order space derivatives of φ are derived by using F and Eq.(4.3) as

∂φ

∂x
=
∂F
∂x
α =

∂F
∂x

F−1φ,
∂φ

∂y
=
∂F
∂y
α =

∂F
∂y

F−1φ, (4.4)
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∂2φ

∂x2 =
∂

∂x

(
∂φ

∂x

)
=
∂2F
∂x2 F−1φ,

∂2φ

∂y2 =
∂2F
∂y2 F−1φ. (4.5)

Using Eqs.(4.4)-(4.5), Eq.(4.1) is expressed in matrix-vector form as

D2φ =
(
[u]dDx + [v]dDy

)
φ (4.6)

or equivalently, (D2 − M)φ = 0, (4.7)

where the matrices are D2 =

(
∂2F
∂2x
+
∂2F
∂y2

)
F−1, Dx =

∂F
∂x

F−1, Dy =
∂F
∂y

F−1 and M =(
[u]dDx + [v]dDy

)
, and the subscript d refers to diagonal.

The Dirichlet type boundary conditions ({dbc}) are inserted to the system matrix of Eq.(4.7) as[
[D2 − M]Ni [D2 − M]Nb

0 I

] [
φi

φb

]
=

[
0

dbc

]
, (4.8)

with the identity matrix I of size Nb × Nb. In case of Neumann type boundary conditions (nbc), the
given boundary conditions are added to the system matrix of Eq.(4.7) with the help of Eq.(4.4) as[

[D2 − M]Ni

Dn

] [
φi

φb

]
=

[
0

nbc

]
, (4.9)

in which Dn is either Dx or Dy with + or − sign with respect to normal vector on the boundary.
In order to handle time derivatives, differential quadrature method (DQM) is used. DQM approxi-

mates the derivatives of a function at a grid point by a linear summation of all functional values in the
whole problem domain.

The time interval is firstly considered as [0, tmax] with a maximum value of time, tmax. System
matrices of the governing equations are formed by space and time domains as a box, and these matrices
are not too large for small values of tmax. However, for large values of tmax, any system matrix become
too large to compute. To overcome this difficulty for a large system, time is divided into equal time
subintervals, and each subinterval is also divided into L number of nonuniform grid points.

DQM manages the first order time derivative as

∂φ

∂t
=

L∑
k=1

alkφi jk, (4.10)

where alk is the first order weighting coefficient given explicitly in [18] as

alk =
M(1)(tl)

(tl − tk)M(1)(tk)
, l , k, all = −

L∑
k=1,k,l

alk, (4.11)

where M(1)(tl) =
L∏

k=1,k,l

(tl − tk), and l = 1, 2, . . . , L.

The system in each time subinterval is regarded as a block consisting of space and time domain. An
iterative system at each block on the dimensionless governing equations are built as follows

D2ψ
n+1
i jl = −ωn

i jl, (4.12a)
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un+1
i jl = Dyψ

n+1
i jl , vn+1

i jl = −Dxψ
n+1
i jl , (4.12b)(

D2 −
α f

αn f
(At + M)

)
T n+1

i jl = 0, (4.12c)(
D2 −

ρn fµ f

Prρ fµn f
(At + M)

)
wn+1

i jl = −
µ f (ρβ)n f

µn fρ fβ f
RaDxT n+1

i jl , (4.12d)

where M = [u]m+1
d Dx + [v]m+1

d Dy, At is the matrix of size L × L formed by weighting coefficient in
Eq.(4.11), and n shows the iteration level.

In the first block, ψ, T and ω are attained as zero at n = 0 except the known boundary at n = 0. Once
this iteration is completed at a block, the next block starts with the initial values taken as the results of
the previous block. This enables one to reach aimed value of tmax.

The unknown vorticity boundary conditions are handled by using the definition of vorticity as

ω =
∂v
∂x
− ∂u
∂y
= Dxvn+1 − Dyun+1. (4.13)

The resulting systems of equations in the form Ax = b are solved by Gaussian elimination with
partial pivoting, and QR factorization which is for overdetermined system of temperature equation
because of adiabatic boundary conditions.

The average Nusselt number through the heated left wall is defined by Nu =
∫ 1

0
−∂T
∂x

dy, and

computed by Clenshaw Curtis quadrature due to the usage of Chebyshev non-uniform grid distribution.
Multiquadric (MQ) f =

√
r2 + c2 and inverse multiquadric (IMQ) RBFs f = 1/

√
r2 + c2 are em-

ployed in this study. The shape parameter c controls the shape of the basis functions. As c gets larger,
the shape becomes flat and the matrix becomes more ill-conditioned. MQ collocation matrices are
conditionally positive definite [14], and the exponential convergence of the error of MQ approximation
have been demonstrated by Madych et al. [11]. IMQs are strictly positive definite.

In order to determine a suitable shape parameter depending on the problem parameters, an initial in-
terval for the shape parameter where the iterative system converges (or catches the expected behaviour)
is determined. This interval is divided into equal c values.

The shape parameter value c providing ψmax zero or closest to zero is chosen. If more than one c
values give ψmax = 0, then the first c value giving 0 is taken.

5. Numerical Results and Discussion

The implementations and computations are done in Matlab. In implementation of space deriva-
tives Eqs.(4.4)-(4.5), right back slash operator, which makes use of Gaussian elimination with partial
pivoting, is used instead of taking the inverse of F directly.

The base fluid is taken as pure water with Prandtl number 6.2.
A relaxation parameter 0 < γ < 1 is used as φn+1 ← γφn+1 + (1 − γ)φn once eqs.(4.12a), (4.12c) or

(4.12d) are performed. In particular, γ = 0.1 is employed for Ra = 103, Ra = 104 and Ra = 105 once
eqs.(4.12a), (4.12c) and (4.12d) are solved, and γ = 0.01 is carried out for Ra = 106 once eq.(4.12d) is
solved.

tmax is fixed at 20 for AR = 1, at 21 for AR , 1, and each block has an up time level L = 5 for
AR = 1, L = 3 for AR , 1.
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Table 2 describes the well agreement of the proposed scheme with the benchmark problem in [3]
in which 41 × 41 number of grid points are used. Both MQ RBF and IMQ RBF are carried out, and c
values are larger in IMQ than in MQ. In both cases, c values decrease as Ra increases.

Table 2. Comparison of Nu values.

Ra Nb,Ni Nu (MQ) c (MQ) Nu (IMQ) c (IMQ) [3]
103 64, 225 1.1181 0.125 1.1157 0.19 1.12
104 64, 225 2.2492 0.145 2.2444 0.155 2.243
105 80, 361 4.5357 0.08 4.5126 0.1 4.52
106 96, 625 8.8716 0.06 8.8451 0.08 8.8

When there is no nanoparticle inside of the water, the average Nusselt number is Nu = 4.7062 in
Ra = 105 utilizing MQ RBF. As is seen from Table 3, the presence of any type of nanoparticle enhances
heat transfer in the cavity. Also, the increase in solid volume fraction is resulted with the increase in
Nu. The improved heat transfer is pronounced better by the insertion of Cu nanoparticles than the other
type of nanoparticles.

Table 3. Nu with solid volume fraction variation in different nanofluids when Ra = 105

with c = 0.09.
χ Cu Ag Al2O3 S iO2 TiO2 CuO

0.04 4.9162 4.9157 4.8635 4.8590 4.8102 4.8992
0.08 5.1097 5.1076 4.9999 4.9906 4.8943 5.0748
0.16 5.4507 5.4436 5.2127 5.1925 5.0049 5.3771
0.2 5.6013 5.5915 5.2904 5.2640 5.0320 5.5056

In Figure 2, the variation in Ra is shown in Cu-water nanofluid with χ = 0.2. Streamlines in the
center of the cavity expands with the increase in Ra. Also, the strong temperature gradient in isotherms
through the left and right walls is noticed due to the increase in buoyancy force. The centered vorticity
contour is divided into two cells, and these two cells are shrunk through the left and right walls. At a
large Rayleigh number (Ra = 106), the circulation in the main centered cell of streamlines in case of
χ = 0 (Figure 3) is not much different than the case of χ = 0.2 (Figure 2). This indicates that laminar
flow regime is preserved.

In Table 4, fluid velocity and Nu values are presented in different concentration of Cu-water
nanofluid. The values Nb,Ni and c are also the same for χ = 0.02 and χ = 0.2 with χ = 0. In
each concentration, the increase in fluid velocity as Ra increases is noted. Fluid velocity does not
change from χ = 0 to χ = 0.02. However, the remarkable change occurs in χ = 0.2. This also points
out that fluid flows faster in highly concentrated Cu-water nanofluid than pure water. For small Ra val-
ues (Ra = 103, 104), the change in χ has no much effect on fluid velocity. For Ra = 105 and Ra = 106,
the increase in |ψ|max and umax are seen in presence of nanoparticle in solid volume fraction χ = 0.2. In
each Ra, the existence of nanoparticle inside water causes Nu to increase, and so the convective heat
transfer is pronounced.

The increase in fluid velocity with the increase in χ is also illustrated in Figure 4 with u and v
velocity profiles at mid sections of the unit square cavity. The fluid moves at higher velocities close to
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Figure 2. Streamlines, isotherms and vorticity contours in different Ra numbers as
χ = 0.2 is fixed with copper filled water.

Figure 3. Contours in Ra = 106 with χ = 0.

the boundaries than the center of the cavity as can be seen in Figure 4(a)-(b). In each cases, absolute
value of velocities is the largest at the highest concentration of nanofluids χ = 0.2.
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Table 4. With and without Cu inside water.
χ = 0

Ra |ψ|max umax vmax Nu Nb,Ni c
103 1.1783 3.6138 3.6844 1.1139 64,225 0.14
104 5.2387 16.3481 19.9808 2.2633 64, 225 0.14
105 11.2149 39.5181 73.6697 4.7062 80,361 0.09
106 20.3209 99.2457 228.8666 9.1690 96,625 0.05

χ = 0.02
103 1.1286 3.4617 3.5171 1.1598
104 5.2847 16.4189 20.1198 2.3066
105 11.4923 39.4300 74.2029 4.8133
106 20.9472 98.5315 229.1695 11.2539

χ = 0.2
103 0.6777 2.0802 2.0847 1.7668
104 4.9332 15.0695 15.9173 2.6060
105 13.8902 44.1674 70.8333 5.6013
106 26.5623 104.7299 237.6965 11.2539

Table 5. Nu values in different AR when Ra = 105, χ = 0.2.

W:H Nu c
AR > 1 2:1 4.79 0.17

4:1 3.51 0.15
0 < AR < 1 1:2 5.44 0.12

1:4 4.77 0.11

In Figures 5 and 6, different aspect ratios of the Cu-water-filled cavity are taken into account per-
forming IMQ RBF. Similar behaviour as in Ra = 105 in Figure2 occurs. Table 5 indicates the average
Nusselt number values through the heated wall. On one hand, convective heat transfer decreases inside
the cavity when the cavity sizes increase. On the other hand, Nu values in case of 0 < AR < 1 are
greater than the case of AR > 1 which may be a result of the effect of longer heated wall on the fluid
flow and heat transfer inside the cavity.

6. Conclusion

In this study, a numerical investigation on natural convection in a cavity filled with a nanofluid is
presented. The space derivatives in the dimensionless equations are discretised by RBF-PS and the
time derivatives are handled by DQM. The nature of this approach provides one to obtain the results
with small number of grid points. Instead of solving the system of time and space as an entire large
system, time is divided into subintervals and the system is observed block by block. Also, the solution
at each block is obtained at once. Convective heat transfer increase with the insertion of nanoparticles
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Figure 4. Velocity profiles for Cu-water nanofluid when Ra = 105 in different χ.

into the water. Further, the decrease in the convective heat transfer is noticed with the increase in
Cu-water-filled cavity size.
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