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Abstract: We consider a second-order two-step time semi-discretization of the Cahn-Hilliard equa-
tion with an analytic nonlinearity. The time-step is chosen small enough so that the pseudo-energy
associated with the discretization is nonincreasing at every time iteration. We prove that the sequence
generated by the scheme converges to a steady state as time tends to infinity. We also obtain conver-
gence rates in the energy norm. The proof is based on the Łojasiewicz-Simon inequality.
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1. Introduction

In this paper, we consider a second-order time semi-discretization of the Cahn-Hilliard equation
with an analytic nonlinearity, and we prove that any sequence generated by the scheme converges to a
steady state as time goes to infinity, provided that the time-step is chosen small enough.

The Cahn-Hilliard equation [10] readsut = ∆w

w = −γ∆u + f (u)
in Ω × (0,+∞), (1.1)
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where Ω is a bounded subset of Rd (1 ≤ d ≤ 3) with smooth boundary and γ > 0. A typical choice for
the nonlinearity is

f (s) = c(s3 − s) (1.2)

with c > 0. More general conditions on f are given in Section 2, see (2.3)-(2.5). Equation (1.1) is
completed with Neumann boundary conditions and an initial datum.

The Cahn-Hilliard equation was analyzed by many authors and used in different contexts (see,
e.g., [11,37] and references therein). In particular, it is a H−1 gradient flow for the energy

E(u) =
∫
Ω

[
γ

2
|∇u|2 + F(u)

]
dx,

where F is an antiderivative of f . Convergence of single trajectories to equilibrium for (1.1)-(1.2) has
been proved in [42]. The proof uses the gradient flow structure of the equation and a Łojasiewicz-
Simon inequality [44].

In one space dimension, the set of steady states corresponding to (1.1)-(1.2) is finite [24,32]. In
this case, the use of a Łojasiewicz-Simon inequality can be avoided [51] but otherwise, the situation
is highly complicated; if d = 2 or 3, there may even be a continuum of stationary solutions (see,
e.g., [47] and references therein). The Łojasiewicz-Simon inequality allows to prove convergence to
an equilibrium without any knowledge on the set of steady states. This celebrated inequality is based
on the analyticity of f (see [27] for a recent overview). In contrast, for the related semilinear parabolic
equation, convergence to equilibrium may fail for a nonlinearity of class C∞ [39].

Using similar techniques, convergence to equilibrium for the non-autonomous Cahn-Hilliard
equation was proved in [15], and the case of a logarithmic nonlinearity was considered in [1].
The Cahn-Hilliard equation endowed with dynamic or Wentzell boundary conditions was analyzed
in [14,40,48,49]. Coupled systems were also considered (see, e.g., [18,30,41]).

Since many space and/or time discretizations of the Cahn-Hilliard equation are available in the lit-
erature (see, e.g., [5,17,20,21,22,26,36,43,50]), it is natural to ask whether convergence to equilibrium
also holds for these discretizations, by using similar techniques.

If we consider only a space semi-discretization of (1.1), and if this discretization can be shown to
preserve the gradient flow structure, then convergence to equilibrium is a consequence of Łojasiewicz’s
classical convergence result [33] and its generalizations [8,27]. Thanks to the finite dimension, the
Łojasiewicz-Simon inequality reduces to the standard Łojasiewicz inequality. The latter is a direct
consequence of analyticity of the discrete energy functional.

Thus, the situation regarding the space discretization is well understood, and we believe that the
focus should be put on the time discretization, in the specific case where the time scheme preserves
the gradient flow structure. In this regard, convergence to equilibrium for a fully discrete version
of (1.1)-(1.2) was first proved in [34]: the time scheme was the backward Euler scheme and the space
discretization was a finite element method. Fully discretized versions of Cahn-Hilliard type equations
were considered in [12,13,29], where this nice feature of the backward Euler scheme was again demon-
strated [6,25]. In [4], convergence to equilibrium was proved for several fully discretized versions of
the closely related Allen-Cahn equation; the time scheme was either first order or second order, condi-
tionnally or unconditionnally stable, and the time-step could possibly be variable. In addition, general
conditions ensuring convergence to equilibrium for a time discretization were given [7].
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Therefore, the fully discrete case is now also well understood. The last stage is to study the time
semi-discrete case. This is all the more interesting since this approach is independent of a choice of
a specific space discretization. Convergence to equilibrium was proved for the backward Euler time
semi-discretization of the Allen-Cahn equation in [34] (see also [9]). A related damped wave equation
was considered in [38].

For schemes different from the backward Euler method, the situation is not so clear, and this
is well illustrated by the second order case. Indeed, there exist several second-order time semi-
discretizations of (1.1)-(1.2) which preserve the gradient flow structure (see, e.g., [43,50] and refer-
ences therein). Most of these schemes are one-step methods, which can be seen as variants of the
Crank-Nicolson scheme, such as the classical secant scheme [16,17] or the more recent scheme of
Gomez and Hughes [21], which is a Crank-Nicolson scheme with stabilization.

However, we have not been able to prove convergence to equilibrium for any of these second-order
one-step schemes. One difficulty is that the gradient of E (cf. (3.2)) is treated in an implicit/explicit
way, and another difficulty is that the discrete dynamical system associated with the scheme is defined
on a space of infinite dimension. The first difficulty can be circumvented in finite dimension, as recently
shown in [23], where convergence to equilibrium was proved for a fully discrete approximation of the
modified phase-field crystal equation using the second-order time discretization of Gomez and Hughes.
A related difficulty has been pointed out in [46] where the stability of the Crank-Nicolson scheme for
the Navier-Stokes equation was proved in a finite dimensional setting only.

In this paper, instead of a Crank-Nicolson type method, we use a standard two-step scheme with
fixed time-step, namely the backward differentiation formula of order two. It is well-known [43,45] that
this scheme enjoys a Lyapunov stability, namely, if the time-step is small enough, a so-called pseudo-
energy (cf. (2.17)) is nonincreasing at every time iteration. Thanks to the implicit treatment of the
gradient of E (cf. (2.13)), the proof of convergence is similar to the case of the backward Euler scheme
in [34,38]. Using the Lyapunov stability, we first prove Lasalle’s invariance principle by a compactness
argument (Proposition 3.1). Convergence to a steady state is then obtained as a consequence of an
appropriate Łojasiewicz-Simon inequality (Lemma 3.2), which is the most technical point. In order to
derive the convergence rate in H1 norm, we also take advantage of the fact that the scheme is more
dissipative than the original equation (see Remark 2.4).

It would be interesting to extend our convergence result to first-order or second-order schemes
where the nonlinearity is treated explicitly. In order for such schemes to preserve the gradient structure,
the standard approach is to truncate the cubic nonlinearity f (cf. (1.2)) at ±∞ so as to have a linear
growth at most [43]. However, it is not known if the energy associated with such a nonlinearity satisfies
a Łojasiewicz-Simon inequality, in contrast with the finite-dimensional case where it can be proved for
certain space discretizations [4].

It could also be of interest to investigate whether a similar convergence result holds for the p-step
backward differentiation formula (BDF), with p ≥ 3. A favorable situation is the 3-step BDF method,
which preserves the gradient flow structure, at least in finite dimension [45].

The paper is organized as follows. In Section 2, we introduce the scheme, we establish its well-
posedness and we show that it is Lyapunov stable. In Section 3, we prove the convergence result.
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2. The time semi-discrete scheme

2.1. Notation and assumptions

Let H = L2(Ω) be equipped with the L2(Ω) norm | · |0 and the L2(Ω) scalar product (·, ·). We denote
V = H1(Ω) the standard Sobolev space based on the L2(Ω) space. We use the hilbertian semi-norm
| · |1 = |∇ · |0 in V , and the norm in V is ∥v∥21 = |v|20 + |v|21. We denote −∆ : V → V ′ the bounded operator
associated with the inner product on V through

⟨−∆u, v⟩V′,V = (∇u,∇v), ∀u, v ∈ V,

where V ′ is the topological dual of V . As usual, we will denote Wk,p(Ω) the Sobolev spaces based on
the Lp(Ω) space [19].

For a function u ∈ L2(Ω), we denote

⟨u⟩ = 1
|Ω|

∫
Ω

u dx and u̇ = u − ⟨u⟩,

where |Ω| is the Lebesgue measure of Ω. We also define

Ḣ = {u ∈ L2(Ω), ⟨u⟩ = 0}, V̇ = V ∩ Ḣ.

We will use the continuous and dense injections

V̇ ⊂ Ḣ = Ḣ′ ⊂ V̇ ′.

As a consequence of the Poincaré-Wirtinger inequality, the norms ∥v∥1 and

v 7→ (|v|21 + ⟨v⟩2)1/2 (2.1)

are equivalent on V . The operator −∆̇ : V̇ → V̇ ′, that is the restriction of −∆, is an isomorphism. The
scalar product in V̇ ′ is given by

(u̇, v̇)−1 = (∇(−∆̇)−1u̇,∇(−∆̇)−1v̇) = ⟨u̇, (−∆̇)−1v̇⟩V̇′,V̇

and the norm is given by
|u̇|2−1 = (u̇, u̇)−1 = ⟨u̇, (−∆̇)−1u̇⟩V̇′,V̇ .

We recall the interpolation inequality

|u̇|20 ≤ |u̇|−1|u̇|1, ∀u̇ ∈ V̇ . (2.2)

We assume that the nonlinearity f : R → R is analytic and if d ≥ 2, we assume in addition that
there exist a constant C > 0 and a real number p ≥ 0 such that

| f ′(s)| ≤ C(1 + |s|p), ∀s ∈ R, (2.3)

with p < 4 if d = 3. No growth assumption is needed if d = 1. We also assume that

f ′(s) ≥ −c f , ∀s ∈ R, (2.4)
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for some (optimal) nonnegative constant c f , and that

lim inf
|s|→+∞

f (s)
s

> 0. (2.5)

We define the energy functional
E(u) =

γ

2
|u|21 + (F(u), 1), (2.6)

where F(s) is a given antiderivative of f . The Sobolev injection V ⊂ Lp+2(Ω) and the growth assump-
tion (2.3) ensure that E(u) < +∞ and f (u) ∈ V ′, for all u ∈ V . In fact, by [31, Corollaire 17.8], the
functional E is of class C2 on V . For any u, v,w ∈ V , we have

⟨dE(u), v⟩V′,V =
∫
Ω

[γ∇u · ∇v + f (u)v]dx, (2.7)

⟨d2E(u)v,w⟩V′,V =
∫
Ω

[γ∇v · ∇w + f ′(u)vw]dx, (2.8)

where dE(u) ∈ V ′ is the first differential of E at u and d2E(u) ∈ L(V,V ′) is the differential of order two
of E at u.

If u is a regular solution of (1.1), on computing we see that

d
dt

E(u(t)) = −|w|21 = −|ut|2−1 t ≥ 0, (2.9)

so that E is a Lyapunov functional associated with (1.1).

2.2. Existence, uniqueness and Lyapunov stability

Let τ > 0 denote the time-step. The second-order backward differentiation scheme for (1.1)
reads [43,45]: let (u0, u1) ∈ V × V and for n = 1, 2, . . . , let (un+1,wn+1) ∈ V × V solve

1

2τ
(3un+1 − 4un + un−1, φ) + (∇wn+1,∇φ) = 0

(wn+1, ψ) = γ(∇un+1,∇ψ) + ( f (un+1), ψ),
(2.10)

for all (φ, ψ) ∈ V × V . For simplicity, we assume that

⟨u0⟩ = ⟨u1⟩, (2.11)

so that, by induction, any sequence (un) which complies with (2.10) satisfies ⟨un⟩ = ⟨u0⟩ for all n
(choose φ = 1/|Ω| in (2.10)). We note that w0 and w1 need not be defined.

For later purpose, we note that if ⟨un⟩ = ⟨un−1⟩, then (2.10) is equivalent to

⟨un+1⟩ = ⟨un⟩

(−∆̇)−1
(3un+1 − 4un + un−1)

2τ
+ ẇn+1 = 0

ẇn+1 = −γ∆un+1 + f (un+1) − ⟨ f (un+1)⟩
⟨wn+1⟩ = ⟨ f (un+1)⟩.

(2.12)
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Eliminating wn+1 leads to

(−∆̇)−1
(3un+1 − 4un + un−1)

2τ
− γ∆un+1 + f (un+1) − ⟨ f (un+1)⟩ = 0. (2.13)

Proposition 2.1 (Existence for all τ). For all (u0, u1) ∈ V ×V such that ⟨u0⟩ = ⟨u1⟩, there exists at least
one sequence (un,wn)n which complies with (2.10). Moreover, ⟨un⟩ = ⟨u0⟩ for all n.

Proof. Existence can be obtained by minimizing an appropriate functional. By induction, assume that
for some n ≥ 1, (un−1, un) ∈ V × V is defined, with ⟨un⟩ = ⟨un−1⟩ = ⟨u0⟩. Then, by (2.13), un+1 can be
obtained by solving

min {Gn(v) : v ∈ V, ⟨v⟩ = ⟨u0⟩} , (2.14)

where
Gn(v) =

3
4τ
|v̇|2−1 +

1
2τ

(−4u̇n + u̇n−1, v̇)−1 + E(v).

By (2.5), there exist κ1 > 0 and κ2 ≥ 0 such that

F(s) ≥ κ1s2 − κ2, ∀s ∈ R.

Thus, for all v ∈ V ,
(F(v), 1) ≥ κ1|v|20 − κ2|Ω|,

and so
E(v) ≥ κ3∥v∥21 − κ2|Ω|, (2.15)

with κ3 = min{γ/2, κ1} > 0. Moreover, by the Cauchy-Schwarz inequality,

|(−4u̇n + u̇n−1, v̇)−1| ≤ |v̇|−1| − 4u̇n + u̇n−1|−1 ≤
3
2
|v̇|2−1 +Cn,

for some constant Cn which depends on |u̇n|−1 and |u̇n−1|−1. Summing up, we have proved that

Gn(v) ≥ κ3∥v∥21 − κ2|Ω| −
Cn

2τ
.

By considering a minimizing sequence (vk) for problem (2.14), we obtain a minimizer, i.e. un+1. Then
wn+1 can be recovered from un+1 by (2.12). �

Proposition 2.2 (Uniqueness). If 1/τ > c2
f /(6γ), then for every (u0, u1) ∈ V × V such that ⟨u0⟩ = ⟨u1⟩,

there exists at most one sequence (un,wn)n which complies with (2.10).

Proof. Assume that (un+1,wn+1) and (ũn+1, w̃n+1) are two solutions of (2.10), and denote δu = un+1−ũn+1,
δw = wn+1 − w̃n+1. On subtracting, we obtain

3(δu, φ)/(2τ) + (∇δw,∇φ) = 0, (2.16)
(δw, ψ) = γ(∇δu,∇ψ) + ( f (un+1) − f (ũn+1), ψ),

for all (φ, ψ) ∈ V × V . Choosing φ = δw and ψ = δu yields

−(2τ/3)|δw|21 = γ|δu|21 + ( f (un+1) − f (ũn+1), δu).
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Using the mean value inequality and (2.4) yields

(s − r)( f (s) − f (r)) = f ′(ξ)(s − r)2 ≥ −c f (s − r)2,

for all r, s ∈ R, for some ξ ∈ R depending on r, s. Thus,

c f |δu|20 ≥ γ|δu|21 + (2τ/3)|δw|21.

Using now (2.16) with φ = δu, we obtain

c f |δu|20 = −(2τc f /3)(∇δw,∇δu) ≤ γ|∇δu|20 +
τ2c2

f

9γ
|∇δw|2.

If τc2
f < 6γ, then δẇ = 0, and by (2.16), δu = 0 also. Uniqueness follows. �

We define the following pseudo-energy

E(u, v) = E(u) +
1
4τ
|v̇|2−1, ∀(u, v) ∈ V × V ′. (2.17)

For a sequence (un)n, let also δun = un−un−1 denote the backard difference. The following relation will
prove useful,

3un+1 − 4un + un−1 = 2δun+1 + (δun+1 − δun). (2.18)

Proposition 2.3 (Lyapunov stability). Let ε ∈ [0, 1). If (un,wn)n is a sequence which complies
with (2.10)-(2.11), then for all n ≥ 1,

E(un+1, δun+1) +
εγ

2
|un+1 − un|21 +

1τ − c2
f

8γ(1 − ε)

 |un+1 − un|2−1

+
1
4τ
|δun+1 − δun|2−1 ≤ E(un, δun). (2.19)

Proof. We take the L2 scalar product of equation (2.13) by δun+1 and we use (2.18). We obtain

1
τ
|δun+1|2−1 +

1
2τ

(δun+1 − δun, δun+1)−1 + γ(∇un+1,∇(un+1 − un))

= ( f (un+1), un − un+1).

By the Taylor-Lagrange formula, from (2.4), we deduce that

F(r) − F(s) ≥ f (s)(r − s) −
c f

2
|r − s|2, ∀r, s ∈ R.

Thus,
( f (un+1), un − un+1) ≤ (F(un), 1) − (F(un+1), 1) +

c f

2
|un+1 − un|20.

Next, we use the well-known identity

(a, a − b)m =
1
2
|a|2m −

1
2
|b|2m +

1
2
|a − b|2m,
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for m = −1 and m = 0. We find

1
τ
|δun+1|2−1 +

1
4τ

(
|δun+1|2−1 − |δun|2−1 + |δun+1 − δun|2−1

)
+
γ

2

(
|un+1|21 − |un|21 + |un+1 − un|21

)
≤ (F(un), 1) − (F(un+1), 1) +

c f

2
|un+1 − un|20. (2.20)

The interpolation inequality (2.2) and Young’s inequality yield

c f

2
|un+1 − un|20 ≤

γ(1 − ε)
2
|un+1 − un|21 +

c2
f

8γ(1 − ε)
|un+1 − un|2−1.

Plugging this into (2.20) gives (2.19). �

Remark 2.4. If τ is small enough, then by choosing ε ∈ (0, 1), we see that the scheme (2.10) is more
dissipative than the original equation (1.1), since the H1 norm |un+1−un|21 appears in (2.19); in contrast,
only the H−1 norm |ut|2−1 appears in (2.9).

3. Convergence to equilibrium

For a sequence (un)n in V , we define its omega-limit set by

ω((un)n) := {u⋆ ∈ V : ∃nk → ∞, unk → u⋆ (strongly) in V}.

Let M ∈ R be given and consider the following affine subspace of V ,

VM = {v ∈ V : ⟨v⟩ = M} = M + V̇ . (3.1)

The set of critical points of E (see (2.6)) in VM is

SM = {u⋆ ∈ VM : −γ∆u⋆ + f (u⋆) − ⟨ f (u⋆)⟩ = 0 in V̇ ′}.

Indeed, we already know that E ∈ C2(VM;R). Observe that, for any u ∈ VM, v̇ ∈ V̇ , we have (see (2.7))

⟨dE(u), v⟩V̇′,V̇ =

∫
Ω

[γ∇u · ∇v + f (u)v]dx

=

∫
Ω

[γ∇u · ∇v + ( f (u) − ⟨ f (u)⟩)v]dx

= ⟨−γ∆u + f (u) − ⟨ f (u)⟩, v⟩V̇′,V̇ . (3.2)

By definition, u⋆ is a critical point of E in VM if dE(u⋆) = 0 in V̇ ′. The definition of SM follows.

Proposition 3.1. Assume that 1/τ > c2
f /(8γ) and let (un,wn)n be a sequence which complies

with (2.10)-(2.11). Then δun → 0 in V and ω((un)n) is a nonempty compact and connected subset
of V which is included in SM with M = ⟨u0⟩. Moreover, E is constant on ω((un)n).
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Proof. Using the assumption on τ, we may choose ε ∈ (0, 1) such that 1/τ = c2
f /(8γ(1−ε)). Then (2.19)

reads
E(un+1, δun+1) +

εγ

2
|un+1 − un|21 +

1
4τ
|δun+1 − δun|2−1 ≤ E(un, δun), (3.3)

for all n ≥ 1. In particular, (E(un, δun))n is non increasing. Moreover, by (2.15),

E(u, v) ≥ κ3∥u∥21 +
1
4τ
|v̇|2−1 − κ2|Ω|, ∀(u, v) ∈ V × V ′. (3.4)

Since E(u1, δu1) < +∞, we deduce from (3.4) that (un, δun) is bounded in V × V ′ and that E(un, δun) is
bounded from below. Thus, E(un, δun) converges to some E⋆ in R. By induction, from (3.3)-(3.4) we
also deduce that

∞∑
n=1

|un+1 − un|21 ≤
2
εγ

(E(u1, δu1) + κ2|Ω|) < +∞.

In particular, δun → 0 in V . This implies that E(un)→ E⋆, and so E is equal to E⋆ on ω((un)n).
Next, we claim that the sequence (un) is precompact in V . Let us first assume d = 3. We deduce from

the Sobolev imbedding [19] that (un) is bounded in L6(Ω). By the growth condition (2.3), there exists
2 ≥ q > 6/5 such that ∥ f (un+1)∥Lq(Ω) ≤ M1, where M1 is independent of n. By elliptic regularity [3],
we deduce from (2.13) that (un+1)n≥1 is bounded in W2,q(Ω). Finally, from the Sobolev imbedding [19],
W2,q(Ω) is compactly imbedded in V , and the claim is proved.

In the case d = 1 or 2, we obtain directly from the Sobolev imbedding that f (un+1) is bounded in
Lq(Ω), for any q < +∞, and we conclude similarly.

As a consequence, ω((un)n) is a nonempty compact subset of V . Since |un+1 − un|1 → 0, ω((un)n)
is also connected. Let finally u⋆ belong to ω((un)n), with nk → ∞ such that unk → u⋆ in V . We let nk

tend to ∞ in (2.13). Thanks to (2.11), the whole sequence (un) belongs to VM and u⋆ as well, where
M = ⟨u0⟩. By (2.18), the term corresponding to the discrete time derivative tends to 0 in V , and we
obtain that u⋆ belongs to SM. �

If the critical points of E are isolated, i.e. SM is discrete, then Proposition 3.1 ensures that the
sequence (un)n converges in V . However, as pointed out in the introduction, the structure of SM is gen-
erally not known, and there may even be a continuum of steady states. In such cases, the Łojasiewicz-
Simon inequality which follows is needed to ensure convergence of the whole sequence (un).

Lemma 3.2. Let u⋆ ∈ SM. Then there exist constants θ ∈ (0, 1/2) and δ > 0 depending on u⋆ such
that, for any u ∈ VM satisfying |u − u⋆|1 < δ, there holds

|E(u) − E(u⋆)|1−θ ≤ | − γ∆u + f (u) − ⟨ f (u)⟩|−1. (3.5)

Proof. We will apply the abstract result of Theorem 11.2.7 in [27]. We introduce the auxiliary func-
tional EM(v) = E(M + v) on V̇ . We will also use the auxiliary functions

fM(s) = f (M + s) and FM(s) = F(M + s).

It is obvious that
EM(v) =

∫
Ω

[
γ

2
|∇v|2 + FM(v)

]
dx.
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The function EM is of class C2 on V̇ and by (3.2), for any v ∈ V̇ , we have

dEM(v) = −γ∆v + fM(v) − ⟨ fM(v)⟩ in V̇ ′.

Similarly, by (2.8), for any v, φ ∈ V̇ , we have

d2EM(v)φ = −γ∆φ + f ′M(v)φ − ⟨ f ′M(v)φ⟩ in V̇ ′. (3.6)

Let v⋆ ∈ V̇ be a critical point of EM, i.e. a solution of dEM(v⋆) = 0 in V̇ ′. Using (2.3) and
elliptic regularity, we obtain that v⋆ ∈ C0(Ω) ⊂ L∞(Ω). In particular, f ′M(v) ∈ L∞(Ω). The operator
A = d2EM(v⋆) ∈ L(V̇ , V̇ ′) (cf. (3.6)) can be written

A = −γ∆ + P0( f ′M(v⋆)Id),

where −γ∆ : V̇ → V̇ ′ is an isomorphism, P0 : H → Ḣ is the L2-projection operator, and f ′M(v⋆)Id :
V̇ → H is a multiplication operator. Since V̇ is compactly imbedded in Ḣ [19], f ′M(v⋆)Id : V̇ → H is
compact, and P0( f ′M(v⋆)Id) as well. Using [27, Theorem 2.2.5], we obtain that A is a semi-Fredholm
operator.

Next, let N(A) denote the kernel of A, and Π : V̇ → N(A) the L2 projection. By [27, Corollary
2.2.6], L := A + Π : V̇ → V̇ ′ is an isomorphism. We choose Z = Ḣ and denote W = L−1(Z); W is
a Banach space for the norm ∥w∥W = |L(w)|0. We claim that W is continuously imbedded in W2,2(Ω).
Indeed, by definition, w ∈ W if and only if w ∈ V̇ and L(w) = g for some g ∈ Z, i.e.

w ∈ V̇ and − γ∆w + f ′M(v⋆)w − ⟨ f ′M(v⋆)w⟩ + Πw = g.

Thus, −∆w ∈ Ḣ. By elliptic regularity [3], w ∈ W2,2(Ω). Moreover, by the triangle inequality,

γ| − ∆w|0 ≤ C∥ f ′M(v⋆)∥L∞ |w|0 + |Πw|0 + |L(w)|0 ≤ C∥w∥W ,

where C is a constant independent of w. But, by elliptic regularity [3], we also know that ∥w∥W2,2 ≤
C| − ∆w|0 for all w ∈ V̇ . This proves the claim.

The Nemytskii operator fM : v 7→ fM(v) is analytic from L∞(Ω) into L∞(Ω) (see [27, Example 2.3]).
Using [27, Proposition 2.3.4], we find that the functional v 7→

∫
Ω

FM(v) is real analytic from L∞(Ω)
into R. Thus, EM, which is the sum of a continuous quadratic functional and of a functional which is
real analytic on W ⊂ W2,2(Ω) ⊂ L∞(Ω), is real analytic on W. We also obtain that dEM : W → Z is
real analytic.

We are therefore in position to apply the abstract Theorem 11.2.7 in [27], which shows that there
exist θ ∈ (0, 1/2) and δ > 0 such that for all v ∈ V̇ ,

|v − v⋆|1 < δ⇒ |EM(v) − EM(v⋆)|1−θ ≤ |dEM(v)|−1. (3.7)

Finally, we note that any u⋆ ∈ SM can be written u⋆ = M + v⋆, where v⋆ is a critical point of EM; by
definition of VM, any u ∈ VM can be written u = M + v with v ∈ V̇ . The expected Łojasiewicz-Simon
inequality (3.5) is exactly (3.7) written in terms of u⋆, u, E and f . �
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Theorem 3.3. Assume that 1/τ > c2
f /(8γ) and let (un,wn)n be a sequence which complies with (2.10)-

(2.11). Then the whole sequence converges to (u∞,w∞) in V × V, with u∞ ∈ SM, M = ⟨u0⟩, and w∞
constant. Moreover, the following convergence rate holds

∥un − u∞∥1 + ∥wn − w∞∥1 ≤ Cn−
θ

1−θ , (3.8)

for all n ≥ 2, where C is a constant depending on ∥u0∥1, ∥u1∥1, f , γ, τ, and θ, while θ ∈ (0, 1/2) may
depend on u∞.

Proof. Let M = ⟨u0⟩. For every u⋆ ∈ ω((un)n), there exist θ ∈ (0, 1) and δ > 0 which may depend on u⋆
such that the inequality (3.5) holds for every u ∈ Bδ(u⋆) = {u ∈ VM : |u − u⋆| < δ}. The union of balls
{Bδ(u⋆) : u⋆ ∈ ω((un)n)} forms an open covering ofω((un)n) in VM. Due to the compactness ofω((un)n)
in V , we can find a finite subcovering {Bδi(ui

⋆)}mi=1 such that the constants δi and θi corresponding to ui
⋆

in Lemma 3.2 are indexed by i.
From the definition of ω((un)n), we know that there exists a sufficiently large n0 such that un ∈ U =

∪m
i=1Bδi(ui

⋆) for all n ≥ n0. Taking θ = minm
i=1{θi}, we deduce from Lemma 3.2 and Proposition 3.1 that

for all n ≥ n0,
|E(un) − E⋆|1−θ ≤ | − γ∆un + f (un) − ⟨ f (un)⟩|−1, (3.9)

where E⋆ is the value of E on ω((un)n). We may also assume (by taking a larger n0 if necessary) that
for all n ≥ n0, |δun|−1 ≤ 1.

We denote Φn = E(un, δun) − E⋆, so that Φn ≥ 0 and Φn is nonincreasing. Let n ≥ n0. Using the
inequality (a + b)1−θ ≤ a1−θ + b1−θ, valid for all a, b ≥ 0, together with (3.9), we obtain

Φ1−θ
n+1 ≤ |E(un+1) − E⋆|1−θ + (4τ)θ−1|δun+1|2(1−θ)

−1

≤ | − γ∆un+1 + f (un+1) − ⟨ f (un+1)⟩|−1 + (4τ)θ−1|δun+1|−1

≤ C (|un+1 − un|−1 + |δun+1 − δun|−1) ,

≤ C
(
|un+1 − un|21 + |δun+1 − δun|2−1

)1/2
(3.10)

where C = C(τ, θ, ∥(−∆̇)−1∥L(V̇′,V̇′), ∥(−∆̇)−1∥L(V̇ ,V̇)) (here and in the following, C denotes a generic
positive constant independent of n). For the third inequality, we have used (2.13) and (2.18). Next, we
choose ε ∈ (0, 1) such that 1/τ = c2

f /(8γ(1 − ε)). Then (3.3) holds, and it can be written

Φn − Φn+1 ≥ C
(
|un+1 − un|21 + |δun+1 − δun|2−1

)
, (3.11)

with C = C(τ, γ, ε) > 0.
Assume first that Φn+1 > Φn/2. Then

Φθn − Φθn+1 = θ

∫ Φn

Φn+1

xθ−1dx ≥ θΦn − Φn+1

Φn
≥ 2θ−1θ

Φn − Φn+1

Φ1−θ
n+1

.

Using (3.10) and (3.11), we find

Φθn − Φθn+1 ≥ C
(
|un+1 − un|21 + |δun+1 − δun|2−1

)1/2
,

where C = C(τ, θ, γ, ε, ∥(−∆̇)−1∥L(V̇′,V̇′), ∥(−∆̇)−1∥L(V̇ ,V̇)).

AIMS Mathematics Volume 1, Issue 3, 178-194



189

Now, if Φn+1 ≤ Φn/2, then

Φ1/2
n − Φ1/2

n+1 ≥ (1 − 1/
√

2)Φ1/2
n ≥ (1 − 1/

√
2)(Φn − Φn+1)1/2

and using (3.11) again, we find

Φ1/2
n − Φ1/2

n+1 ≥ C
(
|un+1 − un|21 + |δun+1 − δun|2−1

)1/2
.

Thus, in both cases, we have

|un+1 − un|1 ≤ C(Φθn − Φθn+1) +C(Φ1/2
n − Φ1/2

n+1), (3.12)

for all n ≥ n0. Summing on n ≥ n0, we obtain

∞∑
n=n0

|un+1 − un|1 ≤ CΦθn0
+CΦ1/2

n0
< +∞. (3.13)

Using the Cauchy criterion, we find that the whole sequence (un) converges to some u∞ in V . By
Proposition 3.1, u∞ belongs to SM. Using the second equation in (2.12), we see that ẇn → 0. For the
term ⟨wn⟩, we write∫

Ω

| f (un) − f (u∞)|dx =
∫
Ω

∣∣∣∣∣∣
∫ 1

0
f ′((1 − s)un + su∞)(un − u∞)ds

∣∣∣∣∣∣ dx.

Using assumption (2.3), Hölder’s inequality and Sobolev imbeddings, we find∫
Ω

| f (un) − f (u∞)|dx ≤ C(∥un∥1, ∥u∞∥1)∥un − u∞∥1.

Since (un) is bounded in V , this yields, for all n ≥ 2,

|⟨wn⟩ − w∞| = |⟨ f (un)⟩ − ⟨ f (u∞)|⟩ ≤ ⟨| f (un) − f (u∞)|⟩ ≤ C∥un − u∞∥1, (3.14)

where we have used the last equation in (2.12) and where w∞ = ⟨ f (u∞)⟩. This implies that wn → w∞
in V (see (2.1)), and it concludes the proof of convergence.

For the convergence rate, we will first show that

0 ≤ Φn ≤ Cn−
1

1−2θ , (3.15)

for all n ≥ n1, for some n1 > n0 large enough. The exponent θ is the same as above. IfΦn1 = 0 for some
n1 ≥ n0, then Φn = 0 for all n ≥ n1, and estimate (3.15) is obvious. So we may assume that Φn > 0 for

all n. Let n ≥ n0 and denote G(s) =
1

s1−2θ. The sequence G(Φn) is nondecreasing and tends to +∞.
If Φn+1 > Φn/2, then

G(Φn+1) −G(Φn) =

∫ Φn

Φn+1

1 − 2θ
s2−2θ ds

≥ (1 − 2θ)22θ−2Φ2θ−2
n+1 [Φn − Φn+1]
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(3.11)
≥ CΦ2θ−2

n+1

(
|un+1 − un|21 + |δun+1 − δun|2−1

)
(3.10)
≥ C1,

where C1 is a positive constant independent of n.
If Φn+1 ≤ Φn/2 and Φn ≤ 1, then

G(Φn+1) −G(Φn) ≥ 21−2θ − 1
Φ1−2θ

n
≥ 21−2θ − 1.

Let n′0 ≥ n0 be large enough so that Φn′0
≤ 1. Then, in both cases, for all n ≥ n′0, we have

G(Φn+1) −G(Φn) ≥ C2,

where C2 = min{C1, 21−2θ − 1} > 0. By summation on n, we obtain

G(Φn) −G(Φn′0
) ≥ C2(n − n′0),

for all n ≥ n′0. Thus, by choosing n1 > n′0 large enough, we have

G(Φn) ≥ C2

2
n,

for all n ≥ n1, which yields (3.15).
Now, by summing estimate (3.12) on n, we find

|un − u∞|1 ≤
∞∑

k=n

|uk+1 − uk|1 ≤ CΦθn +CΦ1/2
n ≤ CΦθn,

for all n ≥ n1. Using (3.15) yields
∥un − u∞∥1 ≤ Cn−

θ
1−2θ , (3.16)

for all n ≥ n1. We may change the constant C in order for the estimate to hold for all n ≥ 2. From (3.16)
and the second equation in (2.12), we obtain the convergence rate for (ẇn). The convergence rate for
⟨wn⟩ is a consequence of (3.16) and (3.14). This concludes the proof. �

Remark 3.4. It is possible to show that a local minimizer of E in VM is stable uniformly with respect
to τ. More precisely, let (uτn)n denote a sequence which complies with (2.13) and corresponding to a
time-step τ. We assume τ ∈ (0, τ⋆] where τ⋆ > 0 is such that 1/τ⋆ > c2

f /(8γ). If u⋆ ∈ VM is a local
minimizer of E in VM, and if uτ0 = uτ1 is close enough to u⋆ in VM, then the whole sequence (uτn)n

remains close to u⋆, uniformly with respect to τ ∈ (0, τ⋆]. The proof of this stability result is based on
the Łojasiewicz-Simon inequality (it may be false for a C∞ nonlinearity, see [2]). It is proved in [4]
for several fully discrete approximations of the Allen-Cahn equation. The case of the semi-discrete
scheme (2.13) is more involved. Indeed, dissipative estimates (uniform in τ) are needed to obtain pre-
compactness of the set {uτn : τ ∈ (0, τ⋆], n ∈ N} in VM. Moreover, as τ → 0+, the dissipation due to
the scheme vanishes (cf. Remark 2.4). Thus, instead of the series

∑
n |uτn+1−uτn|1 (cf. (3.13)), we have to

deal with the series
∑

n |uτn+1 − uτn|−1. We refer the interested reader to [28,35] for the proof of stability
of a local minimizer in an infinite dimensional setting (for continuous dynamical systems).
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els for phase change problems (Óbidos, 1988), vol. 88 of Internat. Ser. Numer. Math., Birkhäuser,
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