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Abstract: Determining deep holes is an important topic in decoding Reed-Solomon codes. In a
previous paper [8], we showed that the received word u is a deep hole of the standard Reed-Solomon
codes [q − 1, k]q if its Lagrange interpolation polynomial is the sum of monomial of degree q − 2 and
a polynomial of degree at most k − 1. In this paper, we extend this result by giving a new class of deep
holes of the generalized Reed-Solomon codes.
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1. Introduction and the statement of the main result

Let Fq be the finite field of q elements with characteristic p. Let n and k be positive integers. Let
D = {x1, ..., xn} be a subset of Fq, which is called the evaluation set. The generalized Reed-Solomon
code Cq(D, k) of length n and dimension k over Fq is defined as follows:

Cq(D, k) = {( f (x1), ..., f (xn)) ∈ Fn
q| f (x) ∈ Fq[x], deg( f (x)) ≤ k − 1}.

If D = F∗q, then it is called standard Reed-Solomon code. If D = Fq, then it is called extended Reed-
Solomon code. For any [n, k]q linear code C, the minimum distance d(C) is defined by

d(C) := min{d(x, y)|x ∈ C, y ∈ C, x , y},

where d(·, ·) denotes the Hamming distance of two words which is the number of different entries of
them and w(·) denotes the Hamming weight of a word which is the number of its nonzero entries. Thus
we have

d(C) = min{d(x, 0)|0 , x ∈ C} = min{w(x)|0 , x ∈ C}.
The error distance to code C of a received word u ∈ Fn

q is defined by

d(u,C) := min{d(u, v)|v ∈ C}.
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Clearly d(u,C) = 0 if and only if u ∈ C. The covering radius ρ(C) of code C is defined to be
max{d(u,C)|u ∈ Fn

p}. For the generalized Reed-Solomon code C = Cq(D, k), we have that the min-
imum distance d(C) = n − k + 1 and the covering radius ρ(C) = n − k. The most important algorithmic
problem in coding theory is the maximum likelihood decoding (MLD): Given a received word, find
a word v ∈ C such that d(u, v) = d(u,C) [5]. Therefore, it is very crucial to decide d(u,C) for the
word u. Sudan [6] and Guruswami-Sudan [2] provided a polynomial time list decoding algorithm for
the decoding of u when d(u,C) ≤ n −

√
nk. When the error distance increases, the decoding becomes

NP-complete for the generalized Reed-Solomon codes [3].
When decoding the generalized Reed-Solomon code C, for a received word u = (u1, ..., un) ∈ Fn

q, we
define the Lagrange interpolation polynomial u(x) of u by

u(x) :=
n∑

i=1

ui

n∏
j=1
j,i

x − x j

xi − x j
∈ Fq[x],

i.e., u(x) is the unique polynomial of degree at most n− 1 such that u(xi) = ui for 1 ≤ i ≤ n. For u ∈ Fn
q,

we define the degree of u(x) to be the degree of u, i.e., deg(u) = deg(u(x)). It is clear that d(u,C) = 0
if and only if deg(u) ≤ k − 1. Evidently, we have the following simple bounds.

Lemma 1.1. [4] For k ≤ deg(u) ≤ n − 1, we have the inequality

n − deg(u) ≤ d(u,C) ≤ n − k = ρ.

Let u ∈ Fn
q. If d(u,C) = n − k, then the word u is called a deep hole. If deg(u) = k, then the upper

bound is equal to the lower bound, and so d(u,C) = n−k which implies that u is a deep hole. This gives
immediately (q − 1)qk deep holes. We call these deep holes the trivial deep holes. It is an interesting
open problem to determine all deep holes. Cheng and Murray [1] showed that for the standard Reed-
Solomon code [p − 1, k]p with k < p1/4−ϵ , the received vector ( f (α))α∈F∗p cannot be a deep hole if f (x)
is a polynomial of degree k + d for 1 ≤ d < p3/13−ϵ . Based on this result, they conjectured that there
is no other deep holes except the trivial ones mentioned above. Li and Wan [5] used the method of
character sums to obtain a bound on the non-existence of deep holes for the extended Reed-Solomon
code Cq(Fq, k). Wu and Hong [8] found a counterexample to the Cheng-Murray conjecture [1] about
the standard Reed-Solomon codes.

Let l be a positive integer. In this paper, we investigate the deep holes of the generalized Reed-
Solomon codes with the evaluation set D := Fq \ {a1, ..., al}, where a1, ..., al are any fixed l distinct
elements of Fq. Our method here is different from that of [8]. Write D = {x1, ..., xq−l} and for any
f (x) ∈ Fq[x], let

f (D) := ( f (x1), ..., f (xq−l)).

Then we can rewrite the generalized Reed-Solomon code Cq(D, k) with evaluation set D as

Cq(D, k) = { f (D) ∈ Fq−l
q | f (x) ∈ Fq[x], deg( f (x)) ≤ k − 1}.

Actually, by constructing some suitable auxiliary polynomials, we find a new class of deep holes for
the generalized Reed-Solomon codes. That is, we have the following result.
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Theorem 1.2. Let q ≥ 4 and 2 ≤ k ≤ q − l − 1. For 1 ≤ j ≤ l, we define

u j(x) := λ j(x − a j)q−2 + r j(x), (1)

where λ j ∈ F∗q and r j(x) ∈ Fq[x] is a polynomial of degree at most k − 1. Then the received words
u1(D), ..., ul(D) are deep holes of the generalized Reed-Solomon code Cq(D, k).

The proof of Theorem 1.2 will be given in Section 2.
The materials presented here form part of the second author’s PhD thesis [7], which was finished

on April 15, 2012.

2. Proof of Theorem 1.2

Evidently, for any a ∈ Fq, we have

( q−l∏
i=1

(a − xi)
) l∏

j=1

(a − a j) = aq − a = 0,

and for any a ∈ D, we have N(a) = 0, where

N(x) :=
q−l∏
i=1

(x − xi).

For f (x) ∈ Fq[x], by f̄ (x) ∈ Fq[x] we denote the reduction of f (x) mod N(x). Therefore, for any
xi ∈ D, we have f (xi) = f̄ (xi).

First of all, we give a lemma about error distance. In what follows, we let Gk denote the set of all
the polynomials in Fq[x] of degree at most k − 1.

Lemma 2.1. Let #(D) = n and let u, v ∈ Fn
q be two words. If u = λv + f≤k−1(D), where

λ ∈ F∗q and f≤k−1(x) ∈ Fq[x] is a polynomial of degree at most k − 1, then

d(u,Cq(D, k)) = d(v,Cq(D, k)).

Furthermore, u is a deep hole of Cq(D, k) if and only if v is a deep hole of Cq(D, k).

Proof. From the definition of error distance and noting that f≤k−1(x) ∈ Gk, we get immediately that

d(u,Cq(D, k))
= min

g(x)∈Gk
{d(u, g(D))}

= min
g(x)∈Gk

d(λv + f≤k−1(D), g(D))

= min
g(x)∈Gk

d(λv + f≤k−1(D), g(D) + f≤k−1(D))

= min
g(x)∈Gk

d(λv, g(D))
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= min
g(x)∈Gk

d(λv, λg(D)) (since λ , 0)

= min
g(x)∈Gk

d(v, g(D))

=d(v,Cq(D, k))

as one desires. So Lemma 2.1 is proved. �

Now we are in the position to prove Theorem 1.2.

Proof of Theorem 1.2. Let f (x), g(x) ∈ Fq[x]. One can deduce that

d( f (D), g(D))
=#{xi ∈ D | f (xi) , g(xi)}
=#{xi ∈ D | f (xi) − g(xi) , 0}
=#(D) − #{xi ∈ D | f (xi) − g(xi) = 0}. (2)

Then by (2), we infer that

d( f (D),Cq(D, k))
= min

h(x)∈Gk
d( f (D), h(D))

= min
h(x)∈Gk

{#(D) − #{xi ∈ D | f (xi) − h(xi) = 0}}

=q − l − max
h(x)∈Gk

#{xi ∈ D | f (xi) − h(xi) = 0}. (3)

For any integer j with 1 ≤ j ≤ l, we let

f j(x) := (x − a j)q−2 ∈ Fq[x].

For any y ∈ D, we have y − a j , 0, and so f j(y) = 1
y−a j

. We claim that

max
h(x)∈Gk

#{y ∈ D | f j(y) − h(y) = 0} = k. (4)

In order to prove this claim, we pick k distinct nonzero elements c j1 , ..., c jk of Fq \ {at − a j}lt=1 (since
k ≤ q − l − 1). Now we introduce the auxiliary polynomial g j(x) as follows:

g j(x) =
1
x

(
1 −

k∏
i=1

(1 − c−1
ji x)
)
∈ Fq[x].

Then deg(g j(x)) = k − 1, and so g j(x) ∈ Gk. Since for any y ∈ D, we have

f j(y) − g j(y − a j)

=
1

y − a j
− g j(y − a j)

=
1

y − a j
(1 − (y − a j)g j(y − a j))

=
1

y − a j

k∏
i=1

(1 − c−1
ji (y − a j)).
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It then follows that c j1 + a j, ..., c jk + a j are the all roots of f j(x) − g j(x − a j) = 0 over Fq. Noticing
that c j1 , ..., c jk ∈ Fq \ {a1 − a j, ..., al − a j}, we have c j1 + a j, ..., c jk + a j ∈ D. Also D ⊆ Fq. Therefore
c j1 + a j, ..., c jk + a j are the all roots of f j(x) − g j(x − a j) = 0 over D. Hence

#{y ∈ D | f j(y) − g j(y − a j) = 0} = k. (5)

On the other hand, for any h(x) ∈ Gk, the equation 1 − (x − a j)h(x) = 0 has at most k roots over Fq,
and so it has at most k roots over D. But 1

y−a j
, 0 for any y ∈ D. Thus

f j(y) − h(y − a j)

=
1

y − a j
− h(y − a j)

=
1

y − a j
(1 − (y − a j)h(y − a j)).

Hence for any h(x) ∈ Gk, we have

#{y ∈ D | f j(y) − h(y) = 0} ≤ k

which implies that

max
h(x)∈Gk

#{y ∈ D | f j(y) − h(y) = 0} ≤ k. (6)

From (5) and (6), we arrive at the desired result (4). The claim (4) is proved.
Now from (3) and (4), we derive immediately that

d( f j(D),Cq(D, k)) = q − l − k.

In other words, f j(D) is a deep hole of the generalized Reed-Solomon Cq(D, k).
Finally, from (1) one can deduce that

u j(D) = λ j f j(D) + r j(D). (7)

Since deg r j(x) ≤ k − 1, it then follows from (7) and Lemma 2.1 that u j(D) is a deep hole of Cq(D, k)
as required.

This completes the proof of Theorem 1.2. �
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