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Abstract: The harmonic map is introduced and several physical applications are presented. The
classical nonlinear σ model can be looked at as the embedding of a two-dimensional surface in a three-
dimensional sphere, which is itself embedded in a four-dimensional space. A system of nonlinear
evolution equations are obtained by working out the zero curvature condition for the Gauss equations
relevant to this geometric formulation.
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1. Introduction

One area in which linear and nonlinear equations appear to be in very close relationship is the
embedding of Riemannian manifolds into manifolds of higher dimension. The embedded manifold is
constructed by means of linear differential equations. These equations form an overdetermined set and
the integrability conditions they obey in order for a solution to exist are in general nonlinear differential
equations. They would be obeyed by the metric or second fundamental form of the embedded manifold,
for example.

2. Discussion

The term harmonic map generally refers to a class of nonlinear field equations [6] which have a
surprising number of applications. There are various applications such as the description of theories
with broken symmetries, with or instead of Yang-Mills equations. They can also be quite similar to
the Einstein equations for gravitation and to some of the equations which appear in string theory [5,4].
The wave or Laplace equation for a scalar field ϕ(x)

∂

∂xµ
(
√

ggµν
∂ϕ

∂xν
) = 0 (1)
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characterizes harmonic functions ϕ from which the class of harmonic maps takes its name. The usual
nonlinear geodesic equation is also a specialized subclass of the harmonic maps. The general harmonic
map combines aspects of both these equations in the nonlinear partial differential equation which can
be obtained from the action

A =
1
2

∫
√

ggµν(x)
∂ϕa

∂xµ
∂ϕb

∂xν
Gab(ϕ) dnx. (2)

For example, physical theories of this class would be those where gµν(x) is flat Minkowski space.
A nontrivial example of this class of theories is the nonlinear σ-model where Gab(ϕ) is the metric of
a sphere and the ϕa are independent fields. In fact, Minkowski spacetime can be replaced by any d-
dimensional spacetime M with a Lorentz or Euclidean signature metric Gab. The action of a spin-0
particle of mass m propagating in d-dimensional spacetime is

A =

∫
√

g(
1
2

gµν(x)
∂ϕa

∂xµ
∂ϕb

∂xν
Gab(ϕ) −

1
2

m2) dnx.

In a quantum theory, this action would lead to the massive Klein-Gordon equation in curved spacetime
which determines a wavefunction.

Harmonic maps can be used to create surfaces and of course there continues to be great interest
in differential equations which can be used to induce surfaces [1-3]. Let M and M′ be two pseudo-
Riemannian manifolds with {xµ} coordinates on M and ϕa coordinates on M′. If M is thought of as
spacetime, its metric ds2 = gµν(x)dxµdxν can be restricted to flat Minkowski or Euclidean space. The
M′ manifold is the set of possible values for some nonlinear field ϕa. Nonlinearity enters because the
metric on M′ can be thought of as being curved

dS 2 = Gab(ϕ) dϕadϕb.

Therefore, a mapping φ : M → M′, x → φ(x) is represented in coordinates as φa(xµ), and will
be referred to as a harmonic map if it satisifes the Euler-Lagrange equations obtained from (2). For
example, let M be a flat Euclidean or Minkowski space and take M′ to be the sphere S2 with the usual
metric

dS 2 = dθ2 + sin2 θ dφ2. (3)

A mapping is a pair of fields θ(xµ), φ(xµ) which are obtained by requiring they satisfy differentia-
bility requirements which arise from the structures of S2 and the spacetime M. The action in this case
takes the form,

A =
1
2

∫
dnx [(~∇θ)2 + sin2(~∇φ)2] (4)

and (4) leads to the following field equations

− ∂µ∂
µθ + sin θ cos θ(~∇φ)2 = 0, (5)
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− ∂µ∂
µφ − 2 cot θ(~∇θ) · (~∇φ) = 0. (6)

When (~∇φ)2 is constant, this system reduces to the sine-Gordon equation.
In addition to harmonic functions with dim M′ = 1 and geodesics with dim M = 1, any isometry

M → M′ or covering of Riemannian manifolds M → M′ is a harmonic map. Minimal hypersur-
faces are coordinate conditions in constructing solutions of Einstein’s equations. In fact, any minimal
immersion M → M′ of Riemannian manifolds is a harmonic map.

Harmonic maps can help in understanding some of the nonlinearities that occur in the Einstein
equations of general relativity as the Yang-Mills equations have done. In two space-time dimensions,
the classical nonlinear σ model may be studied as the embedding of a two-dimensional surface in a
three-dimensional sphere which is itself embedded in four-dimensional Euclidean space.

The nonlinear σ model in two-dimensional space-time which will be studied here consists of four
scalar fields ϕi(x1, x2), i = 1, · · · , 4, which undergo self-interaction defined by the constraint

ϕiϕi = 1. (7)

The Lagrangian density for this system is given by

L =
1
2
∂µϕ

i∂µϕi +
1
2
λ(ϕiϕi − 1), (8)

and λ in (8) is a Lagrange multiplier with i = 1, 2. The equations of motion which result from (8) are

∂µ∂
µϕi − λϕi = 0, (9)

ϕiϕi = 1. (10)

The fields ϕi in these equations can be interpreted as the components of a vector in a four-dimensional
space which is Euclidean. Constraint (10) implies that this vector must reside on the surface of a
three-dimensional sphere. A solution ϕi of (9) describes a two-dimensional surface embedded in this
sphere. The problem of solving (9) and (10) then reduces to the problem of embedding a surface in a
three-dimensional sphere which in turn is itself embedded in a four-dimensional Euclidean space. The
metric on the four-dimensional Euclidean space has the form,

ds2 = dϕi ⊗ dϕi. (11)

This induces a metric on the two-dimensional surface ϕi(σ, τ) given by

ds2 =
∂ϕi

∂σ

∂ϕi

∂σ
dσ ⊗ dσ + 2

∂ϕi

∂σ

∂ϕi

∂τ
dσ ⊗ dτ +

∂ϕi

∂τ

∂ϕi

∂τ
dτ ⊗ dτ. (12)

In this context, it is always possible to choose the coordinates σ, τ so that the following system holds:

∂ϕi

∂σ

∂ϕi

∂σ
+
∂ϕi

∂τ

∂ϕi

∂τ
= 1,

∂ϕi

∂σ

∂ϕi

∂τ
= 0. (13)
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Consequently, the metric (12) of the surface can be expressed in terms of a single scalar field ϑ(σ, τ)
as follows

ds2 = cos2 ϑ dσ2 + sin2 ϑ dτ2. (14)

To complete the description of a surface embedded in a higher-dimensional space, the second funda-
mental form is required.

The extrinsic curvature is given by a symmetric tensor Ωµν which has the following four components

Ω11 =
∂2~ϕ

∂σ2 ·
~X3, Ω12 = Ω21 =

∂2~ϕ

∂σ∂τ
· ~X3, Ω22 =

∂2~ϕ

∂τ2 ·
~X3. (15)

As ~ϕτ, ~ϕσ span the tangent plane to the three-sphere ~X = ~n is defined to be a unit vector which is
orthogonal to these vectors. Let ~X1, ~X2 be unit vectors parallel to ~ϕσ and ~ϕτ, respectively. To generate
an orthonormal tetrad in the surrounding Euclidean space, it suffices to include the element ~X4 = ~ϕ as
the final element in the set.

The components of the metric tensor gµν can be obtained from (14),

g11 = cos2 ϑ, g12 = g21 = 0, g22 = sin2 ϑ.

Expanding out equations (9) in terms of the (σ, τ)-variables, ~ϕ must satisfy

∂2~ϕ

∂σ2 −
∂2~ϕ

∂τ2 = λ~ϕ. (16)

By writing the scalar product of (16) with ~n3 using (15) and the identification ~ϕ = ~n4, the following
important constraint is obtained

Ω11 −Ω22 = λ~ϕ · ~n3 = 0. (17)

Therefore, equation (17) implies that the diagonal components of Ω are equal, Ω11 = Ω22. The Gauss-
Weingarten equations assume the following form,

∂N̄
∂σ

= AN̄,
∂N̄
∂τ

= BN̄. (18)

Once the Gauss-Weingarten equations have been obtained, they can be used to construct a sur-
face. The integrability conditions for (18) are the Gauss-Codazzi equations. The quantity N̄ is a
four-component object which consists of the four vectors ~ni,

N̄ =


~n1

~n2

~n3

~n4

 (19)

The matrices A and B which appear in (18) are given explicitly in the following form,

A =


0 ∂ϑ

∂τ
Ω11

cosϑ − cosϑ
−∂ϑ
∂τ

0 Ω12
sinϑ 0

−
Ω11

cosϑ −
Ω12

sinϑ
0 0

cosϑ 0 0 0

 (20)
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B =


0 ∂ϑ

∂σ
Ω12

cosϑ 0
− ∂ϑ
∂σ

0 Ω11
sinϑ − sinϑ

−
Ω12

cosϑ −
Ω11
sinϑ 0 0

0 sinϑ 0 0

 (21)

Substituting A and B into the pair of equations (18) and working out the components of each one,
the following five equations result,

∂2ϑ

∂τ2 −
∂2ϑ

∂σ2 +
1

sinϑ cosϑ
(Ω2

12 −Ω2
11) − sinϑ cosϑ = 0, (22)

−
∂

∂τ
(

Ω11

cosϑ
) +

∂

∂σ
(

Ω12

cosϑ
) +

Ω12

sinϑ
∂ϑ

∂σ
−

Ω11

sinϑ
∂ϑ

∂τ
= 0, (23)

∂

∂τ
(cosϑ) + sinϑ

∂ϑ

∂τ
= 0, (24)

−
∂

∂τ
(

Ω12

sinϑ
) +

∂

∂σ

Ω11

sinϑ
−

Ω11

cosϑ
∂ϑ

∂σ
+

Ω12

cosϑ
∂ϑ

∂τ
= 0, (25)

−
∂

∂σ
sinϑ + cosϑ

∂ϑ

∂σ
= 0. (26)

Equation 22 can be written in the form,

sinϑ cosϑ(
∂2ϑ

∂τ2 −
∂2ϑ

∂σ2 ) − sin2 ϑ cos2 ϑ + Ω2
12 −Ω2

11 = 0. (27)

The two quantities Ω11 and Ω12 satisfy the equation

sinϑ
∂

∂v
(

Ω

cosϑ
) + Ω

∂ϑ

∂v
=

∂

∂v
(

sinϑ
cosϑ

Ω)

for v = σ, τ and Ω = Ω11,Ω12, respectively, (23) can be put in the form,

∂

∂τ
(tanϑΩ11) =

∂

∂σ
(tanϑΩ12). (28)

From (28), it follows there exists a function or field called β(σ, τ) such that Ω11 and Ω12 can be ex-
pressed as

Ω11 = cotϑ
∂β

∂σ
, Ω12 = cotϑ

∂β

∂τ
. (29)
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This choice puts (27) into the form of a compatibility condition for β, and the remaining two equa-
tions (25)-(26) then take the form,

sinϑ cosϑ(∂
2ϑ
∂τ2 −

∂2ϑ
∂σ2 ) − sin2 ϑ cos2 ϑ + cot2 ϑ((∂β

∂τ
)2 − ( ∂β

∂σ
)2) = 0,

∂
∂τ

(cot2 ϑ ∂β

∂τ
) = ∂

∂σ
(cot2 ϑ ∂β

∂σ
).

(30)

The matrices A and B defined in equations (20) and (21) are elements of the Lie algebra O(4) =

O(3) ⊕ O(3) and they are uniquely determined by two three-dimensional rotations

A = C + D, B = E + F. (31)

In fact, C and E can be put in the following forms

C =


0 ∂ϑ

∂τ
− 1

sinϑ
∂β

∂σ

−∂ϑ
∂τ

0 − cosϑ − cosϑ
sin2 ϑ

∂β

∂τ
1

sinϑ
∂β

∂ϑ
cosϑ + cosϑ

sin2 ϑ

∂β

∂τ
0

 (32)

E =


0 ∂ϑ

∂σ
sinϑ − 1

sin θ
∂β

∂τ

− ∂ϑ
∂σ

0 − cosϑ
sinϑ

∂β

∂σ

− sinϑ + 1
sinϑ

∂β

∂τ
cosϑ
sin2 ϑ

∂β

∂σ
0

 (33)

The matrices D and F can be obtained from the matrices C and E by means of the discrete trans-
formation

ϑ→ π − ϑ, cosϑ→ − cosϑ, sinϑ→ sinϑ, β→ −β. (34)

The matrices D and F have the following structure

D =


0 −∂ϑ

∂τ
1

sinϑ
∂β

∂τ
∂ϑ
∂τ

0 cosϑ − cosϑ
sin2 ϑ

∂β

∂τ
1

sinϑ
∂β

∂σ
− cosϑ + cosϑ

sin2 ϑ

∂β

∂τ
0

 (35)

F =


0 −∂ϑ

∂τ
sinϑ + 1

sinϑ
∂β

∂τ
∂ϑ
∂σ

0 − cosϑ
sin2 ϑ

∂β

∂σ

− sinϑ − 1
sinϑ

∂β

∂τ
cosϑ
sin2 ϑ

∂β

∂σ
0

 (36)

The transformation leaves the metric and extrinsic curvature of the surface unaltered. It is possible
to introduce a set of unit vectors ~Yi, ~Zi, i = 1, 2, 3 in three-dimensional space so that the system (18)
takes the following form

∂Ȳ
∂σ

= CȲ ,
∂Z̄
∂σ

= DZ̄, (37)

∂Ȳ
∂τ

= EȲ ,
∂Z̄
∂τ

= FZ̄. (38)
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Differentiating both (37) and (38) with respect to τ and σ respectively, the zero-curvature condition
for Ȳ implies the following relation satisifed by C and E,

Cτ − Eσ + CE − EC = 0. (39)

Similarly, the Z̄ field implies the following relation satisifed by D and F,

Dτ − Fσ + DF − FD = 0. (40)

It should be stated that D and F are in a one-to-one correspondence with C and E, so it suffices to
work out just one of these equations. Substituting the matrices (33) and (34) into (39), the diagonal
elements of the zero curvature condition are found to sum to zero, and we are left with the following
nontrivial results. After simplifying the first column and second row, the following equation is obtained

ϑττ − ϑσσ − sinϑ cosϑ
cosϑ
sin3 ϑ

((
∂β

∂τ
)2 − (

∂β

∂σ
)2) = 0. (41)

From the first column and third row we have
∂

∂τ
(

1
sinϑ

∂β

∂σ
) +

∂

∂σ
(sinϑ −

1
sinϑ

∂β

∂τ
) −

∂ϑ

∂σ
(cosϑ +

cosϑ
sin2 ϑ

∂β

∂τ
) +

∂ϑ

∂τ

cosϑ
sin2 ϑ

∂β

∂σ
= 0. (42)

This can be put in the form of an identity

− cosϑ
∂ϑ

∂τ

∂β

∂σ
+ sinϑ

∂2β

∂τ∂σ
+ cosϑ

∂ϑ

∂σ

∂β

∂τ
− sinϑ

∂2β

∂τ∂σ
= 0.

Finally, from the second column and the third row, the last equation is found to be

∂

∂τ
(

cosϑ
sin2 ϑ

∂β

∂τ
) −

∂

∂σ
(

cosϑ
sin2 ϑ

∂β

∂σ
) +

1
sinϑ

∂β

∂σ

∂ϑ

∂σ
−

1
sinϑ

∂ϑ

∂τ

∂β

∂τ
= 0. (43)

Applying the product rule, the following relation holds

∂

∂τ
(

1
cosϑ

cot2 ϑ
∂β

∂τ
) =

1
sinϑ

∂ϑ

∂τ

∂β

∂τ
+

1
cosϑ

∂

∂τ
(cot2 ϑ

∂β

∂τ
). (44)

Using (44), (43) can be put in the following form after some simplification

∂

∂τ
(cot2 ϑ

∂β

∂τ
) =

∂

∂σ
(cot2 ϑ

∂β

∂σ
). (45)

These constitute the system of equations which result as a consequence of applying zero curvature con-
dition (39) from the Ȳ field. Therefore, the following Theorem has been proved and it is summarized
below.

Theorem. Compatibility condition (39) resulting from (37) for the 3×3 matrix problem defined by
the matrices (32) and (33) is equivalent to the following system of coupled partial differential equations
for ϑ and β,

∂2ϑ

∂τ2 −
∂2ϑ

∂σ2 − sinϑ cosϑ +
cosϑ
sin2 ϑ

((
∂β

∂τ
)2 − (

∂β

∂σ
)2) = 0, (46)

∂

∂τ
(cot2 ϑ

∂β

∂τ
) =

∂

∂σ
(cot2 ϑ

∂β

∂σ
). (47)

Moreover, the results in these equations are completely consistent with the equations in (30) which
were obtained from Gauss-Weingarten equations (18). �
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3. Conclusion

This is not the first time these equations have appeared. Equations (46) and (47) have also been
obtained by Pohlmeyer [7] by means of a study of the nonlinear σ model in field theory. This approach
however is more geometric than the one in Pohlmeyer [7]. It should also be stated that this model has
led to a system of two coupled, Lorentz-invariant, nonlinear equations in two independent variables
which will possess solitary wave solutions. From the theorem, it is seen that one of the fields is
massless and moves in a background geometry that has a dynamical evolution of its own specified by
a second field which has a sine-Gordon type self-interaction.
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