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Abstract: Machine breakdown usually implies unexpected physical damage to machinery due to any 

reason which requires fixing or replacement to continue the process. This article presentsan 

investigation of a sustainable model with stochastic machine breakdown. To reduce the risk of 

disruption, a smart manufacturing system is used. Considering the environmental issues faced by 

people, the model is developed under a circular economy through end-of-life treatment to recapture 

the value of the product, labor and resources. The used buyback products are collected, out of which 

items in good condition are remanufactured and sold in another market while the rest are salvaged. 

As the production process is not perfectly reliable, the serviceable products go through an automated 

inspection process, and imperfect items are reworked. A mathematical model is developed for 

deterioration of items to analyze the optimal replenishment policies, and the results have been 

illustrated with numerical verification. Based on the analysis, some managerial insights have been 

provided for decision-makers. 
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1. Introduction  

The main focuses of manufacturing firms are production, quality and maintenance of the 

product. In a cutthroat competitive atmosphere, the decision makers face different challenges day to 

day to manufacture a superior product and to give better service than others. Technological 

advancement and growing scientific research change manufacturing infrastructure rapidly. While 

manufacturing services are gradually becoming more complicated, current facilities can deteriorate. 

Consequently, machines can randomly shift from an in-control state to an out-of-control state, 

resulting in machine breakdown. Hence, the study of economic production quantity (EPQ) models for 

unreliable systems is quite considerable and significant. 

Most of the studies developed with EPQ models pay no attention to the reliability factor, thus 

implicitly assuming completely reliable systems. Machine failures, however, do arise and could be 

really troublesome, mostly in an extremely mechanized manufacturing environment. Current study 

efforts attempt to integrate the shortcomings of the manufacturing process and equipment into the 

classical sizing conclusion structure. This article deals with a manufacturing inventory system for an 

unreliable system under the assumptions that the machine is subjected to stochastic random breakdown.  

1.1. Research gap 

The research gap in this context can be articulated as follows: 

In the appropriate literature, a substantial body of research has been dedicated to addressing the 

challenges posed by unreliable systems, particularly those subjected to machine breakdowns. 

Similarly, extensive work has been presented in the realm of green supply chain inventory, with a 

focus on sustainability and environmental considerations. However, a significant research gap exists 

where the joint effects of these two critical issues, namely, unreliable systems due to machine 

breakdowns and green supply chain inventory control, have not received adequate attention. 

While prior research has recognized the impact of machine breakdowns on inventory 

management and explored strategies to mitigate their disruptive effects, it often overlooks the 

potential for proactive measures to prevent machine breakdowns. Specifically, there is a lack of 

investigation into how assessments and maintenance protocols can be employed to transition of a 

machine from an “in-control” state to an “out-of-control” state. Such proactive measures have the 

potential to not only reduce the number of imperfect products but also delay the occurrence of 

machine breakdowns during production runs. 

The motivation behind this paper is to bridge this research gap by developing integrated 

production, inventory and maintenance models that comprehensively consider the joint effects of 

process decay, machine breakdowns and proactive assessments on optimal lot sizing decisions. This 

holistic approach acknowledges the dynamic nature of production systems and aims to optimize 

decision-making in a manner that enhances both system reliability and sustainability, aligning with 

the principles of green supply chain management. By exploring the synergy between these factors, 

this research seeks to contribute valuable insights to the field of production and supply chain 

management, offering a more comprehensive understanding of how to effectively manage inventory 

under conditions of uncertainty and unreliability while minimizing environmental impact. 
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1.2. Objective of the paper 

The objective of this paper is to address a critical research gap in the field of production and 

supply chain management by investigating the joint impacts of unreliable systems due to machine 

breakdowns and green supply chain inventory control. While previous research has extensively 

examined each of these issues in isolation, there is a lack of comprehensive understanding regarding 

how they interact and influence inventory control decisions. Therefore, the primary objective of this 

paper is to develop integrated models that encompass production, inventory management and 

maintenance, taking into account the combined effects of process decay, machine breakdowns and 

proactive assessments on optimal lot sizing decisions. 

One key objective is to create a holistic framework that considers the dynamic nature of 

production systems. Specifically, we aim to explore how proactive assessments can transition a 

machine from an “in-control” state to an “out-of-control” state in a controlled manner, thereby 

reducing the likelihood of machine breakdowns during production runs. This proactive approach 

holds the potential to not only enhance system reliability but also optimize inventory management by 

minimizing the production of imperfect products. 

Another central objective of this paper is to align our research with the principles of green 

supply chain management. We seek to develop strategies that not only improve system reliability but 

also contribute to sustainability and environmental responsibility. By exploring the synergy between 

mitigating machine breakdowns and green inventory practices, we aim to provide decision-makers 

with insights on how to make inventory control decisions that are not only efficient but also 

environmentally conscious. 

Furthermore, this research aims to validate the proposed models and strategies through 

numerical verification. By applying our models to practical scenarios and conducting numerical 

analyses, we aim to demonstrate the feasibility and effectiveness of the integrated approach in real-

world applications. This verification process is essential in providing empirical support for our 

proposed strategies and ensuring their practical relevance. 

In summary, the primary objectives of this paper are to develop integrated models that consider 

the joint impacts of process decay, machine breakdowns and proactive assessments on optimal lot 

sizing decisions. Additionally, we aim to align our research with green supply chain principles and 

validate our models through numerical verification. By achieving these objectives, we seek to 

provide a comprehensive framework for enhancing both the reliability and sustainability of inventory 

control systems in manufacturing and supply chain operations. 

1.3. Novelty 

This study’s novelty lies in its unique approach that combines machine breakdown management, 

green supply chain principles and proactive assessments within a single framework. It introduces 

proactive measures to prevent machine breakdowns, aligns inventory control with sustainability 

goals and validates its strategies through practical testing. This integrated approach offers valuable 

insights and practical solutions for real-world production and supply chain challenges, making it 

distinct from existing research. Items are presented in this paper subjected to the stochastic machine 

breakdown. The failure rate of the production machine is taken to be probabilistic in nature. It is 
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assumed that the manufacturing process is not perfectly reliable. Thus, some non-conforming units 

are also produced during the manufacturing. 

2. Literature review 

2.1. Machine breakdown 

Machine unavailability is an unavoidable phenomenon in many production industries, resulting 

in three main things: preventive maintenance, corrective maintenance and machine breakdown. A lot 

of investigation has been made by researchers in this line of research. Groenevelt et al., (1992) 

developed the EPQ model subjected to stochastic machine breakdown. They studied their model with 

two replenishment policies. In the first policy, they considered that the machine cannot be repaired 

after breakdown. In the second one, they assumed that the machine will be fixed after the breakdown. 

The effects of machine breakdowns and corrective maintenance on the optimal policies were 

discussed. Liu and Cao (1999) presented an EPQ model with machine failure assuming that the 

demand rate is probabilistic in nature. They considered the period of failure by Gamma and Weibull 

distributions and resolved it rapidly and consistently. Al-khateeb (1999) studied an unreliable EPQ 

model under machine breakdown with general lifetime distribution. It was considered that the 

manufacturing process is subjected to a stochastic decay from a controllable situation to an 

uncontrollable situation, follow a stochastic breakdown. Chung (2003) developed a production lot 

sizing model for a failure-prone machine. He obtained the lower and upper bounds for the optimal lot 

size. He demonstrated that the optimal cost function is neither convex nor concave. In a later study, 

Giri and Dohi (2005) also presented a mathematical model of a stochastic economic manufacturing 

quantity (EMQ) framework. Zhang et al., (2007) formulated inventory levels as a major focus for 

supply chain management. In their model, they assumed that demand and production rates are 

constant. Lin (2010) studied a stochastic integrated supplier-retailer inventory problem. Singh and 

Prasher (2014) examined the role of inventory in a production process with flexible manufacturing, 

random breakdowns and stochastic repair time. Darma Wangsa and Wee (2018) developed a two-

echelon supply chain involving a single vendor and single buyer with stochastic demand. They 

studied transportation cost, which is a function of shipping weight, distance and transportation modes. 

Poursoltan et al., (2020) derived an economic production quantity (EPQ) model with partial 

backlogging. Stochastic inventory deterioration and stochastic machine breakdown were considered. 

Jauhari et al., (2021) established a two-echelon supply chain inventory model containing a 

manufacturer and a retailer under a stochastic environment with carbon emission reductions. 

Emissions from transportation, production and storage activities are included in the model with 

reductions through carbon tax regulation. Pal and Adhikari (2021) developed an economic 

production quantity (EPQ) model where production is performed mainly by the original machine. Its 

buffer production continues when the system encounters a disruption. Deiranlou et al., (2022) 

introduced the general machine breakdown and repair time distributions. Shortages caused by long 

exponential repair time were considered. For instance, the manufacturer may procure certain 

quantities from an available supplier with a non-zero lead time. Sana’s (2022) model consisted of a 

production-inventory model where preventive maintenance takes place at the end of a cycle to ensure 

smooth performance in the next cycle. The study examined how production systems produce 
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defective products at different rates when “in-control” and when “out-of-control.” The defective 

products are then reworked for costs in parallel systems.  

2.2. Reliability 

Kelle and Schneider (1992) formulated reliability-type inventory models with minimal safety 

stock. They studied just-in-time (JIT) production. Panda and Maiti (2009) developed multi-item EPQ 

models. They studied flexibility and reliability in production process. Demand selling price and 

production stock dependence were considered. Manna et al., (2018) examined an imperfect 

production inventory model with production system reliability under two-layer supply chain 

management. In the model, the reliability parameter depends on the production rate. Islam et al., 

(2022) worked an inventory model to solve problems of supply uncertainty in response to a demand 

which expresses a Poisson distribution. One positive aspect of this model is the consideration of 

random inventory, delivery efficiencies and supplier reliability”. 

2.3. Smart production  

Increasingly, smart production is receiving attention, and its importance is paramount in smooth 

functioning of the production process in order to ensure the quality of the final product, which 

directly affects the business. Due to the manufacturer's preference for handling products manually 

during the entire production process from the raw material to the final product, finding defective 

products is not uncommon. Automating the process of smart manufacturing reduces the need for 

manual handling, and monitoring the production processes leaves no room for human error. By 

minimizing human errors, manufacturers are able to ensure food safety and quality through the use of 

digital technologies to improve their systems. Moreover, smart production processes improve plant 

efficiency by providing real-time material, sourcing, production and human resources. With smart 

manufacturing, all aspects of the system can be analyzed to ensure that the energy efficiency of the 

whole process is maximized. All of the factory’s operations, from turning on and off the lights to 

scheduling production, can be guided by real-time information regarding energy consumption. Smart 

manufacturing has been gaining attention in recent years. De Giovanni (2011) presented a vendor 

managed inventory model with revenue sharing. Artificial intelligence was used for the production 

process, thereby increasing reliance on and improving performance of the supply chain. A vendor-

buyer integration for a probabilistic inventory model was presented by Dey et al., (2021a). The 

supply chain model was developed for stochastic demand considering smart manufacturing and 

uniformly distributed lead time. In a subsequent study, Dey et al., (2021b) investigated a cost-

effective production policy for a centralized production and remanufacturing model. Smart 

production was considered to deal with the imperfect production, which is a random variable. 

Recently, a mathematical model was provided by Kugele et al., (2022) with smart manufacturing. 

The model was developed with controllable carbon emissions and optimized by using geometric 

programming. Sarkar et al., (2022a) investigated the use of smart manufacturing processes for energy 

optimization during biofuel production. 
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2.4. Circular economy 

Product life cycles are gradually shrinking, and the shorter life spans force practitioners to adapt 

to a circular economy (CE). Bringing the product back into the system allows the organization to 

recapture the value of the product, labor, material and resources. The circular economy has been 

identified as one of the most effective methods for an industry to ensure environmental sustainability 

through recycling and remanufacturing (Haupt and Hellweg, 2019). Practices and research have 

demonstrated that reverse logistics is an intricate procedure that complicates administrative choices 

trying to accomplish more noteworthy financial advantages (Srivastava, 2007). One of the 

complexities of remanufacturing is managing the two-supply arrangement of parts, i.e., the forward 

flow of material and the reverse flow. Reverse Logistics (RL) activities deal with the collection of 

used material; however, the quantity of buyback products is highly uncertain, which particularly 

influences the accumulation and replenishment policies (Dekker et al., 2004). The life cycle 

designing of a consumable product is vital at its earliest phase in order to maximize the life-cycle 

value of a product. The review presented by Sasikumar and Kannan (2009) emphasized the growing 

awareness of legislation and customers toward environmental issues. They portrayed two sorting 

proposals and recommended the research potential of end-of-life treatment. Alinovi et al., (2012) 

evaluated a stochastic order quantity inventory control model with a mixed manufacturing and 

remanufacturing strategy such that all manufacturing and procurement processes are integrated with 

reuse and remanufacturing to meet the demand in a timely and complete manner. The replenishment 

policies for the production and remanufacturing were provided to get the optimum results. Agrawal 

et al., (2015) provided a literature review and perspectives in RL. Up to 242 distributed articles were 

chosen, classified and broken down, and holes in the literature were identified to propose future 

research openings. Agrawal et al., (2015) additionally strengthened the finding of Sasikumar and 

Kannan (2009) with respect to the growth in significance of RL in environmental and sustainability 

concerns. Govindan et al., (2015) developed a review paper for RL and a closed-loop system for 

exploring future aspects. The point of the paper was to audit recent distributed papers in reverse 

strategic and closed-loop systems. In the review paper, the holes in the literature were identified to 

elucidate and to recommend future research openings. Also, a literature review of mathematical 

modeling was given by Bazan et al., (2016) for RL inventory models. The paper surveyed the 

literature on the RL stock frameworks that depend on the economic order quantity (EOQ) and EPQ 

with breakdown which are the principal attributes of related procedures. The literature was studied 

and reviewed by the particular issues confronted and modeling presumptions. Modak et al., (2018) 

introduced a two-tier RL model to assess the effects of reprocessing and product quality on pricing 

strategies. Chen et al., (2019) presented a supply chain model with a closed-loop structure involving 

a manufacturer, retailer and remanufacturer. They proposed a long-term collection strategy wherein 

the manufacturer must collaborate with the retailer to improve the remanufacturing process. Recently, 

Sanni et al., (2020) proposed a model for maximizing profit by tracing the reverse flow of used items. 

Lu et al., (2021) developed a green manufacturing-recycling network by developing a closed-loop 

logistics dual-objective optimization model. The study examined several methods to minimize the 

adverse effects on the environment by implementing environmentally friendly production techniques. 

To quantify the impact on the environment, the model incorporates a pollution equivalent number. 

Furthermore, Rentizelas et al., (2021) investigated whether wind turbine blades at the end of their life 

may be recycled to manufacture composite materials.  
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In practice, a machine cannot always work well because its spare parts may do malfunctioning 

at some point of time. It may cause out of stock amid its working time if breakdown period is longer. 

At the point when the stock level becomes less than the demand, the management unit completely 

sits out of gear. As a result, a green supply chain inventory model is essential for continuation of 

manufacturing systems without disruption of supply.  

3. Assumptions and notation 

The model is developed here based on the following presumptions and notations. 
1 

3.1. Assumptions 
 

1. Demand rate is assumed to be constant (Zhang et al., 2007). 

2. Machine failure takes place at random during a production run (Poursoltan et al., 2020). We have 

assumed that the random number1 of breakdowns1 per unit time1 follows the Poisson1 distribution1, 

with the1 mean equal to 𝛽 per1 unit time. Thus1, the random1 production time1 to break down should1 

obey the1 exponential1 distribution1, with the1 density1 function 1 𝑓(𝑡) = 𝛽𝑒−𝛽𝑡 and the cumulative1 

density1 function 1𝐹(𝑡) = (1 − 𝑒−𝛽𝑡). 

3. Various studies have found that the reliability of manufacturing processes can be improved 

through the adoption of smart production technologies, which is regarded as being highly durable 

(Sarkar and Sarkar, 2022b). Therefore, to reduce the risk of disruption, smart technology is used 

with technology investment. Smart production is considered, and the cost of smart production is 

assumed to be 

𝐶(𝑃, 𝛽, 𝑥) = {
𝜋 + 𝛾𝛽

𝑃
+ (𝑟1 + 𝑟2𝛽) + (𝑠1 + 𝑠2𝑥𝑦) + 𝐶𝑝𝑃} 

4. Imperfect production is taken into account and x portion of produced items and y portion of 

remanufactured items are assumed to be defective. These items are reworked at a rate 𝑃1. 

5. Among these imperfect items, a small portion 𝜆 of the remanufactured items are totally scraped 

and will not be remanufactured further. Hence, scraped of the first time products and the other 

imperfect quality products can be repaired. 

3.2. Notation 

P  Production rate 

rP  Remanufacturing rate 

1D  Demand rate 

2D  Demand rate for remanufactured items 

1P  Repairing rate of the imperfect items 

R  Returned rate 

x  Reliability of the production process 
y  Reliability of the remanufacturing process 

1  Scrap from the produced items 

2  Scrap from the remanufactured items 


 

Deterioration rate 
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mK  Set up cost $ per unit cycle for the production process 

rK  Set up cost $ per unit cycle for the remanufacturing process 

mh  Holding cost $ per unit per month for the newly produced items 

rh  Holding cost $ per unit per month for the remanufactured items 

Rh  Holding cost $ per unit per month for the returned items 

1h  Holding cost $ per unit per month for the reworked items 

mS  Production cost$ per unit item 

rS  Remanufacturing cost$ per unit item 

rwS  Rework cost$ per unit item 

mC  Procurement cost$ per unit item 

𝐶𝑟 
Remanufacturing cost $ per unit item 

𝐶𝑖 Inspection cost $ per unit item 

𝐶𝑟𝑤 Rework cost$ per unit item 

RC  Acquisition cost $ per unit item 

dC  Disposable cost$ per unit item 

1t  Production time 

't  Time at which machine fails 

st  Machine repairing time  

4. Model development 

This paper is intended to capture and describe a reverse logistics model in which the 

productivity of a manufacturer is directly related to the degree of its reliability. As is widely 

recognized in the manufacturing sector, the physical output realized by the firm is determined by a 

variety of factors that are associated with both performance and quality. In order to measure the 

effectiveness of a manufacturing system, it must be assessed in terms of its reliability and 

productivity. Various studies have found that the reliability of manufacturing processes can be 

improved through the adoption of smart production technologies, which is regarded as being highly 

durable. Whether a manufacturing system will fail or not will probably depend on its inherent reliability.  

4.1. (Case 1) Reverse logistics inventory model with stochastic machine breakdown 

In this case, it is assumed that the machine breakdown takes place at the time 't  before 

completing the actual production time 𝑡1, i.e., in this case we have taken that 𝑡′ < 𝑡1. Apart from the 

breakdown, the production process is also not perfectly reliable. Hence, some imperfect items are 

also produced during this period and stored separately, out of which a small portion is scrapped. The 

machine is repaired by the time 𝑡2, and the machine starts to repair the defective items to the time𝑡3. 

Thereafter, the level of inventory starts to decrease due to the demand and deterioration, at the same 

time remanufacturing starts. Imperfect items also are generated during the remanufacturing run and 

repaired in the period of 𝑡4 to 𝑡5. 1Returned items are collected from1 the starting of the cycle to the 

time when remanufacturing stops. Figure1 depicts the behavior of the on-hand inventory level.  

The differential1 equations governing1 the stock level1 during the period 10 ≤ 𝑡 ≤ 𝑇 can be written 

as follows. 

𝑑𝐼𝑚(𝑡)

𝑑𝑡
+ 𝜃𝐼𝑚(𝑡) = 𝑥𝑃 − 𝐷1 0 ≤ 𝑡 ≤ 𝑡′ 𝐼𝑚(0) = 0 (1) 
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𝑑𝐼𝑚(𝑡)

𝑑𝑡
+ 𝜃𝐼𝑚(𝑡) = −𝐷1 𝑡′ ≤ 𝑡 ≤ 𝑡2 𝐼𝑚(𝑡′−) = 𝐼𝑚(𝑡′+) (2) 

𝑑𝐼𝑚(𝑡)

𝑑𝑡
+ 𝜃𝐼𝑚(𝑡) = 𝑃1 − 𝐷1 𝑡2 ≤ 𝑡 ≤ 𝑡3 𝐼𝑚(𝑡3

−) = 𝐼𝑚(𝑡3
−) (3) 

𝑑𝐼𝑚(𝑡)

𝑑𝑡
+ 𝜃𝐼𝑚(𝑡) = −𝐷1 𝑡3 ≤ 𝑡 ≤ 𝑡4 𝐼𝑚(𝑡4) = 0 (4) 

𝑑𝐼𝑟(𝑡)

𝑑𝑡
+ 𝜃𝐼𝑟(𝑡) = 𝑦𝑃𝑟 − 𝐷2 𝑡3 ≤ 𝑡 ≤ 𝑡4 𝐼𝑟(𝑡3) = 0 (5) 

𝑑𝐼𝑟(𝑡)

𝑑𝑡
+ 𝜃𝐼𝑟(𝑡) = 𝑃1 − 𝐷2 𝑡4 ≤ 𝑡 ≤ 𝑡5 𝐼𝑟(𝑡4

−) = 𝐼𝑟(𝑡4
+) (6) 

𝑑𝐼𝑟(𝑡)

𝑑𝑡
+ 𝜃𝐼𝑟(𝑡) = −𝐷2 𝑡5 ≤ 𝑡 ≤ 𝑇 𝐼𝑟(𝑇) = 0 (7) 

𝑑𝐼𝑅(𝑡)

𝑑𝑡
+ 𝜃𝐼𝑅(𝑡) = 𝑅 0 ≤ 𝑡 ≤ 𝑡3 𝐼𝑅(0) = 0 (8) 

𝑑𝐼𝑅(𝑡)

𝑑𝑡
+ 𝜃𝐼𝑅(𝑡) = 𝑅 − 𝑃𝑟 𝑡3 ≤ 𝑡 ≤ 𝑡4 𝐼𝑅(𝑡4) = 0 (9) 

The solutions of the above differential equations are  

𝐼𝑚(𝑡) = (
𝑥𝑃 − 𝐷1

𝜃
) (1 − 𝑒−𝜃𝑡) 0 ≤ 𝑡 ≤ 𝑡′ (10) 

𝐼𝑚(𝑡) =
𝑥𝑃

𝜃
(𝑒−𝜃(𝑡−𝑡′) − 𝑒−𝜃𝑡) −

𝐷1

𝜃
(1 − 𝑒−𝜃𝑡) 𝑡′ ≤ 𝑡 ≤ 𝑡2 (11) 

𝐼𝑚(𝑡) = (
𝑃1

𝜃
) (1 − 𝑒𝜃(𝑡3−𝑡)) −

𝐷1

𝜃
(1 − 𝑒𝜃(𝑡4−𝑡)) 𝑡2 ≤ 𝑡 ≤ 𝑡3 (12) 

𝐼𝑚(𝑡) =
𝐷1

𝜃
(𝑒𝜃(𝑡4−𝑡) − 1) 𝑡3 ≤ 𝑡 ≤ 𝑡4 (13) 

𝐼𝑟(𝑡) =
𝑦𝑃𝑟

𝜃
(1 − 𝑒𝜃(𝑡3−𝑡)) 𝑡3 ≤ 𝑡 ≤ 𝑡4 (14) 

𝐼𝑟(𝑡) =
𝑃1 − 𝐷2

𝜃
(1 − 𝑒𝜃(𝑡4−𝑡)) +

𝑦𝑃𝑟

𝜃
(𝑒𝜃(𝑡4−𝑡) − 𝑒𝜃(𝑡3−𝑡)) 𝑡4 ≤ 𝑡 ≤ 𝑡5 (15) 

𝐼𝑟(𝑡) =
𝐷2

𝜃
(𝑒𝜃(𝑇−𝑡) − 1) 𝑡5 ≤ 𝑡 ≤ 𝑇 (16) 

𝐼𝑅(𝑡) =
𝑅

𝜃
(1 − 𝑒−𝜃𝑡) 0 ≤ 𝑡 ≤ 𝑡3 (17) 

𝐼𝑅(𝑡) =
(𝑅 − 𝑃𝑟)

𝜃
(1 − 𝑒𝜃(𝑡4−𝑡)) 𝑡3 ≤ 𝑡 ≤ 𝑡4 (18) 

The per cycle cost components for the given inventory model are as follows. 

i). Expected procurement and acquisition cost 

The cost of purchasing the raw material (included deterioration cost) from the supplier can be 

calculated as 

(𝐶𝑚𝑃𝑡′ + 𝐶𝑅𝑅𝑡4)                                                             (19) 

Thus, the expected purchasing cost would be 

∫ 𝛽(𝐶𝑚𝑃𝑡′ + 𝐶𝑅𝑅𝑡4)𝑒−𝛽𝑥𝑑𝑡′
𝑡1

0
                                                 (20) 
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ii). Expected production cost 

Productivity of an automation-based production process fluctuates with replenishment strategies. 

In the event of a failure in an integral component of the machine, the component malfunctions 

adversely affect the system’s productivity, product quality and production costs. For a manufacturing 

system, reliability is the measurement of output per unit of time in terms of the productivity of the 

whole system, whereas for a service system, productivity is the measure of output per unit of time. A 

controllable manufacturing system is one that has the ability to vary production rate to meet the 

demands of the market so that the productivity of manufacturing systems can be increased. 1Due to 

the fact that this model allows flexibility in the production rate of an item, the unit production cost 

becomes a function of three variables: the variable production rate m, the variable manufacturing 

yield Y and the variable manufacturing performance equality l. 

The per unit production cost is  

𝐶(𝑃, 𝛽, 𝑥) = {
𝜋+𝛾𝛽

𝑃
+ (𝑟1 + 𝑟2𝛽) + (𝑠1 + 𝑠2𝑥𝑦) + 𝐶𝑝𝑃}                                (21) 

Therefore, the expected production would be  

∫ 𝛽 {
𝜋+𝛾𝛽

𝑃
+ (𝑟1 + 𝑟2𝛽) + (𝑠1 + 𝑠2𝑥𝑦) + 𝐶𝑝𝑃} 𝑃𝑡′𝑒−𝛽𝑥𝑑𝑡′

𝑡1

0
                              (22) 

iii). Expected remanufacturing cost 

One of the complexities of remanufacturing is completely managing the two-supply 

arrangement of parts, i.e.,the forward flow of material and the reverse flow. RL activities deal with 

the collection of used material; however, the quantity of buyback products is highly uncertain, which 

particularly influences the accumulation and replenishment policies. The remanufacturing starts at 

time 𝑡3, to the time 𝑡4. Therefore, the expected cost of remanufacturing is as follows: 

∫ 𝛽𝐶𝑟𝑃𝑟(𝑡4 − 𝑡3)𝑒−𝛽𝑥𝑑𝑡′
𝑡1

0
                                                     (23) 

iv). Expected inspection cost 

During the production and remanufacturing process, items are inspected via automation policy. 

Therefore, they can be removed from the stock of serviceable items instantly. The expected cost of 

inspection is as follows: 

∫ 𝛽𝐶𝑖{𝑃𝑡′ + 𝑃𝑟(𝑡4 − 𝑡3)}𝑒−𝛽𝑥𝑑𝑡′
𝑡1

0
                                                (24) 

v). Expected rework cost 

x portion of produced items and y portion of remanufactured items are assumed to be defective 

per unit time of production. These items are reworked at a rate 𝑃1. The expected cost to rework those 

items can be calculated as follows: 

∫ 𝛽𝐶𝑟𝑤𝑃1(𝑡3 − 𝑡2 + 𝑡5 − 𝑡4)𝑒−𝛽𝑥𝑑𝑡′
𝑡1

0
                                         (25) 
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vi). Expected holding cost for newly produced material  

The items are stored in the warehouse, and the manufacturer needs to spend some investment. 

The holding cost of carrying the newly produced inventory during the time period zero to 𝑡4 can be 

calculated as follows: 

ℎ𝑚 [∫ (
𝑥𝑃 − 𝐷1

𝜃
) (1 − 𝑒−𝜃𝑡)𝑑𝑡

𝑡′

0

+ ∫ {
𝑥𝑃

𝜃
(𝑒−𝜃(𝑡−𝑡′) − 𝑒−𝜃𝑡) −

𝐷1

𝜃
(1 − 𝑒−𝜃𝑡)} 𝑑𝑡

𝑡2

𝑡′

+ ∫ {(
𝑃1

𝜃
) (1 − 𝑒𝜃(𝑡3−𝑡)) −

𝐷1

𝜃
(1 − 𝑒𝜃(𝑡4−𝑡))} 𝑑𝑡

𝑡3

𝑡2

+ ∫
𝐷1

𝜃
(𝑒𝜃(𝑡4−𝑡) − 1)𝑑𝑡

𝑡4

𝑡3

] 

= ℎ𝑚 [(
𝑥𝑃−𝐷1

𝜃
) (

(𝑒−𝜃𝑡′
−1)

𝜃
+ 𝑡′) +

𝑥𝑃

𝜃2 (1 − 𝑒−𝜃𝑡′
− 𝑒−𝜃(𝑡2−𝑡′) + 𝑒−𝜃𝑡2) −

𝐷1

𝜃
(

𝑒−𝜃𝑡2−𝑒−𝜃𝑡′

𝜃
+

(𝑡2 − 𝑡′)) +
𝐷1

𝜃
(

𝑒𝜃(𝑡4−𝑡2)−𝑒𝜃(𝑡4−𝑡3)

𝜃
+ (𝑡3 − 𝑡2)) +

𝑃1

𝜃
((𝑡3 − 𝑡2) +

(1−𝑒𝜃(𝑡3−𝑡2))

𝜃
) −

𝐷1

𝜃
((𝑡4 − 𝑡3) +

(1−𝑒𝜃(𝑡4−𝑡3))

𝜃
)]                                                           (26) 

The expected holding cost of carrying the newly produced inventory during the time period zero 

to 𝑡4 can be calculated as follows: 

∫ 𝛽ℎ𝑚 [(
𝑥𝑃−𝐷1

𝜃
) (

(𝑒−𝜃𝑡′
−1)

𝜃
+ 𝑡′) +

𝑥𝑃

𝜃2 (1 − 𝑒−𝜃𝑡′
− 𝑒−𝜃(𝑡2−𝑡′) + 𝑒−𝜃𝑡2) −

𝐷1

𝜃
(

𝑒−𝜃𝑡2−𝑒−𝜃𝑡′

𝜃
+

𝑡1

0

(𝑡2 − 𝑡′)) +
𝐷1

𝜃
(

𝑒𝜃(𝑡4−𝑡2)−𝑒𝜃(𝑡4−𝑡3)

𝜃
+ (𝑡3 − 𝑡2)) +

𝑃1

𝜃
((𝑡3 − 𝑡2) +

(1−𝑒𝜃(𝑡3−𝑡2))

𝜃
) −

𝐷1

𝜃
((𝑡4 − 𝑡3) +

(1−𝑒𝜃(𝑡4−𝑡3))

𝜃
)] 𝑒−𝛽𝑥𝑑𝑡′                                                         (27) 

vii). Expected holding cost for remanufactured material  

The cost of carrying the remanufactured inventory during the time period 𝑡3 to 𝑇 is 

ℎ𝑟 [∫
𝑦𝑃𝑟

𝜃
(1 − 𝑒𝜃(𝑡3−𝑡))𝑑𝑡

𝑡4

𝑡3

+ ∫ {
𝑃1 − 𝐷2

𝜃
(1 − 𝑒𝜃(𝑡4−𝑡)) +

𝑦𝑃𝑟

𝜃
(𝑒𝜃(𝑡4−𝑡) − 𝑒𝜃(𝑡3−𝑡))} 𝑑𝑡

𝑡5

𝑡4

+ ∫
𝐷2

𝜃
(𝑒𝜃(𝑇−𝑡) − 1)𝑑𝑡

𝑇

𝑡5

] 

= ℎ𝑟 [
𝑦𝑃𝑟

𝜃
(

𝑒𝜃(𝑡3−𝑡4)−1

𝜃
+ (𝑡4 − 𝑡3)) +

(𝑃1−𝐷2)

𝜃
(

𝑒−𝜃(𝑡5−𝑡4)−1

𝜃
+ (𝑡5 − 𝑡4)) +
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𝑦𝑃𝑟

𝜃
(

1−𝑒−𝜃(𝑡5−𝑡4)+𝑒−𝜃(𝑡5−𝑡3)−𝑒−𝜃(𝑡4−𝑡3)

𝜃
) −

𝐷2

𝜃
(

1−𝑒𝜃(𝑇−𝑡5)

𝜃
+ (𝑇 − 𝑡5))]                    (28) 

The expected cost of carrying the remanufactured inventory during the time period 𝑡3 to 𝑇 is 

∫ 𝛽ℎ𝑟 [
𝑦𝑃𝑟

𝜃
(

𝑒𝜃(𝑡3−𝑡4)−1

𝜃
+ (𝑡4 − 𝑡3)) +

(𝑃1−𝐷2)

𝜃
(

𝑒−𝜃(𝑡5−𝑡4)−1

𝜃
+ (𝑡5 − 𝑡4)) +

𝑡1

0

𝑦𝑃𝑟

𝜃
(

1−𝑒−𝜃(𝑡5−𝑡4)+𝑒−𝜃(𝑡5−𝑡3)−𝑒−𝜃(𝑡4−𝑡3)

𝜃
) −

𝐷2

𝜃
(

1−𝑒𝜃(𝑇−𝑡5)

𝜃
+ (𝑇 − 𝑡5))] 𝑒−𝛽𝑥𝑑𝑡′          (29) 

viii). Expected holding cost for returned items 

The holding cost for carrying the collected returned items during the time period zero to 𝑡4 is 

ℎ𝑅 [∫
𝑅

𝜃
(1 − 𝑒−𝜃𝑡)𝑑𝑡

𝑡3

0

+ ∫
(𝑅 − 𝑃𝑟)

𝜃
(1 − 𝑒𝜃(𝑡4−𝑡))𝑑𝑡

𝑡4

𝑡3

] 

= ℎ𝑅 {
𝑅

𝜃
(𝑡3 +

(𝑒−𝜃𝑡3−1)

𝜃
) +

(𝑅−𝑃𝑟)

𝜃
((𝑡4 − 𝑡3) +

(1−𝑒𝜃(𝑡4−𝑡3))

𝜃
)}                           (30) 

The expected holding cost for carrying the collected returned items during the time period zero to 𝑡4 

is 

∫ 𝛽ℎ𝑅 {
𝑅

𝜃
(𝑡3 +

(𝑒−𝜃𝑡3−1)

𝜃
) +

(𝑅−𝑃𝑟)

𝜃
((𝑡4 − 𝑡3) +

(1−𝑒𝜃(𝑡4−𝑡3))

𝜃
)} 𝑒−𝛽𝑥𝑑𝑡′

𝑡1

0
                (31) 

ix). Expected holding cost for imperfect items 

Due to the automation policy of inspection, imperfect items are instantly removed from the 

serviceable items and carried at a separated place. The holding cost for carrying the imperfect items 

during the time period zero to 𝑡5 is 

ℎ𝑟𝑤 {(1 − 𝑥)𝑃 (𝑡′𝑡2 −
𝑡′2

2
+ 𝑡′𝜆1

(𝑡3−𝑡2)

2
) + (1 − 𝑦)𝑃𝑟 (

(𝑡4−𝑡3)2

2
+ 𝜆2(𝑡4 − 𝑡3)(𝑡5 − 𝑡4))}   (32) 

The expected holding cost for carrying the imperfect items during the time period zero to 𝑡5 is. 

∫ 𝛽ℎ𝑟𝑤 {(1 − 𝑥)𝑃 (𝑡′𝑡2 −
𝑡′2

2
+ 𝑡′𝜆1

(𝑡3−𝑡2)

2
) + (1 − 𝑦)𝑃𝑟 (

(𝑡4−𝑡3)2

2
+ 𝜆2(𝑡4 − 𝑡3)(𝑡5 −

𝑡1

0

𝑡4))} 𝑒−𝛽𝑥𝑑𝑡′                                                            (33) 
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x). Expected setup cost  

The system has to invest at the starting of the cycle to setup the manufacturing process, and the 

cost increases as the number of failures increases. The failure rate dependent setup cost can be 

calculated as follows: 

(𝐾𝑚(1 + 𝑅𝑠𝛽) + 𝐾𝑟)                                                          (34) 

The expected setup cost can be calculated as follows: 

∫ 𝛽(𝐾𝑚(1 + 𝑅𝑠𝛽) + 𝐾𝑟)𝑒−𝛽𝑥𝑑𝑡′
𝑡1

0
                                             (35) 

xi). Expected disposal cost 

As the production and remanufacturing process are not perfectly reliable, imperfect items are 

found, but all the items are not supposed to be in the condition to be reworked. Those items are 

disposed of. The cost of disposing these items is  

𝑐𝑑{(1 − 𝑥)(1 − 𝜆1)𝑃𝑡′ + (1 − 𝑦)(1 − 𝜆2)𝑃𝑟(𝑡4 − 𝑡3)}                            (36) 

Thus, the expected cost of disposing these items is 

∫ 𝛽𝑐𝑑{(1 − 𝑥)(1 − 𝜆1)𝑃𝑡′ + (1 − 𝑦)(1 − 𝜆2)𝑃𝑟(𝑡4 − 𝑡3)}𝑒−𝛽𝑥𝑑𝑡′
𝑡1

0
                 (37) 

Hence, the 1total cost per unit time1 of the given inventory model 1during the cycle [0, 𝑇] as a function 

of𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑇 and 𝑇𝐶1(𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑇) is given by 
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𝑇𝐶1 = ∫ 𝛽(𝐶𝑚𝑃𝑡′ + 𝑅𝑡4)𝑒−𝛽𝑥𝑑𝑡′

𝑡1

0

+ ∫ 𝛽 {
𝜋 + 𝛾𝛽

𝑃
+ (𝑟1 + 𝑟2𝛽) + (𝑠1 + 𝑠2𝑥𝑦) + 𝐶𝑝𝑃} 𝑃𝑡′𝑒−𝛽𝑥𝑑𝑡′

𝑡1

0

+ ∫ 𝛽𝐶𝑟𝑃𝑟(𝑡4 − 𝑡3)𝑒−𝛽𝑥𝑑𝑡′

𝑡1

0

+ ∫ 𝛽𝐶𝑟𝑤𝑃1(𝑡3 − 𝑡2 + 𝑡5 − 𝑡4)𝑒−𝛽𝑥𝑑𝑡′

𝑡1

0

+ ∫ 𝛽𝐶𝑖{𝑃𝑡′ + 𝑃𝑟(𝑡4 − 𝑡3)}𝑒−𝛽𝑥𝑑𝑡′

𝑡1

0

+ ∫ 𝛽ℎ𝑚 [(
𝑥𝑃 − 𝐷1

𝜃
) (

(𝑒−𝜃𝑡′
− 1)

𝜃
+ 𝑡′) +

𝑥𝑃

𝜃2
(1 − 𝑒−𝜃𝑡′

− 𝑒−𝜃(𝑡2−𝑡′) + 𝑒−𝜃𝑡2)

𝑡1

0

−
𝐷1

𝜃
(

𝑒−𝜃𝑡2 − 𝑒−𝜃𝑡′

𝜃
+ (𝑡2 − 𝑡′)) +

𝐷1

𝜃
(

𝑒𝜃(𝑡4−𝑡2) − 𝑒𝜃(𝑡4−𝑡3)

𝜃
+ (𝑡3 − 𝑡2))

+
𝑃1

𝜃
((𝑡3 − 𝑡2) +

(1 − 𝑒𝜃(𝑡3−𝑡2))

𝜃
) −

𝐷1

𝜃
((𝑡4 − 𝑡3) +

(1 − 𝑒𝜃(𝑡4−𝑡3))

𝜃
)] 𝑒−𝛽𝑥𝑑𝑡′

+ ∫ 𝛽ℎ𝑟 [
𝑦𝑃𝑟

𝜃
(

𝑒𝜃(𝑡3−𝑡4) − 1

𝜃
+ (𝑡4 − 𝑡3)) +

(𝑃1 − 𝐷2)

𝜃
(

𝑒−𝜃(𝑡5−𝑡4) − 1

𝜃
+ (𝑡5 − 𝑡4))

𝑡1

0

+
𝑦𝑃𝑟

𝜃
(

1 − 𝑒−𝜃(𝑡5−𝑡4) + 𝑒−𝜃(𝑡5−𝑡3) − 𝑒−𝜃(𝑡4−𝑡3)

𝜃
)

−
𝐷2

𝜃
(

1 − 𝑒𝜃(𝑇−𝑡5)

𝜃
+ (𝑇 − 𝑡5))] 𝑒−𝛽𝑥𝑑𝑡′

+ ∫ 𝛽ℎ𝑅 {
𝑅

𝜃
(𝑡3 +

(𝑒−𝜃𝑡3 − 1)

𝜃
) +

(𝑅 − 𝑃𝑟)

𝜃
((𝑡4 − 𝑡3) +

(1 − 𝑒𝜃(𝑡4−𝑡3))

𝜃
)} 𝑒−𝛽𝑥𝑑𝑡′

𝑡1

0

+ ∫ 𝛽ℎ𝑟𝑤 {(1 − 𝑥)𝑃 (𝑡′𝑡2 −
𝑡′2

2
+ 𝑡′𝜆1

(𝑡3 − 𝑡2)

2
)

𝑡1

0

+ (1 − 𝑦)𝑃𝑟 (
(𝑡4 − 𝑡3)2

2
+ 𝜆2(𝑡4 − 𝑡3)(𝑡5 − 𝑡4))} 𝑒−𝛽𝑥𝑑𝑡′

+ ∫ 𝛽(𝐾𝑚(1 + 𝑅𝑠𝛽) + 𝐾𝑟)𝑒−𝛽𝑥𝑑𝑡′

𝑡1

0

+ ∫ 𝛽𝑐𝑑{(1 − 𝑥)(1 − 𝜆1)𝑃𝑡′ + (1 − 𝑦)(1 − 𝜆2)𝑃𝑟(𝑡4 − 𝑡3)}𝑒−𝛽𝑥𝑑𝑡′

𝑡1

0

 

(38) 

 

 



493 

Green Finance  Volume 5, Issue 4, 479–511. 

Figure 1. Behavior of inventory in a reverse logistics inventory model with random machine breakdown. 

Based on the arrangement of inventory depicted in Figure 1, certain relations between the 

variables can derived, such as 

𝑡𝑠 = (𝑡2 − 𝑡′)                                                           (39) 

𝑥𝑃

𝜃
(𝑒−𝜃(𝑡2−𝑡′) − 𝑒−𝜃𝑡2) −

𝐷1

𝜃
(1 − 𝑒−𝜃𝑡2) = (

𝑃1

𝜃
) (1 − 𝑒𝜃(𝑡3−𝑡2)) −

𝐷1

𝜃
(1 − 𝑒𝜃(𝑡4−𝑡2))      (40) 

𝑃1−𝐷2

𝜃
(1 − 𝑒−𝜃(𝑡5−𝑡4)) +

𝑦𝑃𝑟

𝜃
(𝑒−𝜃(𝑡5−𝑡4) − 𝑒−𝜃(𝑡5−𝑡3)) =

−𝐷2

𝜃
(1 − 𝑒𝜃(𝑇−𝑡5))          (41) 
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𝑅

𝜃
(1 − 𝑒−𝜃𝑡3) =

(𝑅−𝑃𝑟)

𝜃
(1 − 𝑒𝜃(𝑡4−𝑡3))                                          (42) 

(1 − 𝑥)𝜆1𝑃𝑡′ = 𝑃1(𝑡3 − 𝑡2)                                                          (43) 

(1 − 𝑦)𝜆2𝑃𝑟(𝑡4 − 𝑡3) = 𝑃1(𝑡5 − 𝑡4)                                                   (44) 

 

Therefore, from the above relations, the values of 𝑡2, 𝑡3, 𝑡4, 𝑡5 and 𝑇 can be determined as functions 

of 't , say, 

𝑡2 = 𝑓12(𝑡′) = (𝑡𝑠 + 𝑡′)                                                       (45) 

𝑡3 = 𝑓13(𝑡′) =
(1−𝑥)𝜆1𝑃𝑡′+𝑃1(𝑡𝑠+𝑡′)

𝑃1
                                             (46) 

𝑡4 = 𝑓14(𝑡′) =
𝑃𝑃𝑟𝑡′(−1+𝑥)𝜆1−𝑃1𝑃𝑟(𝑡𝑠+𝑡′)

(𝑃𝑟−𝑅){𝑃1((𝑡𝑠+𝑡′)𝜃−1)−𝑃𝑡′(𝑥−1)𝜃𝜆1}
                                  (47) 

𝑡5 = 𝑓15(𝑡′) = −
{𝑃𝑟(𝑃1(𝑡𝑠+𝑡′)−𝑃𝑡′(𝑥−1)𝜆1){𝑃1

2+(1−𝑦){−𝑃1𝑅−𝑃1(𝑃𝑟−𝑅)(𝑡𝑠+𝑡′)𝜃+𝑃(𝑃𝑟−𝑅)𝑡′(𝑥−1)𝜃𝜆1}𝜆2}}

{𝑃1
2(𝑃𝑟−𝑅){𝑃1((𝑡𝑠+𝑡′)𝜃−1)−𝑃𝑡′(𝑥−1)𝜃𝜆1}}

  (48) 

𝑇 = 𝑓16(𝑡′) = (𝑃𝑟(−𝑃(𝑥 − 1)𝜆1𝑡′ + 𝑃1(𝑡𝑠 + 𝑡′))(−𝑃3(𝑥 − 1)3(−1 + 𝑦)𝑦𝜃3𝑃𝑟(−𝑅 +

𝑃𝑟)2𝜆1
3𝜆2(𝑡′)3 + 𝜃𝑃1

5𝑃𝑟(𝑡𝑠 + 𝑡′) + 𝑃2(𝑥 − 1)2(𝑦 − 1)𝑦𝜃2𝑃1𝑃𝑟(−𝑅 + 𝑃𝑟)𝜆1
2𝜆2(𝑡′)2(2𝑅 + 3𝜃(−𝑅 +

𝑃𝑟)(𝑡′
𝑠 + 𝑡′)) − 𝑃(𝑥 − 1)𝜃𝑃1

2𝜆1𝑡′(𝑃(𝑥 − 1)𝜃(−𝑅 + 𝑃𝑟)𝜆1(−𝑅𝑦 + 2𝑦𝑃𝑟 + 𝑅(−1 + 𝑦)𝜆2)𝑡′ + (𝑦 −

1)𝑦𝑃𝑟𝜆2(𝑅 + 𝜃(−𝑅 + 𝑃𝑟)(𝑡𝑠 + 𝑡′))(𝑅 + 3𝜃(−𝑅 + 𝑃𝑟)(𝑡𝑠 + 𝑡′))) + 𝐷2𝑃1(𝑃2(𝑥 − 1)2(−1 +

𝑦)𝜃2𝑃𝑟(−𝑅 + 𝑃𝑟)𝜆1
2𝜆2(𝑡′)2 − 𝑃(𝑥 − 1)(−1 + 𝑦)𝜃𝑃1𝑃𝑟𝜆1𝜆2𝑡′(𝑅 + 2𝜃(−𝑅 + 𝑃𝑟)(𝑡𝑠 + 𝑡′)) +

𝑃1
3(𝑃𝑟 − 2𝜃𝑃𝑟(𝑡𝑠 + 𝑡′) + 𝑅(−1 + 𝜃(𝑡𝑠 + 𝑡′))) + 𝜃𝑃1

2(𝑃(𝑥 − 1)(−𝑅 + 2𝑃𝑟)𝜆1𝑡′ + (−1 +

𝑦)𝑃𝑟𝜆2(𝑡𝑠 + 𝑡′)(𝑅 + 𝜃(−𝑅 + 𝑃𝑟)(𝑡𝑠 + 𝑡′)))) + 𝜃𝑃1
3((−1 + 𝑦)𝑦𝑃𝑟𝜆2(𝑡𝑠 + 𝑡′)(𝑅 + 𝜃(−𝑅 +

𝑃𝑟)(𝑡𝑠 + 𝑡′))2 + 𝑃(−1 + 𝑥)𝜆1𝑡′((−1 + 𝑦)𝜆2(2𝑅2 − 2𝑅𝑃𝑟 + 𝑃𝑟
2 + 2𝑅𝜃(−𝑅 + 𝑃𝑟)(𝑡𝑠 + 𝑡′)) +

𝑦(−2𝑅2 + 4𝑅𝑃𝑟 − 𝑃𝑟
2 + 2𝜃(𝑅2 − 3𝑅𝑃𝑟 + 2𝑃𝑟

2)(𝑡𝑠 + 𝑡′)))) + 𝑃1
4(𝑅2(𝑦(−1 + 𝜆2) − 𝜆2)(−1 +

𝜃(𝑡𝑠 + 𝑡′))2 − 𝜃𝑃𝑟
2(𝑡𝑠 + 𝑡′)(−𝜆2 + 𝑦(−1 + 𝜆2 + 2𝜃(𝑡𝑠 + 𝑡′))) + 𝑃𝑟(−𝑃(−1 + 𝑥)𝜃𝜆1𝑡′ − 𝑅(−1 +

𝜃(𝑡𝑠 + 𝑡′))(𝑦 − 3𝑦𝜃(𝑡𝑠 + 𝑡′) + (−1 + 𝑦)𝜆2(−1 + 𝜃(𝑡𝑠 + 𝑡′)))))))/(𝐷2𝑃1(−𝑅 + 𝑃𝑟)(−𝑃(−1 +

𝑥)𝜃𝜆1𝑡′ + 𝑃1(−1 + 𝜃(𝑡𝑠 + 𝑡′)))(−(−1 + 𝑦)𝜃𝑃𝑟𝜆2(−𝑃(−1 + 𝑥)𝜆1𝑡′ + 𝑃1(𝑡𝑠 + 𝑡′))(𝑃(−1 +

𝑥)𝜃(𝑅 − 𝑃𝑟)𝜆1𝑡′ + 𝑃1(𝑅 + 𝜃(−𝑅 + 𝑃𝑟)(𝑡𝑠 + 𝑡′))) + 𝑃1
2(−𝑃(−1 + 𝑥)𝜃(−𝑅 + 2𝑃𝑟)𝜆1𝑡′ + 𝑃1(𝑅 −

𝑃𝑟 + 𝜃(−𝑅 + 2𝑃𝑟)(𝑡𝑠 + 𝑡′)))))                                       (49) 

 

Based on the above results, the expected cost function can be written as 
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𝑇𝐶1 = ∫ 𝛽(𝐶𝑚𝑃𝑡′ + 𝐶𝑅𝑅𝑓14)𝑒−𝛽𝑥𝑑𝑡′

𝑡1

0

+ ∫ 𝛽 {
𝜋 + 𝛾𝛽

𝑃
+ (𝑟1 + 𝑟2𝛽) + (𝑠1 + 𝑠2𝑥𝑦) + 𝐶𝑝𝑃} 𝑃𝑡′𝑒−𝛽𝑥𝑑𝑡′

𝑡1

0

+ ∫ 𝛽𝐶𝑟𝑃𝑟(𝑓14 − 𝑓13)𝑒−𝛽𝑥𝑑𝑡′

𝑡1

0

+ ∫ 𝛽𝐶𝑟𝑤𝑃1(𝑓13 − 𝑓12 + 𝑓15 − 𝑓14)𝑒−𝛽𝑥𝑑𝑡′

𝑡1

0

+ ∫ 𝛽𝐶𝑖{𝑃𝑡′ + 𝑃𝑟(𝑓14 − 𝑓13)}𝑒−𝛽𝑥𝑑𝑡′

𝑡1

0

+ ∫ 𝛽ℎ𝑚 [(
𝑥𝑃 − 𝐷1

𝜃
) (

(𝑒−𝜃𝑡′
− 1)

𝜃
+ 𝑡′) +

𝑥𝑃

𝜃2
(1 − 𝑒−𝜃𝑡′

− 𝑒−𝜃(𝑓12−𝑡′) + 𝑒−𝜃𝑓12)

𝑡1

0

−
𝐷1

𝜃
(

𝑒−𝜃𝑓12 − 𝑒−𝜃𝑡′

𝜃
+ (𝑓12 − 𝑡′)) +

𝐷1

𝜃
(

𝑒𝜃(𝑓14−𝑓12) − 𝑒𝜃(𝑓14−𝑓13)

𝜃
+ (𝑓13 − 𝑓12))

+
𝑃1

𝜃
((𝑓13 − 𝑓12) +

(1 − 𝑒𝜃(𝑓13−𝑓12))

𝜃
) −

𝐷1

𝜃
((𝑓14 − 𝑓13) +

(1 − 𝑒𝜃(𝑓14−𝑓13))

𝜃
)] 𝑒−𝛽𝑥𝑑𝑡′

+ ∫ 𝛽ℎ𝑟 [
𝑦𝑃𝑟

𝜃
(

𝑒𝜃(𝑓13−𝑓14) − 1

𝜃
+ (𝑓14 − 𝑓13))

𝑡1

0

+
(𝑃1 − 𝐷2)

𝜃
(

𝑒−𝜃(𝑓15−𝑓14) − 1

𝜃
+ (𝑓15 − 𝑓14))

+
𝑦𝑃𝑟

𝜃
(

1 − 𝑒−𝜃(𝑓15−𝑓14) + 𝑒−𝜃(𝑓15−𝑓13) − 𝑒−𝜃(𝑓14−𝑓13)

𝜃
)                                                    （50）

−
𝐷2

𝜃
(

1 − 𝑒𝜃(𝑓16−𝑓15)

𝜃
+ (𝑓16 − 𝑓15))] 𝑒−𝛽𝑥𝑑𝑡′

+ ∫ 𝛽ℎ𝑅 {
𝑅

𝜃
(𝑓13 +

(𝑒−𝜃𝑓13 − 1)

𝜃
) +

(𝑅 − 𝑃𝑟)

𝜃
((𝑓14 − 𝑓13) +

(1 − 𝑒𝜃(𝑓14−𝑓13))

𝜃
)} 𝑒−𝛽𝑥𝑑𝑡′

𝑡1

0

+ ∫ 𝛽ℎ𝑟𝑤 {(1 − 𝑥)𝑃 (𝑡′𝑓12 −
𝑡′2

2
+ 𝑡′𝜆1

(𝑓13 − 𝑓12)

2
)

𝑡1

0

+ (1 − 𝑦)𝑃𝑟 (
(𝑓14 − 𝑓13)2

2
+ 𝜆2(𝑓14 − 𝑓13)(𝑓15 − 𝑓14))} 𝑒−𝛽𝑥𝑑𝑡′

+ ∫ 𝛽(𝐾𝑚(1 + 𝑅𝑠𝛽) + 𝐾𝑟)𝑒−𝛽𝑥𝑑𝑡′

𝑡1

0

+ ∫ 𝛽𝑐𝑑{(1 − 𝑥)(1 − 𝜆1)𝑃𝑡′ + (1 − 𝑦)(1 − 𝜆2)𝑃𝑟(𝑓14 − 𝑓13)}𝑒−𝛽𝑥𝑑𝑡′

𝑡1

0
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4.2. (Case 2) Reverse logistics inventory model without machine breakdown 

In this case, it is considered that the machine breakdown does not occur during the production 

run. The behavior of the on-hand inventory is depicted in Figure 2. 

 
The differential equations governing the stock level during the period 0 t T   can be written as 

𝑑𝐼𝑚(𝑡)

𝑑𝑡
+ 𝜃𝐼𝑚(𝑡) = 𝑥𝑃 − 𝐷1 0 ≤ 𝑡 ≤ 𝑡1 𝐼𝑚(0) = 0 (51) 

𝑑𝐼𝑚(𝑡)

𝑑𝑡
+ 𝜃𝐼𝑚(𝑡) = 𝑃1 − 𝐷1 𝑡1 ≤ 𝑡 ≤ 𝑡2 𝐼𝑚(𝑡1

−) = 𝐼𝑚(𝑡1
−) (52) 

𝑑𝐼𝑚(𝑡)

𝑑𝑡
+ 𝜃𝐼𝑚(𝑡) = −𝐷1 𝑡2 ≤ 𝑡 ≤ 𝑡3 𝐼𝑚(𝑡3) = 0 (53) 

𝑑𝐼𝑟(𝑡)

𝑑𝑡
+ 𝜃𝐼𝑟(𝑡) = 𝑦𝑃𝑟 − 𝐷2 𝑡2 ≤ 𝑡 ≤ 𝑡3 𝐼𝑟(𝑡2) = 0 (54) 

Imperfect items 
( )1 1rxPt −  

1rxPt  
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 2H
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Figure 2. “The behavior of inventory in a reverse logistics inventory model 

without machine breakdowns. 
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𝑑𝐼𝑟(𝑡)

𝑑𝑡
+ 𝜃𝐼𝑟(𝑡) = 𝑃1 − 𝐷2 𝑡3 ≤ 𝑡 ≤ 𝑡4 𝐼𝑟(𝑡3

−) = 𝐼𝑟(𝑡3
+) (55) 

𝑑𝐼𝑟(𝑡)

𝑑𝑡
+ 𝜃𝐼𝑟(𝑡) = −𝐷2 𝑡4 ≤ 𝑡 ≤ 𝑡5 𝐼𝑟(𝑇) = 0 (56) 

𝑑𝐼𝑅(𝑡)

𝑑𝑡
+ 𝜃𝐼𝑅(𝑡) = 𝑅 0 ≤ 𝑡 ≤ 𝑡2 𝐼𝑅(0) = 0 (57) 

𝑑𝐼𝑅(𝑡)

𝑑𝑡
+ 𝜃𝐼𝑅(𝑡) = 𝑅 − 𝑃𝑟 𝑡2 ≤ 𝑡 ≤ 𝑡3 𝐼𝑅(𝑡3) = 0 (58) 

The solutions of the above differential equations are  

𝐼𝑚(𝑡) = (
𝑥𝑃 − 𝐷1

𝜃
) (1 − 𝑒−𝜃𝑡) 0 ≤ 𝑡 ≤ 𝑡1 (59) 

𝐼𝑚(𝑡) = (
𝑃1 − 𝐷1

𝜃
) (1 − 𝑒𝜃(𝑡1−𝑡))

+ (
𝑥𝑃 − 𝐷1

𝜃
) (𝑒𝜃(𝑡1−𝑡) − 𝑒−𝜃𝑡) 

𝑡1 ≤ 𝑡 ≤ 𝑡2 (60) 

𝐼𝑚(𝑡) =
𝐷1

𝜃
(𝑒𝜃(𝑡3−𝑡) − 1) 𝑡2 ≤ 𝑡 ≤ 𝑡3 (61) 

𝐼𝑟(𝑡) =
𝑦𝑃𝑟

𝜃
(1 − 𝑒𝜃(𝑡2−𝑡)) 𝑡2 ≤ 𝑡 ≤ 𝑡3 (62) 

𝐼𝑟(𝑡) =
𝑃1 − 𝐷2

𝜃
(1 − 𝑒𝜃(𝑡3−𝑡)) +

𝑦𝑃𝑟

𝜃
(𝑒𝜃(𝑡3−𝑡) − 𝑒𝜃(𝑡2−𝑡)) 𝑡3 ≤ 𝑡 ≤ 𝑡4 (63) 

𝐼𝑟(𝑡) =
𝐷2

𝜃
(𝑒𝜃(𝑇−𝑡) − 1) 𝑡4 ≤ 𝑡 ≤ 𝑡5 (64) 

𝐼𝑅(𝑡) =
𝑅

𝜃
(1 − 𝑒−𝜃𝑡) 0 ≤ 𝑡 ≤ 𝑡2 (65) 

𝐼𝑅(𝑡) =
(𝑅 − 𝑃𝑟)

𝜃
(1 − 𝑒𝜃(𝑡3−𝑡)) 𝑡2 ≤ 𝑡 ≤ 𝑡3 (66) 

The per cycle cost components for the given inventory model are as follows. 

i). Expected procurement and acquisition cost 

The cost of purchasing the raw material (including deterioration cost) from the supplier can be 

calculated as 

(𝐶𝑚𝑃𝑡1 + 𝐶𝑅𝑅𝑡3)                                                            (67) 

Thus, the expected purchasing cost would be 

∫ 𝛽(𝐶𝑚𝑃𝑡1 + 𝑅𝑡3)𝑒−𝛽𝑥𝑑𝑡′
∞

𝑡1
                                                  (68) 

ii). Expected production cost 

The per unit expected production cost is  

∫ 𝛽 {
𝜋+𝛾𝛽

𝑃
+ (𝑟1 + 𝑟2𝛽) + (𝑠1 + 𝑠2𝑥𝑦) + 𝐶𝑝𝑃} 𝑃𝑡1𝑒−𝛽𝑥𝑑𝑡′

∞

𝑡1
                         (69) 

iii). Expected repairing cost 

The per unit expected repairing cost is  
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∫ 𝛽𝐶𝑟𝑃𝑟(𝑡3 − 𝑡2)𝑒−𝛽𝑥𝑑𝑡′
∞

𝑡1
                                                  (70) 

iv). Expected rework cost 

The per unit expected rework cost is  

∫ 𝛽𝐶𝑟𝑤𝑃1(𝑡2 − 𝑡1 + 𝑡4 − 𝑡3)𝑒−𝛽𝑥𝑑𝑡′
∞

𝑡1
                                      (71) 

v). Expected inspection cost 

The per unit expected inspection cost is  

∫ 𝛽𝐶𝑖{𝑃𝑡1 + 𝑃𝑟(𝑡3 − 𝑡2)}𝑒−𝛽𝑥𝑑𝑡′
∞

𝑡1
                                        (72) 

vi). Expected holding cost for newly produced material  

The items are stored in the warehouse, and the manufacturer needs to spend some investment. 

The expected holding cost of carrying the newly produced inventory during the time period zero to 

𝑡3 can be calculated as follows: 

ℎ𝑚 [∫ (
𝑥𝑃 − 𝐷1

𝜃
) (1 − 𝑒−𝜃𝑡)𝑑𝑡

𝑡1

0

+ ∫ {(
𝑃1 − 𝐷1

𝜃
) (1 − 𝑒𝜃(𝑡1−𝑡)) + (

𝑥𝑃 − 𝐷1

𝜃
) (𝑒𝜃(𝑡1−𝑡) − 𝑒−𝜃𝑡)} 𝑑𝑡

𝑡2

𝑡1

+ ∫
𝐷1

𝜃
(𝑒𝜃(𝑡3−𝑡) − 1)𝑑𝑡

𝑡3

𝑡2

] 

= ℎ𝑚 [(
𝑥𝑃−𝐷1

𝜃
) (

(𝑒−𝜃𝑡1−1)

𝜃
+ 𝑡1) + (

𝑥𝑃−𝐷1

𝜃2 ) (1 − 𝑒−𝜃𝑡1 − 𝑒−𝜃(𝑡2−𝑡1) + 𝑒−𝜃𝑡2) +
(𝑃1−𝐷1)

𝜃
(

𝑒−𝜃(𝑡2−𝑡1)−1

𝜃
+

(𝑡2 − 𝑡1)) −
𝐷1

𝜃
(

1−𝑒𝜃(𝑡3−𝑡2)

𝜃
+ (𝑡3 − 𝑡2))]                                     (73) 

The expected holding cost of carrying the newly produced inventory during the time period zero 

to 𝑡3 can be calculated as follows: 

∫ 𝛽ℎ𝑚 [(
𝑥𝑃−𝐷1

𝜃
) (

(𝑒−𝜃𝑡1−1)

𝜃
+ 𝑡1) + (

𝑥𝑃−𝐷1

𝜃2 ) (1 − 𝑒−𝜃𝑡1 − 𝑒−𝜃(𝑡2−𝑡1) + 𝑒−𝜃𝑡2) +
∞

𝑡1

(𝑃1−𝐷1)

𝜃
(

𝑒−𝜃(𝑡2−𝑡1)−1

𝜃
+ (𝑡2 − 𝑡1)) −

𝐷1

𝜃
(

1−𝑒𝜃(𝑡3−𝑡2)

𝜃
+ (𝑡3 − 𝑡2))] 𝑒−𝛽𝑥𝑑𝑡′               (74) 
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vii). Expected holding cost for remanufactured material  

ℎ𝑟 [∫
𝑦𝑃𝑟

𝜃
(1 − 𝑒𝜃(𝑡2−𝑡))𝑑𝑡

𝑡3

𝑡2

+ ∫ {
𝑃1 − 𝐷2

𝜃
(1 − 𝑒𝜃(𝑡3−𝑡)) +

𝑦𝑃𝑟

𝜃
(𝑒𝜃(𝑡3−𝑡) − 𝑒𝜃(𝑡2−𝑡))} 𝑑𝑡

𝑡4

𝑡3

+ ∫
𝐷2

𝜃
(𝑒𝜃(𝑇−𝑡) − 1)𝑑𝑡

𝑇

𝑡4

] 

 

= ℎ𝑟 [
𝑦𝑃𝑟

𝜃
(

𝑒−𝜃(𝑡3−𝑡2)−1

𝜃
+ (𝑡3 − 𝑡2)) +

(𝑃1−𝐷2)

𝜃
(

𝑒−𝜃(𝑡4−𝑡3)−1

𝜃
+ (𝑡4 − 𝑡3)) +

𝑦𝑃𝑟

𝜃
(

1−𝑒−𝜃(𝑡4−𝑡3)+𝑒−𝜃(𝑡4−𝑡2)−𝑒−𝜃(𝑡3−𝑡2)

𝜃
) −

𝐷2

𝜃
(

1−𝑒𝜃(𝑇−𝑡4)

𝜃
+ (𝑇 − 𝑡4))] = ∫ 𝛽ℎ𝑟 [

𝑦𝑃𝑟

𝜃
(

𝑒−𝜃(𝑡3−𝑡2)−1

𝜃
+

∞

𝑡1

(𝑡3 − 𝑡2)) +
(𝑃1−𝐷2)

𝜃
(

𝑒−𝜃(𝑡4−𝑡3)−1

𝜃
+ (𝑡4 − 𝑡3)) +

𝑦𝑃𝑟

𝜃
(

1−𝑒−𝜃(𝑡4−𝑡3)+𝑒−𝜃(𝑡4−𝑡2)−𝑒−𝜃(𝑡3−𝑡2)

𝜃
) −

𝐷2

𝜃
(

1−𝑒𝜃(𝑇−𝑡4)

𝜃
+ (𝑇 − 𝑡4))] 𝑒−𝛽𝑥𝑑𝑡′                                           (75) 

viii). Expected holding cost for returned items 

ℎ𝑅 [∫
𝑅

𝜃
(1 − 𝑒−𝜃𝑡)𝑑𝑡

𝑡2

0

+ ∫
(𝑅 − 𝑃𝑟)

𝜃
(1 − 𝑒𝜃(𝑡3−𝑡))𝑑𝑡

𝑡3

𝑡2

] 

= ℎ𝑅 {
𝑅

𝜃
(𝑡2 +

(𝑒−𝜃𝑡2 − 1)

𝜃
) +

(𝑅 − 𝑃𝑟)

𝜃
((𝑡3 − 𝑡2) +

(1 − 𝑒𝜃(𝑡3−𝑡2))

𝜃
)} 

= ∫ 𝛽ℎ𝑅 {
𝑅

𝜃
(𝑡2 +

(𝑒−𝜃𝑡2−1)

𝜃
) +

(𝑅−𝑃𝑟)

𝜃
((𝑡3 − 𝑡2) +

(1−𝑒𝜃(𝑡3−𝑡2))

𝜃
)} 𝑒−𝛽𝑥𝑑𝑡′

∞

𝑡1
           (76) 

ix). Expected holding cost for reworked items 

ℎ𝑟𝑤 {(1 − 𝑥)𝑃 (
𝑡1

2

2
+ 𝑡1𝜆1

(𝑡2−𝑡1)

2
) + (1 − 𝑦)𝑃𝑟 (

(𝑡3−𝑡2)2

2
+ 𝜆2(𝑡3 − 𝑡2)(𝑡4 − 𝑡3))} （77） 

= ∫ 𝛽ℎ𝑟𝑤 {(1 − 𝑥)𝑃 (
𝑡1

2

2
+ 𝑡1𝜆1

(𝑡2−𝑡1)

2
) + (1 − 𝑦)𝑃𝑟 (

(𝑡3−𝑡2)2

2
+ 𝜆2(𝑡3 − 𝑡2)(𝑡4 − 𝑡3))} 𝑒−𝛽𝑥𝑑𝑡′

∞

𝑡1
  

x). Expected setup cost  

𝐾𝑚(1 + 𝑅𝑠𝛽) + 𝐾𝑟 = ∫ 𝛽(𝐾𝑚(1 + 𝑅𝑠𝛽) + 𝐾𝑟)𝑒−𝛽𝑥𝑑𝑡′
∞

𝑡1
                     (78) 
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xi). Expected disposal cost 

𝑐𝑑{(1 − 𝑥)(1 − 𝜆1)𝑃𝑡1 + (1 − 𝑦)(1 − 𝜆2)𝑃𝑟(𝑡3 − 𝑡2)} 

= ∫ 𝛽𝑐𝑑{(1 − 𝑥)(1 − 𝜆1)𝑃𝑡1 + (1 − 𝑦)(1 − 𝜆2)𝑃𝑟(𝑡3 − 𝑡2)}𝑒−𝛽𝑥𝑑𝑡′
∞

𝑡1
              (79) 

Hence, the total cost per unit time of the given inventory model during the cycle [0, 𝑇] as a function 

of 𝑡1, 𝑡2, 𝑡3, 𝑡4 and 𝑇, i.e., 𝑇𝐶2(𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑇), is Total cost, given by 

Total cost= Procurement and acquisition cost+ Production and remanufacturing cost+ Holding 

cost for remanufactured material + Holding cost for produced material + Holding cost for returned 

items+ Holding cost for reworked items+ Disposal cost +Setup cost 

= ∫ 𝛽(𝐶𝑚𝑃𝑡1 + 𝐶𝑅𝑅𝑡3)𝑒−𝛽𝑥𝑑𝑡′
∞

𝑡1
+ ∫ 𝛽 {

𝜋+𝛾𝛽

𝑃
+ (𝑟1 + 𝑟2𝛽) + (𝑠1 + 𝑠2𝑥𝑦) + 𝐶𝑝𝑃} 𝑃𝑡1𝑒−𝛽𝑥𝑑𝑡′

∞

𝑡1
+

∫ 𝛽𝐶𝑟𝑃𝑟(𝑡3 − 𝑡2)𝑒−𝛽𝑥𝑑𝑡′
∞

𝑡1
+ ∫ 𝛽𝐶𝑟𝑤𝑃1(𝑡2 − 𝑡1 + 𝑡4 − 𝑡3)𝑒−𝛽𝑥𝑑𝑡′

∞

𝑡1
+ ∫ 𝛽𝐶𝑖{𝑃𝑡1 + 𝑃𝑟(𝑡3 −

∞

𝑡1

𝑡2)}𝑒−𝛽𝑥𝑑𝑡′ + ∫ 𝛽ℎ𝑚 [(
𝑥𝑃−𝐷1

𝜃
) (

(𝑒−𝜃𝑡1−1)

𝜃
+ 𝑡1) + (

𝑥𝑃−𝐷1

𝜃2 ) (1 − 𝑒−𝜃𝑡1 − 𝑒−𝜃(𝑡2−𝑡1) + 𝑒−𝜃𝑡2) +
∞

𝑡1

(𝑃1−𝐷1)

𝜃
(

𝑒−𝜃(𝑡2−𝑡1)−1

𝜃
+ (𝑡2 − 𝑡1)) −

𝐷1

𝜃
(

1−𝑒𝜃(𝑡3−𝑡2)

𝜃
+ (𝑡3 − 𝑡2))] 𝑒−𝛽𝑥𝑑𝑡′ +

∫ 𝛽ℎ𝑟 [
𝑦𝑃𝑟

𝜃
(

𝑒−𝜃(𝑡3−𝑡2)−1

𝜃
+ (𝑡3 − 𝑡2)) +

(𝑃1−𝐷2)

𝜃
(

𝑒−𝜃(𝑡4−𝑡3)−1

𝜃
+ (𝑡4 − 𝑡3)) +

∞

𝑡1

𝑦𝑃𝑟

𝜃
(

1−𝑒−𝜃(𝑡4−𝑡3)+𝑒−𝜃(𝑡4−𝑡2)−𝑒−𝜃(𝑡3−𝑡2)

𝜃
) −

𝐷2

𝜃
(

1−𝑒𝜃(𝑇−𝑡4)

𝜃
+ (𝑇 − 𝑡4))] 𝑒−𝛽𝑥𝑑𝑡′ + ∫ 𝛽ℎ𝑅 {

𝑅

𝜃
(𝑡2 +

∞

𝑡1

(𝑒−𝜃𝑡2−1)

𝜃
) +

(𝑅−𝑃𝑟)

𝜃
((𝑡3 − 𝑡2) +

(1−𝑒𝜃(𝑡3−𝑡2))

𝜃
)} 𝑒−𝛽𝑥𝑑𝑡′ + ∫ 𝛽ℎ𝑟𝑤 {(1 − 𝑥)𝑃 (

𝑡1
2

2
+ 𝑡1𝜆1

(𝑡2−𝑡1)

2
) +

∞

𝑡1

(1 − 𝑦)𝑃𝑟 (
(𝑡3−𝑡2)2

2
+ 𝜆2(𝑡3 − 𝑡2)(𝑡4 − 𝑡3))} 𝑒−𝛽𝑥𝑑𝑡′ + ∫ 𝛽(𝐾𝑚(1 + 𝑅𝑠𝛽) + 𝐾𝑟)𝑒−𝛽𝑥𝑑𝑡′

∞

𝑡1
+

∫ 𝛽𝑐𝑑{(1 − 𝑥)(1 − 𝜆1)𝑃𝑡1 + (1 − 𝑦)(1 − 𝜆2)𝑃𝑟(𝑡3 − 𝑡2)}𝑒−𝛽𝑥𝑑𝑡′
∞

𝑡1
             (80) 
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The above can be rewritten as 

𝑇𝐶2 = [(𝐶𝑚𝑃𝑡1 + 𝐶𝑅𝑅𝑡3) + {
𝜋+𝛾𝛽

𝑃
+ (𝑟1 + 𝑟2𝛽) + (𝑠1 + 𝑠2𝑥𝑦) + 𝐶𝑝𝑃} 𝑃𝑡1 + 𝐶𝑟𝑃𝑟(𝑡3 − 𝑡2) +

𝐶𝑟𝑤𝑃1(𝑡2 − 𝑡1 + 𝑡4 − 𝑡3) + 𝐶𝑖{𝑃𝑡1 + 𝑃𝑟(𝑡3 − 𝑡2)} + ℎ𝑚 [(
𝑥𝑃−𝐷1

𝜃
) (

(𝑒−𝜃𝑡1−1)

𝜃
+ 𝑡1) + (

𝑥𝑃−𝐷1

𝜃2 ) (1 −

𝑒−𝜃𝑡1 − 𝑒−𝜃(𝑡2−𝑡1) + 𝑒−𝜃𝑡2) +
(𝑃1−𝐷1)

𝜃
(

𝑒−𝜃(𝑡2−𝑡1)−1

𝜃
+ (𝑡2 − 𝑡1)) −

𝐷1

𝜃
(

1−𝑒𝜃(𝑡3−𝑡2)

𝜃
+ (𝑡3 − 𝑡2))] +

ℎ𝑟 [
𝑦𝑃𝑟

𝜃
(

𝑒−𝜃(𝑡3−𝑡2)−1

𝜃
+ (𝑡3 − 𝑡2)) +

(𝑃1−𝐷2)

𝜃
(

𝑒−𝜃(𝑡4−𝑡3)−1

𝜃
+ (𝑡4 − 𝑡3)) +

𝑦𝑃𝑟

𝜃
(

1−𝑒−𝜃(𝑡4−𝑡3)+𝑒−𝜃(𝑡4−𝑡2)−𝑒−𝜃(𝑡3−𝑡2)

𝜃
) −

𝐷2

𝜃
(

1−𝑒𝜃(𝑇−𝑡4)

𝜃
+ (𝑇 − 𝑡4))] + ℎ𝑅 {

𝑅

𝜃
(𝑡2 +

(𝑒−𝜃𝑡2−1)

𝜃
) +

(𝑅−𝑃𝑟)

𝜃
((𝑡3 − 𝑡2) +

(1−𝑒𝜃(𝑡3−𝑡2))

𝜃
)} + ℎ𝑟𝑤 {(1 − 𝑥)𝑃 (

𝑡1
2

2
+ 𝑡1𝜆1

(𝑡2−𝑡1)

2
) + (1 − 𝑦)𝑃𝑟 (

(𝑡3−𝑡2)2

2
+

𝜆2(𝑡3 − 𝑡2)(𝑡4 − 𝑡3))} + 𝐾𝑚(1 + 𝑅𝑠𝛽) + 𝐾𝑟 + 𝑐𝑑{(1 − 𝑥)(1 − 𝜆1)𝑃𝑡1 + (1 − 𝑦)(1 − 𝜆2)𝑃𝑟(𝑡3 −

𝑡2)}] ∫ 𝛽𝑒−𝛽𝑥𝑑𝑡
∞

𝑡1
                                                            (81) 

Here, the cost function of the system is given in terms of 𝑡1, 𝑡2, 𝑡3, 𝑡4and 𝑇. To find the optimum 

solution, we have to find the optimum values of 𝑡1, 𝑡2, 𝑡3, 𝑡4 and 𝑇 that minimize 𝑇𝐶2(𝑡1, 𝑡2, … , 𝑇), 

but we have some relations between the variables as follows. 

(
𝑃1−𝐷1

𝜃
) (1 − 𝑒−𝜃(𝑡2−𝑡1)) + (

𝑥𝑃−𝐷1

𝜃
) (𝑒−𝜃(𝑡2−𝑡1) − 𝑒−𝜃𝑡2) =

𝐷1

𝜃
(𝑒𝜃(𝑡3−𝑡2) − 1)             (82) 

𝑃1−𝐷2

𝜃
(1 − 𝑒−𝜃(𝑡4−𝑡3)) +

𝑦𝑃𝑟

𝜃
(𝑒−𝜃(𝑡4−𝑡3) − 𝑒−𝜃(𝑡4−𝑡2)) =

𝐷2

𝜃
(𝑒𝜃(𝑇−𝑡4) − 1)              (83) 

𝑅

𝜃
(1 − 𝑒−𝜃𝑡2) =

(𝑅−𝑃𝑟)

𝜃
(1 − 𝑒𝜃(𝑡3−𝑡2))                                              (84) 

(1 − 𝑥)𝜆1𝑃𝑡1 = 𝑃1(𝑡2 − 𝑡1)                                                   (85) 

(1 − 𝑦)𝜆2𝑃𝑟(𝑡3 − 𝑡2) = 𝑃1(𝑡4 − 𝑡3)                                            (86) 

Therefore, from the above equations, the values of𝑡2, 𝑡3, 𝑡4and𝑇can be determined as functions of 
1t , say, 

𝑡2 = 𝑓21(𝑡1) = (
(1−𝑥)𝜆1𝑃

𝑃1
+ 1) 𝑡1                                                (87) 
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𝑡3 = 𝑓22(𝑡1) = (
𝑃𝑟

𝑃𝑟−R
) (

(1−𝑥)𝜆1𝑃

𝑃1
+ 1) 𝑡1                                          (88) 

𝑡4 = 𝑓23(𝑡1) = (
𝑃𝑟

𝑃𝑟−R
) {(1 − 𝑦)𝜆2𝑅 + 𝑃1} (

(1−𝑥)𝜆1𝑃

𝑃1
+ 1) 𝑡1                        (89) 

𝑡4 = 𝑓24(𝑡1) =
(1−𝑥)𝜆1𝑃𝑡′+𝑃1(𝑡𝑠−𝑡′)

𝑃1
                                              (90) 

𝑇 = 𝑓25(𝑡1) = −
𝑡1𝑃𝑟(𝑃1−𝑃(−1+𝑥)𝜆1)(𝐷2+𝑃1

2+𝑦(𝑅+𝑃𝑟)−𝑃1(𝑅(−1+𝑦)𝜆2))

𝐷2𝑃1(𝑅−𝑃𝑟)
                     (91) 

Therefore, the total variable cost function will be a function of a single variable, say,𝑡1.The 

problem will be converted into the following problem with one variable 𝑍2(𝑡1):
 

𝑇𝐶2 = [(𝐶𝑚𝑃𝑡1 + 𝐶𝑅𝑅𝑓23) + {
𝜋+𝛾𝛽

𝑃
+ (𝑟1 + 𝑟2𝛽)(𝑠1 + 𝑠2𝛽) + 𝐶𝑝𝑃} 𝑃𝑡1 + 𝐶𝑟𝑃𝑟(𝑓23 − 𝑓22) +

𝐶𝑟𝑤𝑃1(𝑓22 − 𝑡1 + 𝑓24 − 𝑓23) + 𝐶𝑖{𝑃𝑡1 + 𝑃𝑟(𝑓23 − 𝑓22)} + ℎ𝑚 [(
𝑥𝑃−𝐷1

𝜃
) (

(𝑒−𝜃𝑡1−1)

𝜃
+ 𝑡1) +

(
𝑥𝑃−𝐷1

𝜃2 ) (1 − 𝑒−𝜃𝑡1 − 𝑒−𝜃(𝑓22−𝑡1) + 𝑒−𝜃𝑓22) +
(𝑃1−𝐷1)

𝜃
(

𝑒−𝜃(𝑓22−𝑡1)−1

𝜃
+ (𝑓22 − 𝑡1)) −

𝐷1

𝜃
(

1−𝑒𝜃(𝑓23−𝑓22)

𝜃
+ (𝑓23 − 𝑓22))] + ℎ𝑟 [

𝑦𝑃𝑟

𝜃
(

𝑒−𝜃(𝑓23−𝑓22)−1

𝜃
+ (𝑓23 − 𝑓22)) +

(𝑃1−𝐷2)

𝜃
(

𝑒−𝜃(𝑓24−𝑓23)−1

𝜃
+

(𝑓24 − 𝑓23)) +
𝑦𝑃𝑟

𝜃
(

1−𝑒−𝜃(𝑓24−𝑓23)+𝑒−𝜃(𝑓24−𝑓22)−𝑒−𝜃(𝑓23−𝑓22)

𝜃
) −

𝐷2

𝜃
(

1−𝑒𝜃(𝑓25−𝑓24)

𝜃
+ (𝑓25 − 𝑓24))] +

ℎ𝑅 {
𝑅

𝜃
(𝑓22 +

(𝑒−𝜃𝑓22−1)

𝜃
) +

(𝑅−𝑃𝑟)

𝜃
((𝑓23 − 𝑓22) +

(1−𝑒𝜃(𝑓23−𝑓22))

𝜃
)} + ℎ𝑟𝑤 {(1 − 𝑥)𝑃 (

𝑡1
2

2
+

𝑡1𝜆1
(𝑓22−𝑡1)

2
) + (1 − 𝑦)𝑃𝑟 (

(𝑓23−𝑓22)2

2
+ 𝜆2(𝑓23 − 𝑓22)(𝑓24 − 𝑓23))} + 𝐾𝑚(1 + 𝑅𝑠𝛽) + 𝐾𝑟 +

𝑐𝑑{(1 − 𝑥)(1 − 𝜆1)𝑃𝑡1 + (1 − 𝑦)(1 − 𝜆2)𝑃𝑟(𝑓23 − 𝑓22)}] ∫ 𝛽𝑒−𝛽𝑥𝑑𝑡
∞

𝑡1
              (92)

 

5. Solution approach 

In this model, we have developed a green supply chain model with stochastic machine 

breakdown, that is, the failure can take place anytime during the production process. In the last 

section, we have derived the cost functions for both cases: The inventory cost function for case 1 

when breakdown occurs is 𝐸[𝑍1(𝑡′)], and the cost function for case 2 when the breakdown does not 

occur is 𝐸[𝑍2(𝑡1)]. Here, we have 1assumed that the random1 number of 1breakdowns per unit 1time 
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follows the 1Poisson distribution, with1 the mean 1equal to 𝛽  per unit1 time. Thus, the 1random 

production 1time to breakdown1 should obey1 the exponential1 distribution1, with the1 density1 function 

𝑓(𝑡) = 𝛽𝑒−𝛽𝑡 and the cumulative1 density1 function  𝐹(𝑡) = (1 − 𝑒−𝛽𝑡) . Then,1 the expected 

1production-inventory1 cost per 1unit time (whether a 1breakdown 1takes place or not), 𝐸[𝑍(𝑡1)]is  
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Alternatively, it can be written as  
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= +                                            (95) 

Now, substituting𝐸[𝑍1(𝑡′)], 𝐸[𝑍2(𝑡1)] and 𝐸[𝑇] from Eqs. (50), (92) and (95), in Eq. (93), one 

can obtain the expected inventory cost per unit time. 

Now, the necessary conditions for having a minimum for the problem is 
( )1

1

0
dE Z t

dt

  
=

        
(96)

 

Using Equation 96, one can find the optimal value of 𝑡1  and hence evaluate the minimum 

inventory cost 𝐸[𝑍(𝑡1)]. 

6. Numerical example and sensitivity analysis 

To illustrate the proposed model, we have considered the following input parameters in 

appropriate units: 

400rP = items per month, 500P =  items per month,
1 2 items pe 0t200 ,r mon h 10D D= =  items per 

month,
1 200P =  items per month, 50R =  items per month, 0.2x = , 0.15y = , 

1 0.25 = , ,

, $ per cycle, $ per cycle, $ per items per month, $ per 

items per month, $ per items per month, $ per items per month,  items per 

month,  items per month,  items per month,  items per month,  

items per month,  items per month,  items per month, ,  items per 

month,  $ per pr ,t1500 oduc ion lot = 1 ,   pe  12.5 r y$ c cler =  

2 0.2 =

0.01 = 5000mK = 2000rK = 1mh = 0.5rh =

0.5Rh = 1 0.5h = 5mS =

1rS = 0.2rwS = 2mC = 0.5RC =

5sC = 0.1dC = 0.5 = 0.5st =
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2 1 2

5

 m18   per items     per cycle   per item   per ite   per item

  per item  per item  per it

.5 $ , 15 $ , 10 $ $

em

, 20 $ , 45 ,

10 $ , 5$ ,R 150$ 4,

p r

rw i s

r s s C C

C C 

= = = = =

= = = =
 

Applying the procedure proposed in the last section (with the help of the software Mathematica) 

we find the optimal value of the production time period 𝑡1 = 7.36573 and hence the corresponding 

minimum total expected cost 𝐸[𝑍(𝑡1)] = 817840
 

The convexity of the inventory model is shown in Figure 3. The two-dimensional graph shows 

that the integrated expected total annual cost is convex. 

 

Figure 3. Behavior of the inventory cost function with or without breakdown. 

6.1.1. Sensitivity analysis 

As one can see from the example above, the numerical technique can be used to analyze the 

effect of parameters in order to determine the optimal values of the parameters as well as the 

minimum cost to be incurred by the system. The results of the investigation are obtained by changing 

the values of one parameter in turn while leaving the other parameters at their original values. 

 

 

Figure 4. The behavior of total profit for varying remanufacturing rate. 
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Figure 5. The behavior of total profit for varying production rate. 

 

Figure 6. The behavior of expected cost for varying demand rate. 

 

Figure 7. The behavior of expected cost for repairing rate. 
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Figure 8. The behavior of expected cost for varying return rate. 

 

Figure 9. The behavior of expected cost w.r.t. . 

6.2. Observations 

1. The analysis, as shown in Table 1 and Figures 4 to 9, highlights that the total cost exhibits a 

decreasing trend as the demand rate, return rate, 𝛽and repairing rate increase. This trend is 

reasonable, as it corresponds to a reduction in holding costs due to higher values of these 

parameters. 

2. Conversely, the results demonstrate that the total cost increases with an increment in the 

production rate and remanufacturing rate. This is attributed to the fact that higher production 

and remanufacturing rates lead to elevated on-hand inventory levels per unit time, 

subsequently increasing holding costs and, consequently, the total cost. 

3. The study reveals that the total cost is highly sensitive to variations in the production rate, 

remanufacturing rate, demand rate and 𝛽. Small changes in these parameters can significantly 

impact the total cost. 

4. In contrast, the total cost displays only moderate sensitivity to changes in the return rate. 
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Table 1. Sensitivity analysis with respect to the different parameters. 

 

Parameter   

𝑃𝑟 300 7.37257 399069 

350 7.36863 583824 

400 7.36573 817840 

450 7.36350 1106890 

500 7.36173 1456730 

𝑃 400 7.39605 507074 

450 7.37931 653559 

500 7.36573 817840 

550 7.35451 1001650 

600 7.34985 1258420 

𝐷 80 7.32658 1102455 

90 7.34665 936542 

100 7.36573 817840 

110 7.38787 651225 

120 7.40995 523109 

𝑃𝑟 160 7.37722 821022 

180 7.37085 819733 

200 7.36573 817840 

220 7.36153 815702 

240 7.35801 813503 

𝑅 40 7.37233 874138 

45 7.36889 845055 

50 7.36573 817840 

55 7.36284 792320 

60 7.36019 768341 

𝛽 0.40 9.20792 1595220 

0.45 8.18451 1121040 

0.50 7.36573 817840 

0.55 6.69576 615000 

0.60 5.36548 483235 

7. Managerial insights 

Decision-makers should consider optimizing the demand rate, return rate and repairing rate to 

reduce total costs. Increasing these parameters can lead to more efficient inventory management and 

lower holding costs. On the other hand, managers need to carefully assess and balance production 

and remanufacturing rates. Incremental increases in these rates may boost production but can also 

lead to higher inventory holding costs. Therefore, a well-calibrated production and remanufacturing 

strategy is essential. When making decisions related to production, remanufacturing and its demand, 

the managers should be aware of the high sensitivity of total costs to changes in these parameters. 

This underscores the importance of precise parameter estimation and management to minimize 

overall costs. While the return rate has a relatively moderate impact on total costs compared to other 

factors, it should not be neglected. Careful management of the return rate can still contribute to cost 

savings and improved efficiency in inventory control. 

In summary, the observations and managerial insights from this analysis provide valuable 

guidance for optimizing inventory management strategies in the context of varying demand, returns, 

1t TC
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production and remanufacturing rates. Effective decision-making in these areas can significantly 

impact the overall cost efficiency of the system. 

8. Conclusions 

In this paper, we have introduced a reverse logistics inventory model that addresses the 

management of imperfect materials in the presence of stochastic machine breakdowns. Furthermore, 

we have considered the deterioration of products over time, adding another layer of complexity to the 

inventory control problem. Our analysis focused on two distinct scenarios: one where breakdowns 

occur and another where they do not. For each scenario, we derived mathematical formulas 

representing the total cost. 

However, it is important to acknowledge certain limitations in our current study. We have 

assumed a Poisson distribution for the random number of breakdowns per unit time, simplifying the 

stochastic aspect of the breakdowns. Future research could explore more complex scenarios 

involving multiple breakdowns during both production and the remanufacturing cycle, providing a more 

realistic representation of the operational challenges faced in manufacturing and supply chain contexts. 

Additionally, this model does not account for volume flexibility or probabilistic demand, which 

is prevalent in dynamic production environments. Investigating how our model can be extended to 

accommodate these factors would be a valuable avenue for future research. The incorporation of 

volume flexibility could enhance the model’s adaptability to varying production needs, while 

addressing probabilistic demand would further improve its applicability to real-world situations. 

In conclusion, while this paper offers a foundational framework for reverse logistics inventory 

management in the presence of machine breakdowns and product deterioration, it is by no means 

exhaustive. Future research endeavors should explore the nuances of multiple breakdown occurrences, 

volume flexibility and probabilistic demand, providing a more comprehensive and practical 

understanding of inventory control in dynamic and uncertain manufacturing environments. By 

addressing these limitations and extending the model, researchers and practitioners can make more 

informed decisions to enhance the efficiency and sustainability of their supply chain operations. 
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