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Abstract: In this paper we employ a time-changed Ornstein-Uhlenbeck (OU) process for modeling
temperature and pricing weather derivatives, where the time change process is a Lévy subordinator
time changed by a deterministic clock with seasonal activity rate. The drift, diffusion volatility and
jumps under the new model are all seasonal, which are supported by the observed temperature time
series. An important advantage of our model is that we are able to derive the analytical pricing formulas
for temperature futures and future options based on eigenfunction expansion technique. Our empirical
study indicates the new model has the potential to capture the main features of temperature data better
than the competing models.
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1. Introduction

A weather derivative takes its value from an underlying measure of weather, such as temperature,
precipitation, humidity, frost, stream flow or wind speed over a particular period of time, and permits the
financial risk associated with climatic conditions to be managed. The first weather derivative transaction
appeared over-the-counter (OTC) in US in 1997 and weather derivatives were officially introduced in
the major financial markets like Chicago Mercantile Exchange (CME) in 1999. Over the recent years,
weather derivatives market has grown rapidly and expanded to Europe and Asia.

Weather derivatives based on temperature are by far the most common type of weather derivatives,
accounting for approximately 85% of all weather derivative transactions. Such contracts are typically
written on the temperature indices including cumulative average temperature (CAT), heating degree

http://www.aimspress.com/journal/GF
http://dx.doi.org/10.3934/GF.2020001


2

days (HDD) and cooling degree days (CDD). CAT is defined as the sum of the daily average temperature
over the period of the contract. HDD or CDD is a measure of the amount by which the daily average
temperature during the period deviates from a threshold temperature (typically 18◦C or 65◦F). HDD
and CDD are “one-side” metrics and they are critical for creating the risk management tools that utility,
agriculture, construction and other firms can use to hedge their activities affected by outdoor climate.
For example, a utility company might buy CDD futures if it expects higher temperatures and sell the
futures if it expects significantly lower temperatures.

In this study we focus on pricing temperature-based derivatives whose underlying temperature
process is modeled as a stochastic process. In the literature, the daily average temperature is often
modeled as

S (t) = Λ(t) + Y(t) , (1)

where Λ is a deterministic function that models the seasonal trend of the temperature process and Y , also
known as deseasonalized temperature, is a stochastic process to model the random fluctuations from
the trend. So far, the mean-reverting OU process is the most popular process used to model Y . Dornier
and Queruel (2000) develop a mean-reverting OU model for Y , where the diffusion term is a Brownian
motion. Benth and Šaltytė-Benth (2005) propose a Lévy-driven OU model with seasonal mean and
volatility, where the diffusion term is a Lévy process rather than a Brownian motion. Benth et al. (2007)
generalize the OU model to the continuous-time autoregressive (CAR) models with seasonal variance.
Swishchuk and Cui (2013) extend the Lévy-driven OU process to the Lévy-driven CAR process for
Y . Other OU-based models for Y include e.g. fractional OU models of Brody et al. (2002) and Benth
(2003), regime switching OU models of Elias et al. (2014) and Evarest et al. (2018).

Temperature-based derivatives pricing has been investigated e.g. in Brody et al. (2002), Benth (2003),
Benth and Šaltytė-Benth (2005), Benth et al. (2007), Swishchuk and Cui (2013), Elias et al. (2014) and
Evarest et al. (2018). Due to the complex nature of the temperature indices, numerical approximation or
Monte Carlo simulations are typically used to obtain the temperature derivative prices. However, in
some special cases, the analytical pricing formulas have been derived for some specific temperature
derivative products. Benth et al. (2007) obtain the closed-form solutions to CAT future and future option
prices when the temperature is modeled by the CAR process driven by Brownian motion. Applying the
Fourier technique based on the characteristic function of the temperature process, Swishchuk and Cui
(2013) derive the analytical formulas for CAT futures, CAT future options and HDD/CDD futures prices
when the underlying temperature is modeled by the general Lévy-driven CAR process. However, for
HDD/CDD future options, the analytical formulas for the prices are not available even for OU model
driven by Brownian motion; see e.g. Benth et al. (2007) for further discussions.

In this paper, we propose a time-changed OU (TC-OU) model for the deseasonalized temperature
process Y . We define the time change process T as T (t) = L(A(t)), where L is a Lévy subordinator and
A(t) =

∫ t

0
b(u)du with b(u) being a deterministic function of time. Then Y is modeled by the subordinate

OU process Y(t) = X(T (t)), where X is an OU process driven by a Brownian motion. Our model exhibits
several distinct features. First, time changing a continuous time Markov process such as OU process can
lead to a much wider class of models than the traditional jump-diffusion models. Depending on whether
the Lévy subordinator L has drift or not, the new process will be a jump-diffusion or a pure jump process.
Second, for the subordinate process Y , its jump measure is state-dependent and mean-reverting, making
it ideal for modeling temperature. Third, through the deterministic function b(u), in our model the drift,
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volatility and jump measure of the process Y are all time dependent and seasonal. Thus, Our model
has the potential to capture the salient characteristics of temperature time series. We need to mention
that in the time-changed option pricing literature, Carr and Wu (2004) provide option pricing under
time-changed Lévy processes, and Cui et al. (2019b) provide a framework for pricing options under
general Markov processes, including the subordinate OU process. The subordinate OU process has been
successfully applied for callable and putable bonds in Lim et al. (2012), commodities in Li and Linetsky
(2014), electricity derivatives in Tong (2017), variance swaps in Tong and Liu (2017), Asian options in
Tong and Liu (2018), dual-expiry exotics in Tong et al. (2019) and autocallables in Tong (2019). We
also refer to Linetsky and Mitchell (2008) for a brief introduction of subordinate Markov processes and
Mendoza-Arriaga et al. (2010), Mendoza-Arriaga and Linetsky (2013), Li et al. (2016b) and Li et al.
(2017) for their further applications.

To price temperature derivatives, we assume that under the pricing measure, our model remains in the
same form as in the physical measure, but with a different parameter set to account for risk premia. We
are able to derive the analytical pricing formulas for CAT, HDD and CDD future and future option prices
using eigenfunction expansion method. We need to emphasize that eigenfunction expansion method is
particularly suitable for pricing contingent claims written on the subordinate processes. The subordinate
process is as analytically tractable as the original process without time change. The subordinate process
shares the same eigenfunctions with the original one and the only modification is the replacement of
eigenvalues of the original process with the Laplace transform of the time change process. We refer
to Linetsky and Mitchell (2008) for the surveys on the eigenfunction expansion method and Linetsky
(2004), Mendoza-Arriaga et al. (2010), Lim et al. (2012), Mendoza-Arriaga and Linetsky (2013), Li and
Linetsky (2014), Li et al. (2017), Tong (2017), Tong and Liu (2017), Tong and Liu (2018), Tong et al.
(2019) and Tong (2019) for its various applications.

In this paper, we apply the eigenfunction expansion method for the pricing of temperature derivatives
under the time-changed OU process. There are alternative analytical pricing methodologies that are
applicable to the general case when the underlying stochastic process is a time-changed Markov process.
A promising method is to approximate the underlying process by a continuous time Markov chain
(CTMC). We refer to Cui et al. (2019a) for a review of this recent and growing literature and Li and
Zhang (2018) for the relationship between CTMC approximation and the eigenfunction expansion
approach applied in this work.

The rest of the paper is organized as follows. In Section 2, we introduce the general framework for
modeling temperature as a time-changed OU process, where the time change process is modeled by a
Lévy subordinator time changed by a deterministic clock with seasonable activity rate. In Section 3, we
introduce the eigenfunction expansion method for our new model and also discuss how to calculate some
important integrals that are essential for the determination of the eigenfunction expansion coefficients.
In Section 4, we apply the eigenfunction expansion method to obtain the analytical pricing formulas for
CAT, CDD and HDD futures and future options. In Section 5, we estimate our new model and compare
its performance with the competing models using the temperature data. We also numerically study the
impact of market price of risk on the temperature derivatives.
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2. The model set-up

Let (Ω,F , P) be a probability space with an information filtration (Ft). Suppose under the physical
measure P, the temperature process S is modeled as

S (t) = Λ(t) + Y(t) , (2)

where Λ(t) is the seasonal trend term that is modeled by a combination of linear and cosine function:

Λ(t) = a0 + a1t + a2 cos
(
2π(t − a3)

365

)
. (3)

Similar forms can be found in Benth and Šaltytė-Benth (2005) and Swishchuk and Cui (2013).
The deseasonalized temperature process Y is specified as a time-changed OU process, that is

Y(t) = X(T (t)) , (4)

where T is a time change process and X is an OU process

dX(t) = κ(θ − X(t))dt + σdB(t) , (5)

where κ > 0 and B(t) is a standard Brownian motion.
We choose the time change process T to be of the form T (t) = L(A(t)), where A(t) =

∫ t

0
b(u)du and

the activity rate b(u) is modeled as a positive periodical function

b(u) = b0 + b1 cos
(
2π(u − b2)

365

)
, (6)

where b0 ≥ |b1|. Then A(t) can be solved as

A(t) = b0t + b1
365
2π

[
sin

(
2π(t − b2)

365

)
− sin

(
−2πb2

365

)]
. (7)

We remark that other specifications for b(u) are possible, as long as A(t) is easy to compute.
To introduce jumps into the temperature dynamics, we model the process L as a Lévy subordinator

independent of B in (5). The Lévy subordinator L is a nondecreasing process with positive jumps and
non-negative drift with the Laplace transform:

E[exp(−λL(t))] = exp(−tφ(λ)) , (8)

where φ is the Lévy exponent and given by the Lévy-Khintchine formula (see e.g. Sato, 1999)

φ(λ) = γλ +

∫
(0,∞)

(1 − exp(−λs))ν(ds) , (9)

where γ ≥ 0 and the Lévy measure ν must satisfy∫
(0,∞)

(s ∧ 1)ν(ds) < ∞ . (10)
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An important sub-class of Lévy subordinators are the tempered stable subordinators. For such
subordinators, the Lévy measure ν(s) is given by

ν(s) = Cs−1−p exp(−ηs) , (11)

where C > 0 and η > 0. Important special cases are the Gamma subordinator with p = 0, the IG
subordinator with p = 1

2 and the compound Poisson subordinator with p = −1. For such subordinators,
the Lévy exponent is given by

φ(λ) =

γλ −CΓ(−p)[(λ + η)p − ηp], p , 0
γλ + C log(1 + λ

η
), p = 0

. (12)

We can also reparameterize the exponent by settingϑ = −CΓ(−p)pηp−1, ω = −CΓ(−p)p(1 − p)ηp−2, p , 0
ϑ = C

η
, ω = C

η2 , p = 0
, (13)

where ϑ = E(L(1)) − γ and ω = Var(L(1)).
Then, the reparameterized exponent takes the following form:

φ(λ) =

γλ + ϑ
p

[
ϑ
ω

(1 − p)
]−p+1 [(

λ + ϑ
ω

(1 − p)
)p
−

(
ϑ
ω

(1 − p)
)p]

, p , 0

γλ + ϑ2

ω
log

(
1 + λω

ϑ

)
, p = 0

. (14)

From T (t) = L(A(t)), we know T is an additive subordinator, i.e. a non-negative and non-decreasing
additive process (see e.g. Li et al., 2016b) and Y is an additive subordinate OU process (ASub-OU),
whose drift, diffusion volatility and jumps are all time-dependent and seasonal. For more detailed
discussions on general additive subordinators, we refer to Li et al. (2016a) and Li et al. (2017). For our
model, we can calculate the Laplace transform of T as

E
[
exp(−λ(T(t) − T(s)))

]
= exp

(
−

∫ t

s
ψ(λ, u)du

)
= exp

[
−φ(λ)

∫ t

s
b(u)du

]
= exp

{
−φ(λ)

[
b0(t − s) +

365b1

2π

(
sin

(
2π(t − b2)

365

)
− sin

(
2π(s − b2)

365

))]}
, (15)

where ψ(λ, u) is called the density of the Laplace exponent and is given by

ψ(λ, u) = γb(u)λ +

∫
(0,∞)

(1 − exp(−λs))b(s)ν(ds) . (16)

We note that T (t) = L(t) when b0 = 1 and b1 = 0. In this case, Y is a Lévy subordinate OU process (LSub-
OU) and it will be a jump-diffusion process with mean-reverting diffusion drift and mean-reverting
jumps if γ > 0 or a pure jump process with mean-reverting jumps if γ = 0. For this specification, the
drift, diffusion volatility and jumps intensity are all time-independent.
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3. Eigenfunction expansion method for the TC-OU model

To price temperature derivatives, we need to specify a risk-neutral probability measure Q. However,
it is not possible to store or trade temperature and therefore, the temperature market is an incomplete
market. Any probability measure Q equivalent to the physical measure P is a risk-neutral measure.
In this paper, we will follow Li et al. (2016a) and Li et al. (2016b) and assume that the process for Y
under measure Q remains the same as under P, but with possibly different parameters to account for
risk premium. The generating tuples (κ, θ, σ, b(·), γ, ν(·)) for Y under the measure P then becomes (κ, θ̄,
σ, b(·), γ, ν(·)) under the measure Q. Therefore, we assume after the change of measure, θ becomes θ̄
and other parameters remain the same.

Under the risk-neutral measure Q, the OU process X defined in (5) becomes

dX(t) = κ(θ̄ − X(t))dt + σdBQ(t) , (17)

where BQ is a standard Brownian motion, independent of the time change process T .
For the OU process X(t) defined in (17), its infinitesimal generator L is given by

L f (x) = κ(θ̄ − x) f ′(x) +
1
2
σ2 f ′′(x) , (18)

where f is a transformation function. f ′ and f ′′ are the first- and the second-order derivatives of f ,
respectively.

The infinitesimal generator L with domain dom(L) is always self-adjoint on the Hilbert space
L2((−∞,∞),m) of functions on (−∞,∞) square integrable with the speed measure m(dx) = m(x)dx and
endowed with the inner product ( f , g),1 where

m(x) =
2
σ2 exp

(
−
κ(θ̄ − x)2

σ2

)
, (19)

and

( f , g) =

∫ ∞

−∞

f (x)g(x)m(x)dx . (20)

We are interested in the transition semigroup (Pt)t≥0 of X defined by

Pt f (x) = EQ[f(X(t))|X(0) = x] . (21)

We can use the eigenfunction expansion method for self-adjoint operators in Hilbert spaces to write
down the spectral decomposition of Pt f (x) (see e.g. Linetsky and Mitchell, 2008).

Proposition 1. For any f ∈ L2((−∞,∞),m), the transition semigroup of the OU process X has an
eigenfunction expansion of the form

Pt f (x) =

∞∑
n=0

fn exp(−λnt)ϕn(x) , (22)

where fn = ( f , ϕn), {λn} are the eigenvalues of −L and {ϕn} are the corresponding eigenfunctions
satisfying the following Sturm-Liouville equation

−Lϕn = λnϕn . (23)
1An operator L with domain dom(L) is said to be self-adjoint if (L f , g) = ( f ,Lg) ∀ f , g ∈ dom(L).
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The eigenvalues and eigenfunctions of OU process can be summarized in the following result (see
e.g. Linetsky and Mitchell, 2008):

Proposition 2. For the OU process X defined in (17), the eigenvalues λn and the eigenfunction ϕn,
n = 0, 1, . . ., are

λn = κn , (24)

and

ϕn(x) = NnHn(ξ) , (25)

where ξ =
√
κ

σ
(x − θ̄), Nn =

√
σ
√
κ

2n+1n!
√
π

and Hn(x) is the Hermite polynomial defined as

Hn(x) = n!
b n

2 c∑
m=0

(−1)m

m!(n − 2m)!
(2x)n−2m . (26)

For the subordinate OU process Y defined in (4), we can also compute the transition semigroup
(Pψt )t≥0 of Y , where ψ is the density of Laplace exponent for the additive subordinator T :

P
ψ
t f (x) = EQ[f(Y(t))|Y(0) = x] . (27)

We can employ the eigenfunction expansion method again to compute the semigroup Pψt f (x) using the
following result (see e.g. Li and Linetsky, 2014):

Proposition 3. For any f ∈ L2((−∞,∞),m), the transition semigroup of the subordinate OU process Y
has an eigenfunction expansion of the form

P
ψ
t f (x) =

∞∑
n=0

fn exp
(
−

∫ t

0
ψ(λn, u)du

)
ϕn(x) , (28)

where {λn} and {ϕn} are the eigenvalues and the eigenfunctions of OU process and can be obtained from
(24) and (25), respectively. The exponential function exp

(
−

∫ t

0
ψ(λn, u)du

)
is the Laplace transform of

the time change process T and can be calculated using (15).

From the above results, it is clear that a key feature of the eigenfunction expansion method is that
the temporal and spatial variables are separated. The time variable t enters the expansion only through
the exponential function exp(−λnt). The eigenfunction expansion of time-changed process Y has the
same form as the original process X, but with exp(−λnt) replaced by exp

(
−

∫ t

0
ψ(λn, u)du

)
. As long as

the Laplace transform of the time change process T can be calculated in closed form, the time-changed
model will be as tractable as the original model.

For our new pricing model, the eigenvalues and the eigenfunctions of the OU process can be
calculated easily from Proposition 2. To employ the eigenfunction expansion method to calculate
the temperature derivative prices, we still need to obtain the eigenfunction expansion coefficient fn.
Here, we provide the formulas for several integrals that will be useful for calculating fn. The following
integrals can be computed using the results of Prudnikov et al. (1986) and Lim et al. (2012):
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Lemma 1.
(i)

β̄n :=
∫ ∞

−∞

exp(−x2)Hn(x)dx =

{ √
π, n = 0

0, n , 0
. (29)

(ii)

βn(u) :=
∫ u

−∞

exp(−x2)Hn(x)dx =

{ √
πΦ(
√

2u), n = 0
−Hn−1(u) exp(−u2), n , 0

, (30)

where Φ(x) is the CDF of standard normal distribution.
(iii)

γ̄m,n :=
∫ ∞

−∞

exp(−x2)Hm(x)Hn(x)dx =

{ √
π2nn!, m = n

0, m , n
. (31)

(iv) Define

γm,n(u) :=
∫ u

−∞

exp(−x2)Hm(x)Hn(x)dx . (32)

Then, γm,n(u) can be calculated recursively as follows:

γ0,0(u) =
√
πΦ

(√
2u

)
, γn,n(u) = 2nγn−1,n−1(u) − Hn−1(u)Hn(u) exp(−u2), n ≥ 1 , (33)

and for m , n,

γm,n(u) =
Hm(u)Hn+1(u) − Hn(u)Hm+1(u)

2(n − m)
exp(−u2) . (34)

We can also prove the following results:

Corollary 1.
(i)

ān :=
∫ ∞

−∞

ϕnm(x)dx =
2Nn

σ
√
κ
β̄n . (35)

(ii)

b̄n :=
∫ ∞

−∞

xϕnm(x)dx =
2Nn

σ
√
κ

[
σ

2
√
κ
γ̄n,1 + θ̄β̄n

]
. (36)

(iii)

c̄m,n :=
∫ ∞

−∞

ϕmϕnm(x)dx =

{
1, m = n
0, m , n

. (37)

(iv)

an(u) :=
∫ u

−∞

ϕnm(x)dx =
2Nn

σ
√
κ
βn

( √
κ

σ
(u − θ̄)

)
. (38)
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(v)

bn(u) :=
∫ u

−∞

xϕnm(x)dx =
2Nn

σ
√
κ

[
σ

2
√
κ
γn,1

( √
κ

σ
(u − θ̄)

)
+ θ̄βn

( √
κ

σ
(u − θ̄)

)]
. (39)

(vi)

cm,n(u) :=
∫ u

−∞

ϕmϕnm(x)dx =
2NmNn

σ
√
κ
γm,n

( √
κ

σ
(u − θ̄)

)
. (40)

Proof. (i)-(vi) follow directly from Lemma 1.

4. Valuation of temperature derivatives

The payoff of a temperature derivative is typically linked to an underlying temperature index such as
CAT, HDD or CDD, which can be defined as

CAT (tN1 , tN2) =

N2∑
k=N1

S (tk) , (41)

HDD(tN1 , tN2) =

N2∑
k=N1

max(c − S (tk), 0) , (42)

and

CDD(tN1 , tN2) =

N2∑
k=N1

max(S (tk) − c, 0) , (43)

where c is typically 18◦C or 65◦F.
Assume the time t value of temperature S (t) = x. Denote Ind ∈ {CAT,CDD,HDD} and let

FInd(t, tN1 , tN2 , x) with t < tN1 < tN2 be the time t price of temperature futures written on the corresponding
index over period [tN1 , tN2]. The future price can be calculated as:

FInd(t, tN1 , tN2 , x) = EQ [
Ind(tN1 , tN2)|Ft

]
. (44)

We have the following parity for the temperature futures.

Lemma 2. The prices of CAT, HDD and CDD futures have the following relationship

FCDD(t, tN1 , tN2 , x) = FHDD(t, tN1 , tN2 , x) + FCAT (t, tN1 , tN2 , x) − (N2 − N1 + 1)c . (45)

Proof. The result follows from max(x − c, 0) −max(c − x, 0) = x − c.

Assume the time t value of temperature S (t) = x. Let PInd(t,K, tN0 , tN1 , tN2 , x) be the time t price of a
put option with strike price K and maturity tN0 , written on a future contract with payoff

FInd(tN0 , tN1 , tN2 , S (tN0)). Then the put price can be calculated from:

PInd(t,K, tN0 , tN1 , tN2 , x) = exp(−r(tN0 − t))EQ [
max(K − FInd(tN0 , tN1 , tN2 ,S(tN0)), 0)|Ft

]
, (46)

where r is the risk-free interest rate.
Let CInd(t,K, tN0 , tN1 , tN2 , x) be the corresponding temperature call option. We have the following

put-call parity for the temperature future options.
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Lemma 3.

CInd(t,K, tN0 , tN1 , tN2 , x) = PInd(t,K, tN0 , tN1 , tN2 , x) + exp(−r(tN0 − t))(FInd(t, tN1 , tN2 , x) − K) .

Proof. The result follows from max(x − K, 0) −max(K − x, 0) = x − K.

We can derive the analytical solutions for CAT, HDD and CDD future prices from the following
results.

Proposition 4. Assume that the stochastic processes for the asset price S (t) is specified in (2), (4), (17)
and the time change process T (t) is an additive subordinator with the density of Laplace transform ψ,
then the time t prices of CAT, HDD and CDD futures can be calculated as

(i)

FCAT (t, tN1 , tN2 , x) =

N2∑
k=N1

Λ(tk) +

1∑
n=0

f CAT
n exp

(
−

∫ tk

t
ψ(λn, u)du

)
ϕn(x − Λ(t))

 , (47)

where λn and ϕn are in (24) and (25), respectively. Furthermore, f CAT
n = b̄n.

(ii)

FHDD(t, tN1 , tN2 , x) =

N2∑
k=N1

∞∑
n=0

f HDD
n,k exp

(
−

∫ tk

t
ψ(λn, u)du

)
ϕn(x − Λ(t)) , (48)

where f HDD
n,k = (c − Λ(tk))an(c − Λ(tk)) − bn(c − Λ(tk)).

(iii)

FCDD(t, tN1 , tN2 , x) =

N2∑
k=N1

∞∑
n=0

f CDD
n,k exp

(
−

∫ tk

t
ψ(λn, u)du

)
ϕn(x − Λ(t)) , (49)

where f CDD
n,k = (Λ(tk) − c)(ān − an(c − Λ(tk))) + b̄n − bn(c − Λ(tk)).

Proof. We will focus on (ii). (i) and (iii) can be proved in a similar way.

FHDD(t, tN1 , tN2 , x)

=

N2∑
k=N1

EQ[(c − Λ(tk) − Y(tk))+|Ft]

=

N2∑
k=N1

EQ [
(c − Λ(tk))1{Y(tk)<c−Λ(tk)} − Y(tk)1{Y(tk)<c−Λ(tk)}|Ft

]
.

(50)

Using eigenfunction expansion and Corollary 1, we have

FHDD(t, tN1 , tN2 , x) =

N2∑
k=N1

∞∑
n=0

f HDD
n,k exp

(
−

∫ t

0
ψ(λn, u)du

)
ϕn(x − Λ(t)) , (51)
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where

f HDD
n,k = (c − Λ(tk))

∫ c−Λ(tk)

−∞

ϕn(x)m(x)dx −
∫ c−Λ(tk)

−∞

xϕn(x)m(x)dx

= (c − Λ(tk))an(c − Λ(tk)) − bn(c − Λ(tk)) .
(52)

We can also derive the analytical solutions for CAT, HDD and CDD future option prices from the
following results.

Proposition 5. Assume that the stochastic processes for the asset price S (t) is specified in (2), (4), (17)
and the time change process T (t) is an additive subordinator with the density of Laplace transform ψ,
then the time t prices of CAT, HDD and CDD future options can be calculated as

(i)

PCAT (t,K, tN0 , tN1 , tN2 , x)

= exp(−r(tN0 − t))
∞∑

m=0

gCAT
m exp

(
−

∫ tN0

t
ψ(λm, u)du

)
ϕm(x − Λ(t)) , (53)

where

gCAT
m =

K −
N2∑

k=N1

Λ(tk)

 am(x∗) −
N2∑

k=N1

1∑
n=0

f CAT
n exp

−∫ tk

tN0

ψ(λn, u)du
 cm,n(x∗) , (54)

where x∗=x∗∗ − Λ(tN0) and x∗∗ is the solution to the equation FCAT (tN0 , tN1 , tN2 , x) = K.
(ii)

PHDD(t,K, tN0 , tN1 , tN2 , x)

= exp(−r(tN0 − t))
∞∑

m=0

gHDD
m exp

(
−

∫ tN0

t
ψ(λm, u)du

)
ϕm(x − Λ(t)) , (55)

where

gHDD
m = K(ām − am(x∗)) −

N2∑
k=N1

∞∑
n=0

f HDD
n,k exp

−∫ tk

tN0

ψ(λn, u)du
 (c̄m,n − cm,n(x∗)) , (56)

where x∗=x∗∗ − Λ(tN0) and x∗∗ is the solution to the equation FHDD(tN0 , tN1 , tN2 , x) = K.
(iii)

PCDD(t,K, tN0 , tN1 , tN2 , x)

= exp(−r(tN0 − t))
∞∑

m=0

gCDD
m exp

(
−

∫ tN0

t
ψ(λm, u)du

)
ϕm(x − Λ(t)) , (57)

where

gCDD
m = Kam(x∗) −

N2∑
k=N1

∞∑
n=0

f CDD
n,k exp

−∫ tk

tN0

ψ(λn, u)du
 cm,n(x∗) , (58)

where x∗=x∗∗ − Λ(tN0) and x∗∗ is the solution to the equation FCDD(tN0 , tN1 , tN2 , x) = K.
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Proof. To prove (i), let x∗∗ be the solution to the equation FCAT (tN0 , tN1 , tN2 , x) = K and x∗=x∗∗ − Λ(tN0),
then we have

PCAT (t,K, tN0 , tN1 , tN2 , x)
= exp(−r(tN0 − t))EQ [

(K − FCAT(tN0 , tN1 , tN2 ,S(tN0)))
+|Ft

]
= exp(−r(tN0 − t))EQ

[
(K − FCAT(tN0 , tN1 , tN2 ,S(tN0)))1{Y(tN0 )<x∗}|Ft

]
.

(59)

Using eigenfunction expansion, Corollary 1 and Proposition 4, we get

PCAT (t,K, tN0 , tN1 , tN2 , x)

= exp(−r(tN0 − t))
∞∑

m=0

gCAT
m exp

(
−

∫ tN0

t
ψ(λm, u)du

)
ϕm(x − Λ(t)) ,

(60)

where

gCAT
m =

K −
N2∑

k=N1

Λ(tk)

 ∫ x∗

−∞

ϕm(x)m(x)dx

−

N2∑
k=N1

1∑
n=0

f CAT
n exp

−∫ tk

tN0

ψ(λn, u)du
 ∫ x∗

−∞

ϕm(x)ϕn(x)m(x)dx

=

K −
N2∑

k=N1

Λ(tk)

 am(x∗) −
N2∑

k=N1

1∑
n=0

f CAT
n exp

−∫ tk

tN0

ψ(λn, u)du
 cm,n(x∗) .

(61)

Similarly, we can prove (ii) and (iii).

5. Data analysis and numerical study

We carry out an empirical study using the average daily temperature of Toronto, Canada, as measured
at Pearson International Airport from January 1, 2003 to December 31, 2012. The data was collected
from the website of National Climate Data and Information Archive of Canada. In Figure 1, we plot the
average temperature for the whole sample. It is clear that the temperature has a seasonal pattern. As
specified in Section 2, we model the temperature S (t) as the sum of the seasonal trend term Λ(t) and the
deseasonalized stochastic component Y(t). The estimation procedure is performed in two steps.

In the first step, using linear regression we estimate Λ according to (3). The estimation results
are in Table 1. All the parameters in (3) are statistically significant at the 1% level. In particular, the
temperature has a weak but significantly positive linear trend. In Figure 1, we also plot the seasonal
component Λ, which indicates that it captures the seasonal pattern in the temperature very well.

In the second step, we estimate three models for the deseasonalized temperature Y . The first model
is the OU model based on the process in (5) and Y(t) = X(t). We impose the restriction θ = 0 for
identification purpose. The other two models are the LSub-OU and the ASub-OU models. For both
models, the Lévy subordinator is taken to be the Gamma subordinator with Lévy exponent given in
(14). To uniquely identify the parameters of the models, we set ϑ = 1. For the ASub-OU model, the
activity rate function b is specified in (6), with the restrictions b0 = 1 and b0 ≥ |b1|. Note if b1 = 0, the
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Figure 1. Average daily temperature (Top) and seasonal trend (Bottom).

Table 1. Estimation results for the trend function Λ(t).

Parameters Estimates Standard error t-statistics
a0 8.15 0.14 57.40
a1 4.55e−4 6.74e−5 6.76
a2 13.70 0.10 136.63
a3 −525.50 0.43 −1232.67

ASub-OU model reduces to the LSub-OU model. We also set the drift term of the Gamma subordinator
γ = 0, so Y will be a pure jump process with mean reverting jumps.

We choose maximum likelihood estimation (MLE) method for all the models. For a sample of size n
of {S (ti)}ni=1, the log conditional likelihood function is given by

log(L(Θ)) =

n∑
i=1

log(p(ti, ti+1, S (ti), S (ti+1); Θ)) , (62)

where Θ is the set of parameters to be estimated. p(ti, ti+1, S (ti), S (ti+1); Θ) is the transition density
function.

Define

Ξ(u, i) = Λ(ti+1) + [S (ti) − Λ(ti)] exp(−κu) + θ(1 − exp(−κu)) , (63)

and

Σ(u) =
σ2

2κ
(1 − exp(−2κu)) . (64)
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Table 2. Estimation results for the deseasonalized prices Y(t).

Parameters OU LSub-OU ASub-OU
κ 0.36 0.39 0.34

(23.48) (17.64) (18.39)
σ 3.64 0.38 0.37

(86.66) (45.76) (51.20)
ω 0.59 0.41

(8.59) (6.72)
b1 0.44

(12.46)
b2 31.84

(6.43)
Log likelihood −9280.24 −9220.34 −9161.62

Note: The t-statistics are in the parentheses.

Then, the transition density function for the OU model is

p(ti, ti+1, S (ti), S (ti+1); Θ) =
1

√
2πΣ(1)

exp
(
−

(S (ti+1) − Ξ(1, i))2

Σ(1)

)
. (65)

Let gt(du) be the transition probability distribution of a Gamma subordinator with zero drift, mean ϑ
and variance ω, then gt(du) is given by

gt(du) =

(
ϑ
ω

)ϑ2t/ω

Γ
(
ϑ2

ω
t
) uϑ

2t/ω−1 exp
(
−
ϑ

ω
u
)

du . (66)

Then, the transition density function for the ASub-OU model is given by

p(ti, ti+1, S (ti), S (ti+1); Θ) =

∫
[0,∞)

1
√

2πΣ(u)
exp

(
−

(S (ti+1) − Ξ(u, i))2

Σ(u)

)
gA(ti+1)−A(ti)(du) . (67)

This integral can be efficiently computed by the Gauss-Laguerre quadrature. Note if we impose the
restriction b1 = 0, we can also obtain the transition density function for the LSub-OU model.

Table 3. Weather derivative prices for different numbers of eigenfunction expansion terms.

Truncation terms CAT futures CAT future options CDD futures CDD future options
1 689.854721 0.082439 145.118628 0.014278
2 689.854721 0.081924 145.118436 0.013929
3 689.854721 0.081908 145.118429 0.013911
4 689.854721 0.081906 145.118429 0.013911
5 689.854721 0.081906 145.118429 0.013911

Note: The parameters are taken from Tables 1 and 2. θ̄ = 0.67.
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Figure 2. Deseasonalized temperature (Top) and activity rate (Bottom).

The MLE results for the deseasonalized temperature process Y are provided in Table 2. We find
that all of the parameters of each model are estimated with high significance. Once the time change
is introduced, the volatility parameter of the OU process drops significantly. This is not surprising
since in the models with time change, the volatility is not only achieved through the diffusion term
of diffusion process, but also can be realized through the contribution of the jumps. In Table 2, we
also report the log-likelihood function values for three models. Since OU is nested in LSub-OU and
LSub-OU is nested in ASub-OU, we can perform the likelihood ratio test to compare the goodness-of-fit.
The likelihood ratio test statistics are 119.8 and 117.44 for OU versus LSub-OU and LSub-OU versus
ASub-OU, respectively. Using the critical value of 3.84 for 95% quantile of the Chi-square distribution
with one degree of freedom, we can clearly see that the two time-changed models are superior to the
OU model and the ASub-OU model outperforms the LSub-OU model.

In Figure 2, we plot the deseasonalized temperature Y together with the activity rate function b. It is
clear that the seasonality still exists in the process Y . The diffusive volatility and jump intensity display
seasonality, which are well captured by the function b in the ASub-OU model.

We also apply the eigenfunction expansion method to compute the temperature future and future
option prices using the results in Section 4. In order to apply the eigenfunction expansion method to
compute the derivative prices, we need to truncate eigenfunctions expansions after a finite number of
terms. We price CAT and CDD futures and put options on the futures using the analytical formulas
derived in Section 4. We take the model parameters from those reported in Tables 1 and 2. Other
parameters are assumed to be the same as those in Figures 3 and 4. In Table 3, we demonstrate that only
a small number of eigenfunctions are needed for the prices to converge.

To take the risk premium into consideration, we need to specify the values of θ̄ for OU process
X under the risk-neutral Measure Q. In Figures 3 and 4, we compare the futures and future options
for different values of θ̄ under the OU, LSub-OU and ASub-OU models. As expected, both CAT
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Figure 3. CAT future prices vs θ̄ (Left) and CAT future option prices vs θ̄ (Right) under
different models. The parameters are taken from Tables 1 and 2. t = 150, tN0 = 160, tN1 = 180,
tN2 = 210, r = 0.05, S (t) = 15 and K = 690.
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Figure 4. CDD future prices vs θ̄ (Left) and CDD future option prices vs θ̄ (Right) under
different models. The parameters are taken from Tables 1 and 2. t = 150, tN0 = 160, tN1 = 180,
tN2 = 210, r = 0.05, S (t) = 15 and K = 145.

and CDD future prices are a linear function of θ̄, whereas CAT and CDD future option prices are a
decreasing function of θ̄. It is also clear that the market price of risk has a significant role for temperature
derivatives. We also find different models can generate different values for temperature derivative prices.
For CAT futures and future options, three models produce similar prices. However, the model prices
from ASub-OU model can deviate from the other models significantly for CDD futures and future
options.
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6. Conclusion

This paper proposes a new model for temperature based on the time-changed OU process, where the
time change process is a Lévy subordinator time changed by a deterministic clock with seasonal activity
rate. Compared to the previous models, our model allows for state-dependent jumps. Furthermore, under
our model, the drift, diffusion volatility and jumps are all seasonal which are empirically supported in
the temperature data. Another advantage of our model is that we are able to employ the eigenfunction
expansion technique to derive the analytical pricing formulas for the temperature futures and future
options. From an empirical study using Toronto temperature data, we show that clearly our model with
additive subordination provides a better fit than the competing models. We also demonstrate that the
market price of risk has significant impact on the temperature derivative prices.

There are several future works that can be considered. We can introduce a stochastic volatility
component into our model by a further time change based on the absolutely continuous time change
processes. The combination of a subordinator and an integral of some positive functions of a Markov
process with analytically tractable Laplace transform has been studied in Mendoza-Arriaga et al. (2010)
and Li and Linetsky (2014). The model based on the combined time change will still be tractable since
it still possesses the closed-form Laplace transform for the time change, which enables us to continue to
apply the eigenfunction expansion method. In addition, we would like to calibrate our model using the
real market data for the temperature derivatives and compare its performance with the existing popular
models.
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