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Abstract: In this study, we developed a mathematical framework, based on the SIR model, to
study the dynamics of two competing virus variants with different characteristics of transmissibility,
immune escape, and cross-immunity. The model includes variant-specific transmission and recovery
rates and enables flexible parameterization of partial and waning cross-immunity. We conducted
stability and bifurcation analyses and numerical simulations to explore the conditions of coexistence,
dominance, and extinction of the variants, studying variations in epidemiological parameters that affect
endemic prevalence and infection ratios. Our results indicated that transmission rates, levels of cross-
immunity, and immunity waning rates are critical in determining disease outcomes, which influence
variant prevalence and competitive dynamics. The sensitivity analysis provided the relative importance
of these parameters and provided valuable insight into designing intervention strategies. This work
contributes to furthering our understanding of multi-variant epidemic dynamics and lays the bedrock
for tackling complex interactions involving arising virus variants, finding applications in real-world
public health planning.
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1. Introduction

The ongoing threat of infectious diseases, particularly those capable of producing multiple viral
variants, has underscored the need for advanced mathematical models to understand and predict the
behavior of such diseases. New virus variants, as observed in the COVID-19 pandemic, are prone to
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exhibit significant differences in transmissibility, immune evasion capacity, and cross-immunity
between variants. These differences are difficult for public health and epidemic modeling, considering
that understanding the interaction of multiple virus variants in a population is essential in forecasting
the trajectory of an epidemic and guiding intervention measures. Mathematical modeling has also
been applied to investigate co-infections and the dynamics of their interactions, e.g., the dynamics of
interaction between HTLV-2 and HIV-1 [1]. Here, an attempt is made to contribute towards such
knowledge by developing and studying an SIR (susceptible-infected-recovered) model framework
incorporating two competing virus variants with distinct epidemiological characteristics.

Compartmental models like the SIR model, developed by Kermack and McKendrick [2], have
been fundamental to epidemiology in dividing populations into susceptible, infected, and recovered
compartments for simpler modeling of disease dynamics. Though effective in handling single-strain
epidemics, standard SIR models are not flexible enough to capture complexity from interacting
variants, hence making extensions for incorporating multi-variant dynamics a source of worry for
scientists. The initial development of multi-strain or multi-variant models was necessitated by the
reality that most infectious diseases, such as influenza and dengue fever, occur in more than one
serotype or strain with varying epidemiological features. Multi-variant models attempt to capture
these processes by introducing unique compartments or sub-compartments for each variant, each with
varying transmission rates, recovery rates, and potential interactions, such as partial cross-immunity
between variants. Initial pioneering work by Andreasen et al. [3] on multi-strain influenza models
entailed competing strains coexisting in the presence of cross-immunity, and they found that
transmissibility and degree of cross-immunity have a significant role in determining if variant strains
can coexist or if one strain comes to dominate the other.

Additional studies, such as those by Kamo and Sasaki [4], expanded these models by introducing
seasonal forcing and analyzing how cross-immunity can lead to synchronized and chaotic oscillations
in multi-strain epidemics. Garba and Gumel [5] further developed the understanding of influenza
transmission dynamics by examining the effects of cross-immunity and backward bifurcation,
underscoring the complex nature of multi-strain interactions. Similarly, Sneppen et al. [6] proposed a
simplified model in which hosts can transmit only the most recent infection, creating a “spreading of
immunity” effect that captures the diversity and duration of strain coexistence within a population.

New research has developed these early tenets to include immune escape features and viral
mutations, particularly for quickly evolving conditions like COVID-19. Mathematical models
incorporating partial cross-immunity and asymmetric temporary durations of immunity have shown
that minor differences in such factors can yield significant competitive disparity between strains [7, 8].
For example, Ogura and Preciado’s adaptive susceptible-infected-susceptible model demonstrates
how individuals can sever connections to infected nodes to avoid disease spread, offering a new
network-based epidemic control view [9]. Otunga [10] further developed this approach by modeling
COVID-19 infections with focus on the Delta and Omicron variants, investigating how vaccination
and recovery dynamics influence variant spread and control. Burbano Lombana et al. [11] employed a
new approach by incorporating human behavior and memory impacts in models of simultaneous
epidemic strains, which is important for the impact of interventions on multiple strains during
COVID-19 epidemics. Olumoyin and Khaliq [12] employed a data-driven deep learning model for
COVID-19 variant dynamics, which adopted methods to improve short-term prediction based on
time-varying transmission rates. Bessonov et al. [13] also contributed to this understanding by

Electronic Research Archive Volume 33, Issue 2, 1120–1143.



1122

considering immune responses, i.e., cytotoxic T lymphocytes and neutralizing antibodies, and how
they can lead to the emergence and competition of respiratory virus variants and how immune escape
mechanisms are established. The models considered in [7] show that early COVID-19 variants were
more prone to the dramatic takeover while newer strains can potentially co-exist.

The addition of cross-immunity and reinfection to such models has developed a more nuanced
understanding of multi-variant epidemics. Cross-immunity occurs when immunity to a single strain
cross-protects against another, a particularly relevant idea for viruses that are extremely mutable and
lead to variants that can escape immune responses to previous infections. Reich et al. [14] employed a
novel framework to examine cross-immunity among dengue serotypes and showed that
cross-protection duration and intensity were of key importance to disease incidence and emphasized
long-term immunization. Ferguson et al. [15] and Andreasen [16] studied the impact of moderate
levels of cross-immunity on interaction dynamics and concluded that variants can become dominant
temporarily before being replaced by new strains with greater immune evasion capacity, a
phenomenon seen in influenza where strains become dominant in successive seasons due to loss
of immunity.

Further work has extended our understanding on how cross-immunity contributes to multi-variant
behavior. Sachak-Patwa et al. [17] demonstrated that the integration of cross-immunity into models of
influenza significantly enhances epidemic prediction, with the potential for further progress in public
health policy. Atienza-Diez and Seoane [18] explored different types of cross-immunity, including
sterilizing and attenuating, and concluded that higher levels of cross-immunity led to less frequent,
reduced outbreaks. This shift in epidemic patterns emphasizes the effect of cross-immunity on the
herd immunity levels and danger of future outbreaks. Chung and Lui [19] employed cross-immunity
in a two-strain influenza model to demonstrate that alterations in cross-immunity levels may have
significant effects on system stability and periodicity of outbreaks. For studies of COVID-19 variants,
Niu et al. [20] developed a compartmental model with cross-immunity and heterogeneity of
transmissibility for investigating stability and competition dynamics of variants.

A number of studies provide broader perspectives on pathogen dynamics within host and
ecological systems. For instance, Ojosnegros et al. [21] investigated the competition-colonization
trade-offs among viral strains, finding that shifts in virulence distribution support a stable coexistence
of low-virulence strains, highlighting viral evolution’s complex interplay. Seabloom et al. [22]
reviewed ecological interactions in pathogen spread, emphasizing the impact of species composition
and community structure on infection dynamics, particularly in co-infection and host-pathogen
relationships. Gjini et al. [23] focused on pneumococcus serotypes and the role of competition in
pathogen dynamics, highlighting how direct competition shapes strain coexistence and challenges for
vaccination strategies. Ackleh et al. [24] also contributed a reaction-diffusion model addressing
competitive exclusion and conditions for pathogen strain coexistence. Amador et al. [25] analyzed
stochastic interactions between antibiotic-sensitive and antibiotic-resistant bacterial strains, applying
an extreme values approach to understand epidemic severity in hospital settings. Finally, Jover et
al. [26] investigated host-phage dynamics in bacterial communities, finding that trade-offs in infection
networks can influence the evolutionary and community structure of microbial ecosystems.

While some researchers have made substantial progress in studying the dynamics of multi-variant
systems, key knowledge gaps remain about what ensures the persistence, proliferation, or
disappearance of competing molecular variants. Current models often crudely parameterize
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cross-immunity, treating it as either complete or non-existent, while empirical data suggest that
cross-immunity is only partial, and depends on factors such as genetic relatedness between variants
and immune responses of the host. Third, several of these assume that transmissibility and recovery
rates of competing variants are constant, ignoring evolutionary pressures that will favor the emergence
of more transmissible or immune-evasive variants.

We aim to bridge these gaps by introducing an SIR model that incorporates two virus variants with
distinct transmission and recovery rates, alongside a flexible framework for variable cross-immunity.
Our aim is to explain how these factors interact to determine the competitive dynamics between
variants. Using stability analysis and numerical simulations, we determine the equilibria behavior of
variants — coexistence, dominance, and eradication — in the population. The biological significance
of the model lies in its ability to simulate the dynamics of dual-variant epidemics, providing insights
into how factors like transmissibility, immune evasion, and partial immunity influence viral spread
and informing public health strategies.

2. Mathematical model formulation

The proposed model aims to simulate the dynamics of an epidemic caused by two simultaneously
circulating variants of a virus, which differ in terms of transmissibility, immune evasion, and recovery
rates. The model divides the population into five compartments: Susceptible (S ), infected by variant 1
(I1), infected by variant 2 (I2), and recovered individuals from variants 1 and 2 (R1 and R2, respectively).

We assume that both strains of the virus spread separately, but their interaction through partial cross-
immunity complicates the dynamics of the infection. The recovered population is assumed to have
partial immunity to the other strain, i.e., individuals recovered from one strain can still be infected by
the other but with reduced susceptibility. This provides a form of immunity that diminishes the risk
of severe outcomes of reinfection, but not the risk of further transmission. We also assume that death
from disease is negligible for both infectious strains, so it is not modeled. This enables the transmission
dynamics, immunity, and recovery dynamics to be highlighted.

The model is constructed under several assumptions to simplify the complexities of real-world
epidemic scenarios. First, we assume that the total population remains constant, with births (Λ) and
natural death (µ) rates included in the system. The transmission of each variant depends on the contact
rate between susceptible individuals and infected individuals, with different transmission rates for each
variant (β1 and β2). Furthermore, the recovery rates for each variant differ (γ1 and γ2), as do the rates
of immunity loss for those recovered from either variant (δ).
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Figure 1. Flow diagram of the proposed model.

The model, whose flow diagram is given in Figure 1, is represented by a system of ordinary
differential equations (ODEs) that describe the time evolution of the compartments. These equations
incorporate the interactions between the compartments, including the effects of partial immunity due
to prior recovery, as well as the dynamics of infection and recovery for each variant. The differential
equations are as follows:

dS
dt
= Λ − β1S I1 − β2S I2 + δ1R1 + δ2R2 − µS ,

dI1

dt
= β1S I1 + α1β1R2I1 − γ1I1 − µI1,

dI2

dt
= β2S I2 + α2β2R1I2 − γ2I2 − µI2,

dR1

dt
= γ1I1 − α2β2R1I2 − δ1R1 − µR1,

dR2

dt
= γ2I2 − α1β1R2I1 − δ2R2 − µR2.

(2.1)

Here, the variables represent the population sizes at time t for each compartment: S (t) for susceptible
individuals, I1(t), and I2(t) for individuals infected with variants 1 and 2, respectively, and R1(t) and
R2(t) for those recovered from variants 1 and 2, respectively. The parameters govern the interactions
between these compartments, including the transmission rates for each variant (β1 and β2), the recovery
rates (γ1 and γ2), the degree of cross-immunity between the variants (α1 and α2), and the rate of
immunity loss (δ).

This model provides a framework for understanding the dynamics of dual-variant epidemics,
incorporating key features such as partial immunity and the potential for reinfection, which are crucial
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for modeling real-world viral outbreaks where multiple variants of a pathogen are in circulation.
Through numerical simulations of the system of ODEs, the model can offer insights into the spread of
both variants, the impact of different intervention strategies, and the long-term dynamics of
dual-variant epidemics.

3. Equilibria and stability analysis

The analysis of equilibria and stability forms the basis of all that is known about the dynamics of
mathematical models in epidemiology. By determining the steady states and examining their stability,
we can comprehend the potential for disease occurrence, eradication, and persistence. In this section,
we rigorously explore the equilibria of the model, starting with the disease-free equilibrium, where
there is no infection, and progressing towards endemic conditions to encompass the coexistence or
dominance of infectious agents. With the help of the next-generation matrix, Jacobian analysis, and
bifurcation analysis, we aim to explore thresholds and conditions to switch between these states. To
find the steady states, we need to solve the system of equations

0 = Λ − β1S I1 − β2S I2 + δ1R1 + δ2R2 − µS ,

0 = β1S I1 + α1β1R2I1 − γ1I1 − µI1,

0 = β2S I2 + α2β2R1I2 − γ2I2 − µI2,

0 = γ1I1 − µR1 − α2β2R1I2 − δ1R1,

0 = γ2I2 − µR2 − α1β1R2I1 − δ2R2.

(3.1)

3.1. Disease-free equilibrium and R0

We see that disease-free equilibrium (DFE) is (S , I1, I2,R1,R2) = (Λ/µ, 0, 0, 0, 0).
To compute the basic reproduction number R0, we use the next-generation matrix method. The

dynamics of the infectious compartments are given by the equation

dX
dt
= F −V,

where X =
[
I1

I2

]
, F represents the new infections, andV represents the transitions out of the infectious

compartments. These are given as

F =

[
β1S I1 + α1β1R2I1

β2S I2 + α2β2R1I2

]
, V =

[
γ1I1 + µI1

γ2I2 + µI2

]
.

The Jacobian matrices at the disease-free equilibrium (DFE) are

F =

β1Λ

µ
0

0 β2Λ

µ

 , V =
[
γ1 + µ 0

0 γ2 + µ

]
.

The next-generation matrix is given by FV−1, where

FV−1 =

β1Λ

µ
0

0 β2Λ

µ

  1
γ1+µ

0
0 1

γ2+µ

 =  β1Λ

µ(γ1+µ)
0

0 β2Λ

µ(γ2+µ)

 .
Electronic Research Archive Volume 33, Issue 2, 1120–1143.
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The basic reproduction number R0 is the spectral radius of FV−1, which in this case is the maximum
of the diagonal entries:

Theorem 1. The system has basic reproduction number

R0 = max
(
β1Λ

µ(γ1 + µ)
,
β2Λ

µ(γ2 + µ)

)
and DFE is locally stable if and only if R0 < 1.

As R0 crosses the critical value of 1, the system undergoes a bifurcation, transitioning from a stable
disease-free state to a scenario where one or both viruses can persist in the population. This
bifurcation marks a change in the qualitative dynamics of the system, highlighting the pivotal role of
R0 in determining the system’s behavior. For convenience, we fix the following notation

R(1)
0 =

β1Λ

µ(γ1 + µ)
and R(2)

0 =
β2Λ

µ(γ2 + µ)
,

so that R0 = max(R(1)
0 ,R

(2)
0 ).

3.2. Endemic equilibrium

An endemic equilibrium occurs when at least one of the infectious compartments is non-zero.

3.2.1. Single virus dominance equilibria

Due to the symmetry of the model with respect to the two virus components, we focus on one of
the two cases for a single-virus equilibrium in the population. Specifically, we consider the endemic
equilibrium where I1 = 0 and I2 , 0. The situation where I2 = 0 and I1 , 0 is analogous and can be
treated in a similar manner.

Lemma 1. If R(2)
0 > 1, the system admits a single virus endemic equilibrium (SVEE) given by

(S ∗, I∗1, I
∗
2,R

∗
1,R

∗
2) =

γ2 + µ

β2
, 0,

R(2)
0 − 1

β2
γ2µ

(
1 − γ2δ2

(γ2+µ)(µ+δ2)

) , 0, γ2

µ + δ2
I∗2

 . (3.2)

Proof. When I1 = 0 and I2 , 0 we have R1 = 0, S = γ2+µ

β2
and the system of Eq (3.1) simplifies to

0 = Λ − β2S I2 − µS + δ2R2,

0 = γ2I2 − µR2 − δ2R2.

Solving the second for R2 we get R2 =
γ2
µ+δ2

I2 and substituting this expression for R2 into the first
equation

0 = Λ − β2S I2 − µS + δ2
γ2

µ + δ2
I2.

Solving for I2 we get the desired result.
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Lemma 2. The endemic equilibrium from the above lemma is locally asymptotically stable if and
only if

β1S ∗ + α1β1R∗2 − γ1 − µ < 0.

In particular, if R(1)
0 ≥ R(2)

0 the endemic equilibrium is unstable.

Proof. Linearizing the system (2.1) around the single virus endemic equilibrium (3.2) gives

ẋ = Ax

for

A =


A11 −β1S −β2S δ1 δ2

β1I1 A22 0 0 α1β1I1

β2I2 0 A33 α2β2I2 0
0 γ1 −α2β2R1 A44 0
0 −α1β1R2 γ2 0 A55


,

where

A11 = −β1I∗1 − β2I∗2 − µ,

A22 = β1S ∗ + α1β1R∗2 − γ1 − µ,

A33 = β2S ∗ + α2β2R∗1 − γ2 − µ,

A44 = −δ1 − µ − α2β2I∗2,

A55 = −δ2 − µ − α1β1I∗1.

Let us consider the linearization around the endemic equilibrium as above. In particular, I∗1 = R∗1 = 0
and A33 = 0 and S ∗, I∗2,R

∗
2 are as in Lemma 1, giving

A =


A11 −β1S ∗ −β2S ∗ δ1 δ2

0 A22 0 0 0
β2I∗2 0 0 α2β2I∗2 0

0 γ1 0 A44 0
0 −α1β1R∗2 γ2 0 A55


.

We proceed by calculating the eigenvalues.
We see that

A22 = β1S ∗ + α1β1R∗2 − γ1 − µ

is an eigenvalue and the remaining eigenvalues are determined from

A =


A11 −β2S ∗ δ1 δ2

β2I∗2 0 α2β2I∗2 0
0 0 A44 0
0 γ2 0 A55

 .
Another eigenvalue is A44 = −δ − µ − α2β2I∗2 < 0, leaving
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A =


A11 −β2S ∗ δ2

β2I∗2 0 0
0 γ2 A55

 .
To compute the eigenvalues of the matrix we get

|A − λI| = det


A11 − λ −β2S ∗ δ2

β2I∗2 −λ 0
0 γ2 A55 − λ


= −(λ + µ) det


1 1 1
β2I∗2 −λ 0

0 γ2 A55 − λ


= −(λ + µ)

[
γ2β2I∗2 + (A55 − λ)(−λ − β2I∗2)

]
.

Noting A55 = −δ2 − µ we arrive at

(λ + µ)(λ2 + (δ2 + µ + β2I∗2)λ + β2I∗2(γ2 + δ2 + µ)) = 0.

It follows that the last three eigenvalues are negative. Except for A22 = β1S ∗ + α1β1R∗2 − γ1 − µ all
other eigenvalues have negative real part. Hence, the stability depends on A22, which proves the first
assertion of the lemma. As for the second assertion, we note that when β1S ∗ + α1β1R∗2 − γ1 − µ < 0, it
follows that

β1S ∗ + α1β1R∗2 − γ1 − µ =
β1Λ

µ

(
(γ2 + µ)µ
β2Λ

−
(γ1 + µ)µ
β1Λ

+
α1R∗2µ
Λ

)
>
β1Λ

µ

 1

R(2)
0

−
1

R(1)
0

 .
We conclude that the endemic equilibrium becomes unstable if R(1)

0 ≥ R(2)
0 .

3.2.2. Coexistence equilibrium

In this section, we study the endemic equilibrium when both viruses coexist, i.e., when I1 , 0 and
I2 , 0. Under these conditions, the system of equations simplifies, enabling us to express key variables
such as the susceptible population S in terms of a cubic equation. To simplify the formulas, we fix the
following notations:

A1 :=
γ1 + µ

β1
, A2 :=

γ2 + µ

β2
, a1 :=

α1γ2

β2
, a2 :=

α2γ1

β1
. (3.3)

Proposition 1. If system (2.1) admits a coexistence equilibrium (I1, I2 , 0) then the number of
susceptible S at the equilibrium satisfies the cubic polynomial

c3S 3 + c2S 2 + c1S + c0 = 0,
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with coefficients

c3 = µα1α2 (α1 (1 − α2) + α2) ,
c2 = α1α2(−µA1α1 − µA2α1 − µA1α2 − µA2α2 + Λα1α2

+ µA1α1α2 + µA2α1α2 + A2α1δ1 − a1 (µ + δ1) + A1α2δ2 − a2(µ + δ2)),
c1 = a1 (A2α1α2 (µ + δ1) + a2 (α1 (µα2 + δ1) + α2δ2))

− α1α2(A2α1 (Λα2 + A2δ1) + A2
1α2δ2 − a2A1 (µ + δ2)

+ A1(Λα1α2 + A2(α1 (−µ + µα2 + δ1) + α2(−µ + δ2)))),
c0 = −((a1a2 − A1A2α1α2) (α1 (Λα2 + A2δ1) + A1α2δ2)).

Moreover, S , I1, I2 at the equilibrium must satisfy

Λ

β1I1 + β2I2 + µ
≤ S ≤

Λ

µ

1
R0
.

It remains unclear whether the necessary conditions stated in the proposition are also sufficient.
While it is straightforward to verify that the coefficients c0 and c3 are both positive, ensuring that
at least one root of the cubic equation is negative, the possibility of the existence of two distinct
coexistence equilibria is not established. This ambiguity warrants further investigation. Our numerical
analysis in § 5 demonstrates the existence of a coexistence equilibrium under certain conditions. In
addition to establishing existence, conducting a stability analysis is equally crucial for a comprehensive
understanding. Again, our numerical analysis in § 5 shows that the existence of coexistence equilibrium
does not necessarily imply asymptotic stability.

Proof. When I1 , 0 and I2 , 0, the system of equations simplifies to

0 = Λ − β1S I1 − β2S I2 + δ1R1 + δ2R2 − µS ,

0 = β1S + α1β1R2 − γ1 − µ,

0 = β2S + α2β2R1 − γ2 − µ,

0 = γ1I1 − µR1 − α2β2R1I2 − δ1R1,

0 = γ2I2 − µR2 − α1β1R2I1 − δ2R2.

Solving for R1 and R2 we obtain

δ1R1 + δ2R2 = β1S I1 + β2S I2 + µS − Λ, (3.4)

α1R2 =
γ1 + µ

β1
− S , (3.5)

α2R1 =
γ2 + µ

β2
− S , (3.6)

α2R1 =
α2γ1I1

α2β2I2 + δ1 + µ
, (3.7)

α1R2 =
α1γ2I2

α1β1I1 + δ2 + µ
. (3.8)

Electronic Research Archive Volume 33, Issue 2, 1120–1143.



1130

Since R1,R2 ≥ 0 we obtain the last assertion in the proposition. Letting x = β1S I1, y = β2S I2 and
substituting for α1R2 and α2R1, we get

δ1

α2
(A2 − S ) +

δ2

α1
(A1 − S ) = x + y + µS − Λ, (3.9)

a1y
α1x + (δ2 + µ)S

= A1 − S , (3.10)

a2x
α2y + (δ1 + µ)S

= A2 − S . (3.11)

This gives

a1y = (A1 − S )(α1x + (δ2 + µ)S ) = a1

(
δ1

α2
(A2 − S ) +

δ2

α1
(A1 − S ) − x − µS + Λ

)
,

a2x = (A2 − S )(α2y + (δ1 + µ)S ) = a2

(
δ1

α2
(A2 − S ) +

δ2

α1
(A1 − S ) − y − µS + Λ

)
.

Solving for x and y:

x =
a1
δ1
α2

(A2 − S ) + a1
δ2
α1

(A1 − S ) − a1µS + a1Λ − (A1 − S )(δ2 + µ)S

(A1 − S )α1 + a1
,

y =
a2
δ1
α2

(A2 − S ) + a2
δ2
α1

(A1 − S ) − a2µS + a2Λ − (A2 − S )(δ1 + µ)S

(A2 − S )α2 + a2
.

Substituting this into
δ1

α2
(A2 − S ) +

δ2

α1
(A1 − S ) = x + y + µS − Λ

and solving for S yields cubic equation:

δ1

α2
(A2 − S ) +

δ2

α1
(A1 − S )

=
a1
δ1
α2

(A2 − S ) + a1
δ2
α1

(A1 − S ) − a1µS + a1Λ − (A1 − S )(δ2 + µ)S

(A1 − S )α1 + a1

+
a2
δ1
α2

(A2 − S ) + a2
δ2
α1

(A1 − S ) − a2µS + a2Λ − (A2 − S )(δ1 + µ)S

(A2 − S )α2 + a2
+ µS − Λ.

Simplifying this yields the desired cubic polynomial.

4. Global stability of the disease-free equilibrium

In Theorem 1, we establish the local stability of the disease-free equilibrium (DFE). In this section,
we establish the global stability of DFE. To achieve this, we construct a suitable Lyapunov function and
analyze the system dynamics within the positively invariant set Ω. The set Ω ensures that all solutions
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remain biologically feasible, and using standard techniques, we demonstrate that when R0 < 1, the
DFE is asymptotically stable within Ω. This result highlights the conditions under which the disease
can be eradicated from the population, building on approaches seen in similar analyses [27].

We define
Ω := {(S , I1, I2,R1,R2) ∈ R5

≥0 | S + I1 + I2 + R1 + R2 ≤ Λ/µ}. (4.1)

Thus, we have the following.

Lemma 3. The set Ω given in (4.1) is positively invariant, that is any solution to (2.1) with initial
values in Ω stays in Ω for t ≥ 0.

This lemma follows from standard arguments, as those in [28].

Theorem 2. When R0 < 1, the DFE (S , I1, I2,R1,R2) = (Λ/µ, 0, 0, 0, 0) is asymptotically stable on Ω.

Proof. Let us consider the Lyapunov function given by

V(t) = a
(
Λ

µ
− S (t)

)
+

1
γ1 + µ

I1(t) +
1

γ2 + µ
I2(t) + aR1(t) + aR2(t),

where the coefficients a, b > 0 are sufficiently small to be determined later. We now show that V is
positive definitive and dV

dt is negative definite on Ω.
We note that V > 0 onΩ except at DFE. Hence, it is positive definite. To show negative definiteness,

let us write V = G + F where

G = a
(
Λ

µ
− S

)
+ b(R1 + R2) and F =

1
γ1 + µ

I1 +
1

γ2 + µ
I2.

We have

dF
dt
=

1
γ1 + µ

dI1

dt
+

1
γ2 + µ

dI2

dt
= I1

(
β2(S + α1R2)
γ1 + µ

− 1
)
+ I2

(
β2(S + α2R1)
γ2 + µ

− 1
)
.

Since α1, α2 ≤ 1 we see that S + α1R2 ≤ S + R2 ≤ Λ/µ on Ω. Similarly, S + α2R1 ≤ Λ/µ. Thus,

dF
dt
≤ I1

(
β1Λ

(γ1 + µ)µ
− 1

)
+ I2

(
β2Λ

(γ2 + µ)µ
− 1

)
≤ (I1 + I2) (R0 − 1). (4.2)

Next, we consider the time derivative of G :

dG
dt
= −a(Λ − β1S I1 − β2S I2 + δ1R1 + δ2R2 − µS )

+ a(γ1I1 − α2β2R1I2 − δ1R1 − µR1 + γ2I2 − α1β1R2I1 − δ2R2 − µR2).

Using Λ − µS ≥ 0 on Ω and denoting by H the negative terms

H(S ,R1,R2) = −a(Λ − µS + (2δ1 + µ)R1 + (2δ2 + µ)R2), (4.3)

we get
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dG
dt
= aβ1S I1 + aβ2S I2 + aγ1I1 + aγ2I2 + H(S ,R1,R2)

≤ aI1

(
β1Λ

µ
+ γ1

)
+ aI2

(
β2Λ

µ
+ γ2

)
+ H(S ,R1,R2).

We are given that R0 < 1. We may pick a > 0 sufficiently small so that

a ·max
(
β1Λ

µ
+ γ1,

β2Λ

µ
+ γ2

)
≤

1 − R0

2
.

With this choice of a we have
dG
dt
≤ (I1 + I2)

1 − R0

2
+ H(S ,R1,R2). (4.4)

Combining (4.2) and (4.4) we arrive at

dV
dt
=

dF
dt
+

dG
dt
≤ (I1 + I2) (R0 − 1) + (I1 + I2)

1 − R0

2
+ H(S ,R1,R2)

= (I1 + I2)
R0 − 1

2
+ H(S ,R1,R2).

Since R0 < 1, we see from (4.3) that dV/dt < 0 on Ω except at DFE. Hence, it follows from Lyapunov
stability theorems, see e.g., [29, Theorem 5.2] and [30, Theorem 4.1], that DFE is asymptotically stable
on Ω.

5. Model calibration and numerical analysis

For calibration, we use dynamics of Delta and Omicron variants of COVID-19. The competitive
dynamics of virus variants, such as Delta and Omicron, highlight the pivotal role of partial cross-
immunity in shaping epidemiological outcomes [31]. The Delta variant, first identified in India in
late 2020, became the dominant strain worldwide by mid-2021 due to its high transmissibility and
virulence. Omicron, detected in South Africa and Botswana in November 2021, rapidly outpaced the
Delta strain to become the dominant variant by December 2021 in many regions, including the United
States. This rapid displacement was attributed to the reproduction number of Omicron, which was
approximately 3.5 times higher than that of Delta, coupled with enhanced immune evasion capabilities.

Table 1. Parameter values for model calibration.

Parameter Symbol Value Source
Natural death rate µ 3.9 × 10−5

Recruitment rate Λ 3.9 × 10−5

Transmission rate (Delta) β1 0.3317 [31]
Transmission rate (Omicron) β2 0.9951 [31]
Recovery rate (Delta) γ1 0.1 [32]
Recovery rate (Omicron) γ2 0.12 [32]
Cross-immunity (Delta to Omicron) α2 0.3 [33]
Cross-immunity (Omicron to Delta) α1 0.25 [33]
Natural immunity waning rate δ1, δ2 0.0037 [34]
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Table 1 presents the parameter values used for model calibration. Unless otherwise specified, we use
these values in our numerical analysis. Using these values, the basic reproduction numbers for the Delta
and Omicron variants are calculated as R(1)

0 =
β1Λ

µ(γ1+µ)
= 3.80 and R(2)

0 =
β2Λ

µ(γ2+µ)
= 8.29, respectively.

These values fall within the ranges previously reported in the literature (see, e.g., [35, 36]). We note
that letting µ = Λ we assume the constant population model with a total population density equal to 1.

Table 2. Initial population values.

Variable Initial values
I1(0) 0.100
I2(0) 0.001
R1(0) 0.200
R2(0) 0.000
S (0) 0.699

Table 2 outlines the initial population values used in the numerical simulations. These baseline
conditions provide a consistent framework for analyzing the infection dynamics and steady-state
behavior across the scenarios presented in this study.

Figure 2 illustrates the dynamics of the model through 100 simulations, where the parameters are
randomly selected within a ±20% range as specified in Table 1.

Figure 2. Model dynamics for parameter values.

In numerical analysis, we are interested in studying the endemic prevalence (I1 + I2)(t) and the
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infection ratio (I1/(I1 + I2))(t), particularly their final values.

5.1. Prevalence and infection ratio

While Lemma 2 provides criteria for local stability, it does not offer insights into global dynamics.
Therefore, we conduct numerical simulations to better illustrate the global dynamics, the prevalence,
and their relationship to the stability of the single-virus dominance equilibrium.

In Figure 3, we present three representative examples of the infection dynamics over 100,000 days
for different transmission rates (β1 and β2). These figures illustrate the behavior of the two-virus system,
highlighting how variations in transmission parameters influence the temporal evolution of the infected
populations (I1(t) and I2(t)). The results show distinct patterns of dominance, coexistence, or decline
of the viruses, providing a visual foundation for the numerical analysis summarized in the following
table. Looking at the last 1000 days of the simulation, we observe periodic behavior, indicating that
the infection may not necessarily converge to any of the equilibria.

Figure 3. Infection dynamics over 100,000 days for various transmission rates.

Table 3 presents numerical results for varying values of β1 and β2. The table includes the basic
reproduction numbers R0, R(1)

0 , and R(2)
0 , as well as the corresponding endemic prevalences and infection

ratios after 100k days. The values of I∗1 and I∗2 represent the endemic equilibria for the single-virus
cases where I1 = 0 and I2 = 0, respectively. In addition, the coexistence equilibrium (I∗1c, I

∗
2c) is shown,

reflecting the steady-state values of both infected populations when both viruses coexist. The notation,
(u) and (s) indicate whether the equilibrium is locally asymptotically unstable or stable, respectively.
We note that when the infection ratio (IR) lies strictly between 0 and 1, both virus variants coexist in
the population. From the table, it is evident that as R0 decreases, the infection ratio (IR) approaches
1.0, indicating a higher prevalence of one virus over the other or a dominance of the coexistence
equilibrium. The bifurcation of the system occurs as R0 passes critical thresholds, transitioning
between stable and unstable equilibria, with the corresponding changes in the infection dynamics. The
entries marked as “DNE” (Does Not Exist) suggest that certain conditions lead to a scenario where no
valid equilibrium can be reached. These cases typically occur when the basic reproduction number R0

is too low to sustain either virus at endemic levels. Endemic Prevalence (EP) represents the steady-
state infection levels of each variant in the population. It reflects the long-term dynamics of the virus
after the system has reached equilibrium, providing insights into how the infection stabilizes over time
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under different conditions.
For instance, when R0 = 9.65, I∗1 does not exist (denoted by DNE), while I∗2 has a small value, and

the coexistence equilibrium is nonzero. This suggests that the system tends to focus on the second
virus as the more dominant strain when the first virus does not establish a steady state. As R0 decreases
to values near 1, the table indicates that the system shifts toward a state where both viruses coexist with
low prevalences, resulting in a low infection ratio (IR), and eventually both viruses fail to persist at all
when R0 falls below 1.

Table 3. Numerical results for varying β1, β2.

R0 R(1)
0 R(2)

0 I∗1 I∗2 (I∗1c, I
∗
2c) EP IR

9.65 0.11 9.65 DNE 0.0033 (s) (0.023, 0.001) (s) 0.027 0.00
7.73 3.86 7.73 0.0027 (u) 0.0032 (s) (0.021, 0.034) (u) 0.054 0.38
5.21 3.45 5.21 0.0026 (u) 0.0029 (s) (0.017, 0.027) (u) 0.045 0.39
3.92 2.43 3.92 0.0021 (u) 0.0027 (s) (0.004, 0.023) (u) 0.026 0.15
2.83 2.83 1.91 0.0023 (s) 0.0017 (u) (0.023, 0.001) (u) 0.024 0.94
2.64 0.65 2.64 DNE 0.0023 (s) DNE 0.019 0.00
1.77 1.77 1.23 0.0016 (s) 0.0007 (u) DNE 0.016 1.00
1.51 1.51 1.29 0.0012 (s) 0.0008 (u) DNE 0.012 1.00
1.23 1.23 0.96 0.0007 (s) DNE DNE 0.007 1.00
0.29 0.29 0.14 DNE DNE DNE 0.000 DNE

In the next, we consider prevalence and infection ratio for varying cross immunities α1 and α2 (
Figure 4). This is done by considering the 10,000 day iteration of the system and the variablees are
calculated by taking the average of the last 100 days from simulations. The left panel shows that
higher cross-immunity tends to reduce total prevalence, while the right panel indicates that infection
ratio dynamics are more sensitive to variations in α1, suggesting potential asymmetric effects of cross-
immunity on variant competition.
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(a) Total prevalence (b) Infection ratio

Figure 4. Contour plots for for varying α1 and α2 at the end of 10,000 days.

To enrich the practical applicability of our results, we note the implications for public health
strategies of the multi-variant nature of the epidemics. Indeed, as our analysis points out, multiple
endemic equilibria are possible depending on certain factors like cross-immunities and transmission
rates. If reaching the DFE is not immediate, strategies might be developed that would drive the
dynamics toward the equilibrium with the lowest magnitude of prevalence. This could be achieved by
interventions targeting a selective reduction in the dominance of variants of higher transmissibility or
immune evasion that, in the end, reduce overall disease burden.

6. Sensitivity analysis

We analyze the sensitivity of two key outcomes in a multi-strain infectious disease model—total
prevalence and infection ratio—to various epidemiological parameters. Sensitivity analysis is a crucial
tool in understanding how the variability in model outputs can be attributed to different input variables
[37]. Using Latin Hypercube Sampling (LHS), 2000 parameter sets are generated for 8 parameters
(β1, β2, γ1, γ2, α1, α2, δ1, δ2) across ranges spanning from 0.5 to 1.5 times the base values, as provided in
Table 1. The model, solved numerically using ODEs, simulates the dynamics of susceptible, infected,
and recovered populations, calculating average steady-state values of the two dependent variables.

Sensitivity analysis is conducted by calculating the Partial Rank Correlation Coefficient (PRCC)
using Spearman’s rank correlation method, and the results are visualized in Figure 5. The bar charts
show the strength and direction of correlations for each parameter, with statistically significant results
(p < 0.05) marked by red asterisks. Parameters such as transmission rates (β1, β2) strongly influence
Total Infected, while interaction terms (α1, α2) significantly impact infection ratio. These findings
highlight the most influential parameters, providing insights into disease dynamics and
intervention strategies.

Electronic Research Archive Volume 33, Issue 2, 1120–1143.



1137

(a) PRCC for total prevalence (b) PRCC for infection ratio

Figure 5. Partial rank correlation coefficients (PRCC) derived from 2000 simulations for (a)
total prevalence and (b) infection ratio, indicating the relative sensitivity of parameters. Red
asterisks denote statistically significant correlations (p < 0.05).

Additionally, convergence of the PRCC results was assessed to ensure that the sensitivity analysis
stabilized with increasing sample size. Figure 6 displays the convergence plots for total infected (a)
and infection ratio (b), demonstrating the stabilization of partial rank correlation coefficients as the
number of simulations increases. These plots confirm the reliability of the sensitivity analysis, with
results becoming more consistent as the simulation count approaches 1000.

(a) Total prevalence (b) Infection ratio

Figure 6. Convergence of partial rank correlation coefficients (PRCC) for the model
outcomes with 1000 simulations. (a) Total infected population and (b) infection ratio
illustrate the stabilization of sensitivity analysis as the number of simulations grows.
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For completeness, scatter plots illustrating the relationships between parameters and dependent
variables are provided in Figures 7 and 8. These plots offer a detailed visual representation of how
each epidemiological parameter influences the model outcomes—endemic prevalence and infection
ratio—across simulation scenarios. By plotting the parameter values against the corresponding model
outputs, these scatter plots enable a clearer understanding of the magnitude and direction of the
parameter effects, complementing the sensitivity analysis presented earlier.

Figure 5(a) demonstrates the sensitivity of total prevalence to various epidemiological parameters
using Partial Rank Correlation Coefficients (PRCC). The transmission rates (β1 and β2) exhibit the
strongest positive correlations, indicating that higher transmission rates significantly increase the total
prevalence of infection. Recovery rates (γ1 and γ2) are negatively correlated with prevalence,
underscoring that faster recovery leads to reduced infection levels. Waning immunity rates (δ1 and δ2)
show weaker positive correlations, suggesting that quicker loss of immunity slightly amplifies the
spread by increasing susceptibility to reinfection. These findings highlight the pivotal role of
transmission and recovery dynamics in shaping the overall disease burden.

Figure 5(b) reveals the sensitivity of the infection ratio to key model parameters, focusing on the
distribution of infections between the two virus variants. Cross-immunity coefficients (α1 and α2)
emerge as the most influential factors, with significant correlations that reflect their role in modulating
variant competition and dominance. The transmission rates (β1 and β2) also influence the infection
ratio, demonstrating how disparities in transmissibility between variants can shift the balance
of prevalence.

Figure 7. Scatter plots showing the relationship between model parameters and endemic
prevalence. Each plot illustrates how a specific parameter (β1, β2, γ1, γ2, α1, α2, δ1, δ2)
influences the endemic prevalence across different simulation scenarios.
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Figure 8. Scatter plots depicting the correlation between model parameters and infection
ratio. These plots visualize the impact of parameters (β1, β2, γ1, γ2, α1, α2, δ1, δ2) on the
infection ratio, providing insights into their relative contribution to the disease dynamics.

These results highlight the importance of sensitivity analysis in designing public health
interventions that control multi-strain infectious diseases. Key parameters such as transmission rates
β1, β2, cross-immunity coefficients α1, α2, and immunity waning rates δ1, δ2 strongly influence the
robustness of model outcomes. It is seen from the above discussions that parameters, such as the
transmission rates β1, β2 and the cross-immunity coefficients α1, α2, have a profound effect on both
the total prevalence and infection ratios to necessitate site-specific interventions adaptive to the
change in epidemic conditions. Besides, the minor but significant estimate of immunity waning rates
δ1, δ2 points out the need for real-time data application to revise strategies for long-term effective
management of the epidemic. It is hoped that researchers may seek the development of adaptive
measures that could better achieve an optimized response with resources based on continued shifts in
disease dynamics.

The sensitivity analysis highlights that the dynamics of multivariant epidemics are deeply
influenced by changes in key parameters, such as transmission rates and cross-immunity. These
findings have contributed to informing public health strategies since they may be used to devise
interventions for particular epidemic scenarios. For example, targeting the most influential
parameters-such as enhancing cross-immunity or adjusting vaccination strategies-may help mitigate
the spread of more transmissible or immune-evasive variants. The discussion on adaptive intervention
strategies, active mechanisms of feedback, and control-oriented implications might provide greater
depth. Integration of adaptive measures from real-time epidemic data is key to optimally responding
to fluctuating transmission rates and evolving variants. This enables dynamic adjustments that could
work towards effective control of the disease burden. Understanding these factors-precisely how those
factors influence the long-term course of the epidemics-will help stakeholders build up adaptive
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responses that are more effective by optimizing resource allocation and timely intervention.

7. Discussion and conclusions

In this paper, we provide a comprehensive analysis of the dynamics of two competing virus variants
within an SIR framework, emphasizing the role of partial cross-immunity and other epidemiological
factors. By exploring the sensitivity of key outcomes, such as total prevalence and infection ratio, to
model parameters, we indetify critical drivers of disease dynamics. Transmission rates emerge as the
most significant contributors to total prevalence, while cross-immunity levels play a pivotal role in
shaping the infection ratio and the competitive interplay between variants.

Our findings underscore the complexity of multi-variant epidemics, highlighting the intricate
balance between factors like recovery rates, waning immunity, and cross-immunity, which are
invaluable for public health planning. These insights hold great practical implications for designing
interventions to effectively reduce disease burden and manage variant competition. For example,
actions to enhance cross-immunity or act on enhanced transmissibility of new variants can stem the
tide of more virulent or immune-escape strains. Enhanced cross-immunity through vaccination,
enhancing monitoring and surveillance infrastructure for tracking variant spread, and creating
effective communications framing vaccination and cross-immunity are essential steps to managing
variant threats. Furthermore, adaptive response strategies tailored to various epidemiological contexts
will enable more effective interventions against newly emerging variants. Together, these findings
provide a more nuanced understanding of viral competition dynamics to help stakeholders better
prepare for and respond to multi-variant infectious disease challenges.

While the mathematical model yields robust theoretical predictions, their implications are also
pertinent for rapidly evolving diseases in real-world settings. Furthermore, researchers may examine
how various population structures, behavioral responses, and intervention strategies influence these
dynamics. Overall, this study highlights the necessity of a refined understanding of variant
interactions for informing adaptive and evidence-based public health interventions.
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