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Abstract: As an emerging architecture, graph Transformers (GTs) have demonstrated significant
potential in various graph-related tasks. Existing GTs are mainly oriented to graph-level tasks and
have proved their advantages, but they do not perform well in node classification tasks. This mainly
comes from two aspects: (1) The global attention mechanism causes the computational complexity to
grow quadratically with the number of nodes, resulting in substantial resource demands, especially
on large-scale graphs; (2) a large number of long-distance irrelevant nodes disperse the attention
weights and weaken the focus on local neighborhoods. To address these issues, we proposed a new
model, dual-branch graph Transformer (DCAFormer). The model divided the graph into clusters with
the same number of nodes by a graph partitioning algorithm to reduce the number of input nodes.
Subsequently, the original graph was processed by graph neural network (GNN) to obtain outputs
containing structural information. Next, we adopted a dual-branch architecture: The local branch
(intracluster Transformer) captured local information within each cluster, reducing the impact of long-
distance irrelevant nodes on attention; the global branch (intercluster Transformer) captured global
interactions across clusters. Meanwhile, we designed a hybrid feature mechanism that integrated
original features with GNN outputs and separately optimized the construction of the query (Q), key
(K), and value (V) matrices of the intracluster and intercluster Transformers in order to adapt to
the different modeling requirements of two branches. We conducted extensive experiments on 8
benchmark node classification datasets, and the results showed that DCAFormer outperformed existing
GTs and mainstream GNNs.
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1. Introduction

Graph data is widely used in many practical applications, such as social networks [1],
bioinformatics [2], recommendation systems [3], and knowledge graphs [4]. This type of data is
characterized by complex relationships between nodes and edges, which are difficult to be effectively
processed by traditional machine learning methods. In this context, GNNs [5–8], as a representative
graph learning method, have attracted widespread attention in recent years. Due to the
message-passing mechanism, GNNs can effectively capture the topology and node features of the
graph and then learn high-quality representations. Although GNNs perform well in handling graph
data, they still face some inherent limitations. For example, as the depth of the network increases,
GNNs tend to suffer from problems such as over-smoothing [9] and over-squashing [10], which lead
to a gradual convergence of the features of different nodes, making it difficult to distinguish the
relationships between distant nodes. This restricts the receptive field of GNNs mainly to shallow
neighbors, limiting their ability to capture global information. To address these problems, researchers
have started to focus on Transformer [11], a model that has shown superior performance in processing
Euclidean data (e.g., natural language [12] and images [13]). Its powerful global modeling
capabilities and parallel computing advantages have led to its significant success in several
fields [14, 15]. Transformer can naturally construct a fully connected graph and capture the complex
interactions between nodes through a global attention mechanism, which provides a powerful solution
to overcome the local receptive field limitations of GNNs.

Nevertheless, the unique topology and node features of graph data prevent Transformer from
encoding such data directly. To address this, some recent studies [16–18] have proposed to design
unique positional encodings for each node to promote the application of Transformer on graph data,
giving rise to GTs. These models have demonstrated outstanding performance in a growing number of
graph tasks [19, 20]. Existing GTs are mainly used for graph-level tasks, with graphs containing only
a small number of nodes. In contrast, developing GTs suitable for node classification on graphs with a
large number of nodes remains a challenging problem. The reasons are as follows: (1) The receptive
field of GTs is global, which leads to the computational complexity of the self-attention mechanism
being quadratic with respect to the number of nodes. This results in a very high calculation overhead
on large-scale graphs, making GTs difficult to scale effectively. (2) The attention mechanism of GTs
is based on global interactions between nodes. In graphs with a large number of nodes, the attention
weights will be spread over a vast number of irrelevant nodes, leading to the blurring of attention [21].

In recent years, some studies have applied GTs to node classification. Kuang et al. [21] introduced
a two-view architecture that combines GNNs with graph coarsening methods to simultaneously
capture local and remote information, and reduced the computational effort of Transformer on
large-scale graphs. Zhao et al. [22] proposed sampling ego-graphs as input to the Transformer to
reduce computational complexity. At the same time, they introduced a proximity-enhanced attention
mechanism to capture fine-grained structural bias. Derived from previous work, Zhang et al. [23]
optimized the node sampling strategy and proposed a hierarchical attention scheme with graph
coarsening to capture long-range interactions. Liu et al. [24] employed a graph pooling technique to
reduce the number of nodes while supplementing neighborhood and structural information through
adjacency matrix and positional encodings, balancing the performance and efficiency of the model.
Chen et al. [25] focused on self-attention only on multi-hop aggregations for each node’s embedding
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vector, providing scalability for mini-batch training of GTs and achieving good results.
On the one hand, although these studies reduce the computational complexity through techniques

such as sampling, graph coarsening, and graph pooling, their methods inevitably lead to the loss of
some original node information. Meanwhile, in order to preserve the graph structural information in
attention computation, these studies introduce positional encoding, which further increases the
calculation overhead. Therefore, how to reduce computational complexity while preserving the
structural and original node information remains an urgent challenge.

On the other hand, most existing studies handle local and global information by mixing them within
a single Transformer branch. Although this hybrid modeling approach simplifies the model structure,
it easily leads to information interference and attention dispersion: The details of the local information
may be obscured by the overall features of the global information, while the global information capture
may be weakened by the complexity of local features. This not only limits the precise modeling of
local and global information, but also weakens their expected synergy. Therefore, decoupling local
and global information and modeling them independently is a more effective strategy.

To address these issues, we propose leveraging a dual-branch architecture. Dual-branch
architectures have been widely validated in various domains. For instance, in image processing, they
effectively improve the performance of tasks such as deraining and deblurring through fine-grained
and coarse-grained feature modeling [26–28]. In long-tailed learning, collaborative optimization
between branches significantly mitigates class imbalance between head and tail categories [29–31].
In scene graph generation, hierarchical learning across fine-grained and coarse-grained branches has
improved semantic label modeling [32, 33].

Inspired by these works, we propose a DCAFormer that not only reduces the computational
complexity of the Transformer but also effectively preserves the information and structure of the
original graph, enabling it to handle both local and global information. First, we utilize a graph
partitioning algorithm (e.g., METIS [34]) to divide the graph into multiple clusters, each containing a
smaller number of nodes and, thus, reducing the number of nodes input to the Transformer. Next, a
GNN processes the entire original graph to generate node representations that incorporate graph
structural information. Based on this, we design a dual-branch Transformer module, where the local
branch (intracluster Transformer) models local information within clusters, and the global branch
(intercluster Transformer) captures global interactions across clusters. To adapt to the different
modeling needs of the two branches, we optimize the construction of the query (Q), key (K), and
value (V) matrices to align with the attention mechanism of each branch: in the local branch, the
query and key matrices are computed from GNN representations of the intracluster nodes,
incorporating local structural information, while the value matrix is computed from the original
features of intracluster nodes, preserving fundamental node attributes. In the global branch, the query
matrix is computed from GNN representations of all nodes to guide intercluster attention, while the
key and value matrices are obtained by pooling the GNN representations and original features of each
cluster to enhance global information modeling. This construction ensures that different branches
focus on different granularities of information, avoiding the limitations of existing methods that either
rely solely on original features or GNN-generated node representations for the construction of query,
key, and value matrices [35]. Additionally, it eliminates the need for complex k-subtree or k-subgraph
GNN extractors [36]. This design limits the scope of attention calculation through a branching
structure, effectively preventing irrelevant nodes from diluting attention weights while ensuring
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precise local modeling and reasonable global relationship capture. Finally, we compare DCAFormer
with 20 methods on 8 benchmark node classification datasets to verify the effectiveness of this
method. Our main contributions are summarized as follows:

• We propose DCAFormer, an innovative dual-branch graph Transformer. This model combines
intracluster Transformers with intercluster Transformers to effectively process local and global
information in the graph and reduce the computational complexity of the Transformer.
• We propose a hybrid feature mechanism that optimizes the construction of the query (Q), key

(K), and value (V) matrices separately for the dual-branch architecture, adapting to the distinct
modeling requirements of different branches.
• Compared with 20 existing methods, our model shows good performance on the node

classification task.

2. Related works

2.1. GNNs

GNNs, as classic methods for processing graph data, primarily learn node representations by
aggregating the information of neighboring nodes, of which typical representatives include graph
convolutional network (GCN) [5] and graph attention network (GAT) [6]. GCN captures local
structural information of the graph through convolution operations, while GAT uses a self-attention
mechanism to dynamically weight neighbor information. Both models have shown strong
performance on various graph tasks. However, due to the problems of over-smoothing and
over-squashing, these models are ineffective in capturing deep graph structural information. To
address this problem, a series of deep GNNs have been developed. Klicpera et al. [37] used
personalized PageRank [38] to propagate information. Chen et al. [39] used residual connections [40]
and identity mapping [41] techniques to retain shallow features, thereby alleviating the impacts of
over-smoothing and over-squashing. Additionally, most GNNs rely on the adjacency matrix as input,
which makes them inefficient when processing large-scale graphs, prompting the emergence of
scalable GNNs. Hamilton et al. [7] reduced the number of nodes during training by randomly
sampling neighbor nodes. Zeng et al. [42] performed sampling at the GNN layer to enhance
scalability. Feng et al. [43] used submatrix approximation to accelerate propagation operations.
Although both sampling and approximation methods can reduce training costs, they may lead to
information loss, which limits their performance on large-scale graphs.

2.2. Graph Transformers

In recent years, Transformer has garnered widespread attention in graph tasks due to its global
attention mechanism. Compared with GNNs, many GTs have demonstrated superior performance in
processing graph data. Dwivedi et al. [44] first introduced the Transformer architecture to graph tasks
and improved the graph representation by using Laplacian eigenvectors to represent the positional
encoding of nodes. Subsequently, Kreuzer et al. [16] further proposed utilizing the full spectrum
information of the Laplacian matrix as positional encoding to make the structural information
between nodes more accurate. Additionally, Ying et al. [18] introduced a spatial encoding method
based on the shortest path between nodes, incorporating structural similarity as an attention bias,
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thereby strengthening the attention matrix’s ability to capture graph structure. Nevertheless, these
methods all employ global attention computation for all node pairs, and their complexity is quadratic
to the number of nodes, which is unacceptable for large-scale graphs. To this end, recent studies have
begun to consider the development of GTs suitable for large-scale graphs. Rampášek et al. [45]
designed a model that mixes the GNN layer with the Transformer layer to capture local and global
information at the same time and reduce the complexity to linear. Shirzad et al. [46] proposed a sparse
attention mechanism, which further reduces the amount of computation by selecting some edges to
perform attention operations between nodes. Chen et al. [25] introduced a model based on mini-batch
training, which achieved good results by aggregating multi-hop neighbor information and performing
attention mechanisms. However, this approach may not be able to handle long-distance dependencies,
and it uses complex Laplace position encoding, which increases the computational cost. Fu et al. [47]
improved it by introducing virtual connections to enhance the capture of long-range dependencies
between nodes. Although the Laplace matrix is replaced with personalized PageRank, which reduces
computational complexity, the virtual connection technology increases the dimension of node features
and still has a considerable computational cost.

2.3. Dual-branch architecture

The dual-branch architecture has been widely applied in various domains, including image
processing, long-tailed learning, and scene graph generation. In deraining tasks, Zhang et al. [26]
employed a dual-branch structure to separately process rain streaks and raindrops, and utilized a
dual-attention-in-attention mechanism to enhance feature learning within each branch. Zhang et
al. [27] leveraged a dual-branch framework to integrate multi-view information and semantic
information, improving the performance of removing rain streaks. In deblurring tasks, a survey by
Zhang et al. [28] found that the dual-branch architecture effectively enhances image restoration
performance by separately modeling local details and global contextual information. In long-tailed
learning, Zhou et al. [29] adopted a bilateral-branch network that utilizes conventional sampling and
rebalanced sampling strategies to enhance the stability of head classes and the discriminability of tail
classes. The SimCal framework [30] employs a bi-level class balanced sampling approach to alleviate
classification head bias, significantly improving long-tailed instance segmentation performance. Guo
et al. [31] further introduced a dual-branch network with cross-branch loss, ensuring synergy between
uniform sampling and rebalanced sampling, leading to superior results on long-tailed datasets. In
scene graph generation, Zhou et al. [32] applied a coarse-grained branch to learn expertise and robust
features of head predicates, while a fine-grained branch focuses on tail predicates, mitigating the
long-tailed issue in scene graph generation. Zheng et al. [33] utilized the hierarchy guided feature
learning strategy to learn better region features of both the coarse-grained level and the fine-grained
level, capturing relationships between predicate labels, significantly improving predicate classification
and overall scene graph generation performance. In summary, the dual-branch architecture effectively
addresses information modeling challenges in multiple tasks through division of labor and
collaboration. It provides new ideas for decoupling learning and collaborative optimization of local
and global features.
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3. Preliminaries

Given an undirected graph G = (V, E), it has n nodes and e edges, where V represents the set of
nodes and E represents the set of edges. Let X = {x1, x2, ..., xn} ∈ R

n×d denote the feature matrix of the
nodes and d represents the feature dimension of each node. The topology information of the graph is
described by the adjacency matrix A ∈ {0, 1}n×n, which defines the mutual connection between nodes,
Ai j = A ji. D is the degree matrix of A, which is a diagonal matrix, Dii denotes the degree of the i-th
node, and Dii =

∑
j Ai j. Ã = A + In is the adjacency matrix with self-loops, In is the identity matrix of

n-order, and D̃ = D + In.

3.1. GNNs architecture

GNNs effectively capture local information in the graph structure by aggregating the feature
information of each node and its neighborhood. Most GNNs utilize a message-passing mechanism to
transmit node features to their neighboring nodes, and iteratively aggregate the representations of
first-order or higher-order neighbors to expand the receptive field of nodes. Taking GCN as an
example, GCN aggregates the feature information of nodes through graph convolution operation with
the following formula:

H(k) = σ(D̃−
1
2 ÃD̃−

1
2 H(k−1)W (k)), (3.1)

where H(k) is the node feature matrix of the k-th layer, with H(0) = X, and W (k) is the trainable weight
matrix of the k-th layer. σ(·) is an activation function, such as ReLU. A GCN model with a total of K
layers can perform message-passing at each layer through Eq (3.1) to generate the output
representations H(K) of the nodes, where the receptive field of each node covers its K-hop neighbors.
This message passing mechanism is also applicable to other GNN models.

3.2. Transformer architecture

The encoder of Transformer is composed of multiple identical layers stacked together, each
containing two crucial modules: multi-head self-attention (MHA) and a position-wise feed-forward
network (FFN).

The MHA module is the core component of Transformer, which aggregates global information by
calculating the correlation (i.e., attention score) between each token in the input sequence and all other
tokens. For simplicity, we use single-head self-attention to describe it. Assume that the self-attention
module has an input H ∈ Rn×h, where n is the number of tokens and h is the hidden dimension. The
self-attention module first projects H into three subspaces, denoted as Q, K, and V:

Q = HW (Q),K = HW (K),V = HW (V), (3.2)

where W (Q) ∈ Rh×h, W (K) ∈ Rh×h, and W (V) ∈ Rh×h are the projection matrices. Next, the attention score
is calculated by taking the dot product of the query matrix Q and the key matrix K. Finally, the output
representation H′ is obtained by weighted aggregation using the attention score and the value matrix
V:

H′ = softmax(
QKT

√
h

)V, (3.3)

Electronic Research Archive Volume 33, Issue 2, 1093–1119.



1099

Eq (3.3) can be directly extended to MHA, which is widely used in practice. However, the complexity
of attention is O(n2h), resulting in low computational efficiency, which is a major bottleneck of
Transformer.

The FFN module typically consists of two fully connected layers and a nonlinear activation function.
It can be represented by the following formula:

FFN(H′) = σ(H′W1 + b1)W2 + b2, (3.4)

where W1 and W2 are trainable weight matrices, b1 and b2 are bias terms, and σ(·) is a nonlinear
activation function, such as ReLU. This layer structure further enhances the representation capability
of each node.

4. DCAFormer

In this section, we introduce the framework of DCAFormer, as shown in Figure 1. The model aims
to reduce the computational complexity of Transformer while effectively capturing both local and
global information by combining graph partitioning, GNN processing, and a dual-branch Transformer
structure. Specifically, we first apply a graph partitioning algorithm to divide the graph G into
different clusters. Then, the GNN-based module processes graph G to obtain an output representation
containing graph structural information. We further design a dual-branch Transformer architecture
that encodes node representations from a local perspective and a global perspective. Finally, the
output representations of the dual-branch are fused to obtain node features that integrate local and
global information.

Figure 1. The framework of DCAFormer.
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4.1. Graph partition

Traditional GTs utilize a self-attention mechanism to capture information between arbitrary pairs
of nodes, which is computationally expensive, especially when dealing with large-scale graph data.
To alleviate this problem, we adopt the METIS algorithm to partition the original graph G = (V, E).
METIS is widely recognized for its efficiency in partitioning large graphs. METIS is a multilevel
graph partitioning algorithm comprising three main stages: (1) Coarsening, which reduces the
original graph to a compact multilevel graph by gradually merging adjacent nodes; (2) partitioning,
which performs K-way partitioning on the most compact graph and optimizes edge-cut weights (e.g.,
minimizing intercluster edges) to generate an initial partition; and (3) uncoarsening, which the
partition results are progressively projected back to the original graph size, with local optimization
applied to improve partition quality further. Ultimately, METIS partitions the original graph into a set
of P clusters as P =

{
Gp

}
, where each cluster Gp is a subgraph of the original graph. These clusters

satisfy the following conditions: Gp = (Vp, Ep),
⋃

Gp = G, and
⋂

Gp = ∅, where p ∈ P, Vp ⊂ V , and
Ep ⊂ E. The node features in cluster Gp are represented by Xp ∈ R

n
P×d. This partitioning approach

divides the original graph into smaller subgraphs, with each subgraph containing significantly fewer
nodes compared to the original graph, while preserving as much of the structure of the original graph
as possible. The partitioned subgraphs serve as input to the subsequent model, effectively reducing
the overall computational burden on the Transformer layer.

4.2. GNN module

Graph data has complex structural relationships, which is different from traditional sequential data.
However, when Transformer performs attention calculations, it mainly processes feature information
without directly considering the structure of the graph. Therefore, before inputting graph data into
Transformer, it is usually necessary to introduce additional encoding mechanisms to embed the
structural information of the graph. Most existing GTs design positional or structural encodings for
each node so that the model can perceive the relative position or structural relationship between
nodes.

To simplify this process and capture the structural information of the graph more effectively, we
choose GNN to directly generate node representations containing structural information. GNN can
naturally embed the local structural information of the graph by aggregating neighborhood information
for each node, thereby producing richer node features. Specifically, we apply two layers of GNN to
the original graph, generating the output representation H(1) ∈ Rn×h of the first layer and H(2) ∈ Rn×c of
the second layer, respectively, where c is the number of node categories. H(1) will be used as input for
the subsequent model, while H(2) will be used to compute the loss function of GNN. Also to reduce
the computational effort of the Transformer layer, we consider partitioning the node representation
processed by GNN. Since the computation of the GNN does not change the structure of the graph, we
can reuse the clusters from the original graph partitioning without performing a new partitioning step.
The difference is that the node features in each cluster will be replaced by H(1)

p ∈ R
n
P×h. H(1)

p will also
be used as the input of the subsequent model.
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4.3. Dual-branch Transformer module

When processing graph data, the traditional Transformer model may cause the attention of the
target node to be dispersed by a large number of remote nodes due to its global attention mechanism,
thus causing the attention of its neighboring domain nodes. To address this problem, many existing
GTs attempt to fuse local and global attention information by improving the attention mechanism or
designing a new model structure to ensure that the model can effectively focus on local details while
still capturing global features.

In contrast, we optimize the construction of the query, key, and value matrices in the attention
mechanism and propose a dual-branch Transformer architecture. This architecture uses both original
features and GNN-processed node representations to participate in the computation of the query, key,
and value matrices, and captures the local and global information in the graph through two branches,
local and global, respectively. The local branch focuses on local information within each cluster, while
the global branch is responsible for integrating global features between clusters.

4.3.1. Local branch

The goal of the local branch is to capture the information from the local neighborhood between
nodes within each cluster while avoiding the distraction caused by distant unrelated nodes. By
partitioning the graph into several clusters, nodes within each cluster typically exhibit strong local
correlations, and the local branch can focus on such relationships to achieve more refined feature
representation.

To achieve this goal, we utilize Transformer within each cluster to compute attention between all
node pairs. Inspired by the work of Chen et al. [36], which generates structure-aware node
representations by extracting k-hop subgraph information through GNN, we redesign the query, key,
and value matrices (Qp, Kp, Vp) in the intracluster Transformer.

First, the GNN module processes the entire graph to generate node representations H(1) that contain
structural information. Then, the graph is divided into multiple clusters, and the node representations
H(1)

p of each cluster are selected to compute Qp and Kp:

Qp = H(1)
p W (Q)

p ,Kp = H(1)
p W (K)

p , (4.1)

where W (Q)
p , W (K)

p ∈ Rh×h are the trainable weights of the projection layer. By constructing Qp and
Kp with H(1)

p incorporating the graph structure information, the computation of attention weights fully
integrates the graph structural information, thereby enabling more precise modeling of the relationships
of the local neighborhood between nodes.

Next, for the value matrix Vp, we first use multi-layer perceptron (MLP) to project the original
features Xp of each cluster to obtain X′p, and then compute Vp based on X′p:

X′p = MLP(Xp),Vp = X′pW (V)
p , (4.2)

where W (V)
p ∈ Rh×h is a trainable weight of the projection layer. Constructing Vp using the original

features Xp instead of H(1)
p helps preserve the original feature information of the nodes, which

contributes to generating more comprehensive node representations through the attention mechanism.
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Subsequently, the hidden representation Hp of each cluster is updated via the intracluster
Transformer:

Hp = FFN(softmax(
QpKT

p
√

h
)Vp), (4.3)

where FFN denotes a feed-forward neural network. In the experiments, the intracluster Transformer is
set to one layer, and Wu et al. [48] demonstrates that single layer attention also has good performance.
Residual connections and layer normalization [49] are applied in each attention block and FFN block.
Through the above design, the hidden representation Hp of each cluster not only effectively integrates
the local structural information of nodes but also retains the original features of nodes, enhancing the
ability to model relationships within clusters.

Finally, the hidden representations Hp of all clusters are stacked row-wise to obtain the final node
representations Hl of the local branch.

4.3.2. Global branch

The goal of the global branch is to capture the global information interactions between different
clusters, complementing the local branch, which focuses only on intracluster relationships. Inspired
by the work of Liu et al. [24], we introduce the generation of cluster-level features and the intercluster
Transformer to efficiently model long-range dependencies.

First, we perform average pooling on the GNN output representations H(1)
p and the projected original

features X′p within each cluster to obtain the cluster-level features H
(1)
p ∈ R

1×h and X
′

p ∈ R
1×h:

H
(1)
p = Pooling(H(1)

p ), X
′

p = Pooling(X′p), (4.4)

where Pooling(·) denotes the average pooling operation. Next, we stack the cluster-level features of P
clusters row-wise to obtain matrices H

(1)
P ∈ R

P×h and X
′

P ∈ R
P×h, which are used in the intercluster

Transformer. This cluster-level feature generation approach compresses intracluster information
through pooling while retaining the global information of each cluster, providing the foundation for
subsequent intercluster interactions.

Second, we construct the query, key, and value matrices (Qg, Kg, Vg) for the intercluster
Transformer:

Qg = H(1)W (Q)
g ,Kg = H

(1)
P W (K)

g ,Vg = X
′

PW (V)
g , (4.5)

where W (Q)
g , W (K)

g , and W (V)
g ∈ Rh×h are the trainable weights of the projection layer. Similar to the

intracluster Transformer, Qg and Kg are constructed using the GNN output representations, while Vg is
constructed based on the original features. Qg contains the node features of the entire graph, integrates
the complete structural information of the graph, and effectively guides the generation of intercluster
attention weights. Kg and Vg are derived solely from the cluster-level features, utilizing the compressed
feature representations to reduce computational complexity while preserving the essential information
of each cluster. This intercluster attention mechanism is designed to efficiently capture intercluster
interactions while ensuring computational efficiency, and its effectiveness has been demonstrated in
similar works [24].

Finally, we update the global representations of nodes Hg through the intercluster Transformer:

Hg = FFN(softmax(
QgKT

g
√

h
)Vg). (4.6)
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Similar to the local branch, the Transformer for global branch is set to a single layer, and residual
connections and layer normalization are applied in each attention block and feedforward block.

Through the intercluster attention mechanism, the global branch captures intercluster global
interaction information, effectively enhancing the model’s ability to handle long-range dependencies.

4.4. Feature fusion

In order to fully utilize local and global information, we perform weighted fusion on the outputs of
the two branches. We first transform the dimensions of Hl and Hg through linear transformations f1(·)
and f2(·), respectively, as shown in Zl = f1(Hl) and Zg = f2(Hg), Zl and Zg ∈ R

n×c. Then, we apply a
weighted fusion on Zl and Zg to obtain the final node representation Z:

Z = (1 − α)Zl + αZg, (4.7)

where α is a hyperparameter used to balance the contribution of local and global information.

4.5. Inference and optimization

The downstream task of DCAFormer is node classification, which aims to predict the class of nodes
from the test set and obtain the output vector of the model through the softmax function:

Ŷ = softmax(Z), (4.8)

and Ŷ is the class prediction representation of n nodes. In order to optimize the model, we do not
directly calculate the cross-entropy loss for Ŷ . Instead, we calculate the class distribution probabilities
and cross-entropy loss separately for the GNN output H(2), the local branch output Zl, and the global
branch output Zg, respectively:

Ŷgn = softmax(H(2)), Ŷl = softmax(Zl), Ŷg = softmax(Zg),

Lgn = L(Y, Ŷgn),Ll = L(Y, Ŷl),Lg = L(Y, Ŷg),
(4.9)

where L(·, ·) denotes the cross-entropy loss function [50], Y represents the ground truth label, and Ŷgn,
Ŷl, and Ŷg are all predicted labels. The final loss function L is composed of the individual losses:

L = Lgn +Ll +Lg. (4.10)

This approach ensures that the features from different branches are fully optimized for their respective
tasks, allowing local and global information to complement each other more effectively, thereby
improving the final classification performance.

4.6. Computational complexity

To evaluate the efficiency of DCAFormer, we conduct a detailed analysis of its computational
complexity. First, in the GNN module, we employ a two-layer GCN in our experiments, whose
computational complexity is O(2eh). Second, the local branch consists of a Transformer and an FFN
block, with a computational complexity of O( n2h

P + 2nh2); while the global branch also includes a
Transformer and an FFN block, with a computational complexity of O(nhP + 2nh2). Thus, the total
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computational complexity of DCAFormer is O(n2h
P + nhP + 4nh2 + 2eh), i.e., O(nh( n

P + P + 4h + 2 e
n )).

In contrast, the computational complexity of the standard Transformer (including an FFN) is
O(n2h + 2nh2), i.e., O(nh(n + 2h)). Following, we need to compare the sizes of n

P + P + 2h + 2 e
n and n.

In actual graph data, usually 2 e
n ≪ n, which can be ignored; while the number of partitions P and

hidden dimension h are usually between tens and hundreds. Thus, in small-scale graph data with a
small number of nodes and edges, n

P + P + 2h + 2 e
n < n holds. As the number of nodes n increases,

n
P + P + 2h + 2 e

n ≪ n will gradually hold, which proves that DCAFormer has a certain efficiency in
processing large-scale graph data.

5. Experiments

5.1. Experimental setup

5.1.1. Datasets

We conduct experiments on 8 widely used graph datasets, which vary in scale: 6 small-scale
datasets and 2 relatively large-scale datasets, covering multiple domains including citation networks,
collaboration networks, and co-purchase networks. For small-scale datasets, we use PubMed,
CoraFull, Computer, Photo, CS, and Physics from PyTorch Geometric1 [51], with 60%/20%/20%
random splits for training/validation/test sets [23]. For large-scale datasets, we select Ogbn-Arxiv and
Ogbn-Products from the Open Graph Benchmark (OGB)2 [52], with dataset splits following the
public settings provided by OGB. Table 1 summarizes the specific information about each dataset,
where “Homo.” denotes the proportion of edges connecting nodes with the same label [53].

Table 1. The detailed dataset statistics.

PubMed CoraFull Computer Photo CS Physics Ogbn-Arxiv Ogbn-Products

# Nodes 19717 19793 13752 7650 18333 34493 169343 2449029
# Edges 44338 126842 491722 238162 163788 495924 1166343 61859140
# Features 500 8710 767 745 6805 8415 128 100
# Classes 3 70 10 8 15 5 40 47
Homo. 0.79 0.57 0.80 0.85 0.83 0.91 0.63 0.81

5.1.2. Baseline

To validate the effectiveness of our proposed DCAFormer, we compare it with the following 20
baselines models, categorized into two groups: 9 GNNs and 11 GTs.

GNNs include:

• GCN [5]: GCN uses graph convolutional layers to learn node embeddings by aggregating
information from neighbors.
• GAT [6]: GAT introduces attention mechanisms to weight the importance of neighboring nodes’

features during aggregation.
• GraphSAGE [7]: GraphSAGE generates node embeddings by sampling and aggregating features

from neighboring nodes, enabling scalable inductive learning for large graphs.
1https://github.com/pyg-team/pytorch_geometric
2https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv
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• APPNP [37]: APPNP combines graph convolution with personalized PageRank propagation to
effectively capture both local and global graph structures.
• GPRGNN [54]: GPRGNN adapts PageRank propagation to learn node features and graph

topology, handling both homogeneous and heterogeneous graphs.
• GraphSAINT [42]: GraphSAINT uses a sampling-based method for inductive graph learning,

allowing efficient training on large-scale graphs.
• GRAND+ [43]: GRAND+ introduces a scalable GNN framework that efficiently handles large-

scale graphs using a generalized forward push algorithm for propagation.
• tunedGNN [55]: tunedGNN reassesses classic GNN models and shows that with proper

hyperparameter tuning, they outperform newer Graph Transformer models in node classification.
• PCNet [56]: PCNet unifies homophily and heterophily in graph data by introducing a two-fold

filtering mechanism for more effective node classification.

GTs include:

• GT [44]: GT generalizes the transformer architecture to arbitrary graphs by incorporating
neighborhood-based attention and Laplacian-based positional encoding to capture the graph’s
structural information.
• SAN [16]: SAN introduces spectral attention to enhance graph transformers, enabling better

capture of graph structures through spectral properties.
• Graphormer [18]: Graphormer improves graph representation learning by incorporating structural

information into transformer models for graph data.
• GraphGPS [45]: GraphGPS combines positional encoding, local message-passing, and global

attention mechanisms to create scalable and powerful graph transformers.
• Exphormer [46]: Exphormer uses sparse transformers with expander graphs, achieving linear

complexity and enabling scalability to large graphs.
• NAGformer [25]: NAGformer introduces a tokenized graph transformer for node classification in

large graphs, improving scalability and performance.
• VCR-Graphormer [47]: VCR-Graphormer uses personalized PageRank tokenization and virtual

connections to enable efficient mini-batch training for graph transformers, capturing both local
and global structural information.
• CoBFormer [57]: CoBFormer mitigates the over-globalizing issue in graph transformers by

using a bi-level structure and collaborative training to effectively capture both local and global
information.
• Polynormer [58]: Polynormer is a polynomial-expressive graph transformer that achieves linear

time complexity, enabling efficient processing of large graphs with strong expressive power
• GOAT [59]: GOAT is a global transformer designed for large-scale graphs, enabling adaptive

learning of homophily and heterophily relationships between nodes.
• SGFormer [48]: SGFormer simplifies graph transformers with a single-layer attention model,

achieving efficient information propagation on large graphs with linear complexity.

5.1.3. Implementation details

To comprehensively evaluate the models, we conduct 10 trials with random seeds for each model
and report the mean accuracy and standard deviation. For the baseline models, we follow the
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hyperparameter configurations suggested in their original papers. All models are trained using the
Adam optimizer [60]. For DCAFormer, the learning rate is set within {0.005, 0.01}, the hidden
dimension is in the range of (64, 512), and the weight decay range between (0, 5 × 10−3). The GNN
module uses GCN with a dropout rate of 0.5, while the Transformer module has a dropout rate of 0.1.
The implementation of DCAFormer is based on Python (3.8.0), PyTorch (1.10.1), and PyTorch
Geometric (2.5.3). All experiments are conducted on a Linux server equipped with an A100-PCIE-40
GB GPU.

5.2. Node classification performance

5.2.1. Comparison on small-scale datasets

We compare DCAFormer with 17 different models to evaluate their accuracy. The experimental
results are shown in Table 2, where the best results are highlighted in bold black, and OOM indicates
out-of-memory errors.

From the results in Table 2, we can observe that:

Table 2. Comparison of all models in terms of mean accuracy ± stdev (%) on small-scale
datasets.

Method PubMed CoraFull Computer Photo CS Physics

GCN 86.54 ± 0.12 61.76 ± 0.14 89.65 ± 0.52 92.70 ± 0.20 92.92 ± 0.12 96.18 ± 0.07
GAT 86.32 ± 0.16 64.47 ± 0.18 90.78 ± 0.13 93.87 ± 0.11 93.61 ± 0.14 96.17 ± 0.08
APPNP 88.43 ± 0.15 65.16 ± 0.28 90.18 ± 0.17 94.32 ± 0.14 94.94 ± 0.07 96.54 ± 0.07
GPRGNN 89.34 ± 0.25 67.12 ± 0.31 89.32 ± 0.29 94.49 ± 0.14 95.13 ± 0.09 96.85 ± 0.08
GraphSAINT 88.96 ± 0.16 67.85 ± 0.21 90.22 ± 0.15 91.72 ± 0.13 94.41 ± 0.09 96.43 ± 0.05
GRAND+ 88.64 ± 0.09 71.37 ± 0.11 88.74 ± 0.11 94.75 ± 0.12 93.92 ± 0.08 96.47 ± 0.04
tunedGNN 89.72 ± 0.50 71.88 ± 0.55 93.25 ± 0.14 96.10 ± 0.46 96.17 ± 0.06 97.19 ± 0.05
PCNet 89.77 ± 0.35 70.93 ± 0.37 90.50 ± 0.15 95.02 ± 0.26 95.96 ± 0.09 97.30 ± 0.23

GT 88.79 ± 0.12 61.05 ± 0.38 91.18 ± 0.17 94.74 ± 0.13 94.64 ± 0.13 97.05 ± 0.05
Graphormer OOM OOM OOM 92.74 ± 0.14 94.64 ± 0.13 OOM
SAN 88.22 ± 0.15 59.01 ± 0.34 89.93 ± 0.16 94.86 ± 0.10 94.51 ± 0.15 96.83 ± 0.18
GraphGPS 88.94 ± 0.16 55.76 ± 0.23 91.19 ± 0.54 95.06 ± 0.13 93.93 ± 0.15 97.12 ± 0.19
Exphormer 89.52 ± 0.54 69.09 ± 0.72 91.59 ± 0.31 95.27 ± 0.42 95.77 ± 0.15 97.16 ± 0.13
NAGphormer 89.70 ± 0.19 71.51 ± 0.13 91.22 ± 0.14 95.49 ± 0.11 95.75 ± 0.09 97.34 ± 0.03
CoBFormer 89.47 ± 0.24 71.51 ± 0.38 90.42 ± 0.53 94.97 ± 0.26 94.95 ± 0.42 96.85 ± 0.07
VCR-Graphormer 89.77 ± 0.15 71.67 ± 0.10 91.75 ± 0.15 95.53 ± 0.14 95.37 ± 0.04 97.34 ± 0.04
Polynormer 89.88 ± 0.18 72.02 ± 0.25 93.68 ± 0.21 96.46 ± 0.26 95.53 ± 0.16 97.27 ± 0.08

DCAFormer 89.95 ± 0.13 72.20 ± 0.25 94.00 ± 0.08 95.85 ± 0.10 95.32 ± 0.06 97.37 ± 0.05

(1) Compared to various GNNs, DCAFormer shows significant improvement on most datasets,
which is mainly due to its dual-branch module that can simultaneously capture local and global
information of the graph. Traditional GNNs are typically effective at aggregating local neighborhood
information but struggle to capture long-range dependencies. DCAFormer captures long-range
dependencies through intercluster attention, thereby making up for the limitations of traditional
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GNNs. Additionally, compared to the recent GNN model PCNet, DCAFormer demonstrates a clear
advantage. Although PCNet captures both homogeneous and heterogeneous information, it has
limitations in extracting homogeneous information, which restricts its performance. In contrast,
DCAFormer can effectively extract homogeneous information through both GNN module and
dual-branch Transformer module, thereby enhancing its overall performance.

(2) Compared to other GTs, DCAFormer exhibits superior performance on most datasets. This
improvement can be attributed to DCAFormer’s optimization in the Transformer: by combining GNN
output with original features, it optimizes the construction of query, key, and value matrices,
providing richer graph structural information. In contrast, conventional GTs usually rely on positional
or structural encodings to supplement graph structural information. This approach may be insufficient
to fully capture the complex relationships between nodes, which is effectively compensated by the
design of DCAFormer. Although the recently proposed polynomial Transformer model, Polynormer,
has shown certain advantages, it incorporates graph structure information as polynomial coefficients,
which may lead to insufficient utilization of structural information. In comparison, DCAFormer
integrates graph structure information more effectively, resulting in superior performance on multiple
datasets.

Overall, DCAFormer achieves state-of-the-art performance on 4 datasets and performs
competitively on the Photo and CS datasets, demonstrating its effectiveness in node classification
tasks.

5.2.2. Comparison on large-scale datasets

To verify the scalability of DCAFormer, we conduct experiments on two large-scale datasets and
compare it with 10 baseline models. Since the graph in Ogbn-Products is too large for full-batch
training on a GPU, we adopt the random partitioning method proposed by Wu et al. [48] for mini-
batch training. The experimental results are shown in Table 3, where the best results are highlighted in
bold black, and OOM indicates out-of-memory errors.

From the results in Table 3, we can observe that:

(1) DCAFormer is capable of running on large-scale graphs, while some baseline models fail to
complete training due to memory constraints. This demonstrates the good scalability of DCAFormer
for handling large graph tasks.

(2) On the Ogbn-Arxiv dataset, DCAFormer significantly outperforms all baseline models, showing
strong advantages. On the Ogbn-Products dataset, DCAFormer outperforms most baseline models
and approaches optimal performance. This highlights the effectiveness of DCAFormer on large-scale
graphs.

(3) Compared to small-scale datasets, DCAFormer achieves more significant performance
improvements on large-scale datasets. This could be because large-scale graphs provide Transformer
with richer feature and structural information, allowing them to fully leverage their global modeling
capabilities. Furthermore, DCAFormer’s dual-branch architecture effectively integrates local and
global information, further enhancing its performance.
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Table 3. Comparison of all models in terms of mean accuracy ± stdev (%) on large-scale
datasets.

Method Ogbn-Arxiv Ogbn-Products

GCN 71.74 ± 0.29 75.64 ± 0.21
GAT 72.01 ± 0.20 79.45 ± 0.59
GraphSAGE 71.49 ± 0.27 78.29 ± 0.16
GPRGNN 71.10 ± 0.12 79.76 ± 0.59

GraphGPS 70.97 ± 0.41 OOM
Exphormer 72.44 ± 0.28 OOM
NAGphormer 70.13 ± 0.55 73.55 ± 0.21
SGFormer 72.63 ± 0.13 74.16 ± 0.31
GOAT 72.41 ± 0.40 82.00 ± 0.43
CoBFormer 72.16 ± 0.39 78.15 ± 0.07

DCAFormer 73.04 ± 0.07 81.68 ± 0.49

5.3. Efficiency of DCAFormer

5.3.1. Efficiency comparison between DCAFormer and standard Transformer

To validate the efficiency of DCAFormer described in Section 4.6, we compare it to the standard
Transformer (ST) on node classification task. Specifically, we evaluate classification accuracy (%),
training time per epoch (s), and GPU memory consumption (GB) for both models. ST includes a multi-
head attention module and an FFN module. To ensure a fair comparison, the multi-head attention in
ST uses only a single layer of single-head attention and does not process the input such as position
encodings. Table 4 presents the comparison results.

Table 4. Efficiency comparison between ST and DCAFormer.

Dataset
Acc. (%) Train/Epoch (s) Mem. (GB)

ST DCAFormer ST DCAFormer ST DCAFormer

PubMed 84.72 89.95 0.1891 0.0184 7.71 0.36
Computer 83.39 94.00 0.0944 0.0267 3.79 1.07
Photo 91.29 95.85 0.0930 0.0203 1.20 0.56
CS 93.91 95.32 0.2494 0.0323 7.10 1.17
Physics — 97.37 OOM 0.0315 OOM 1.62
Ogbn-Arxiv — 73.04 OOM 0.1797 OOM 6.17
Ogbn-Products — 81.68 OOM 3.1751 OOM 11.74

From the results in Table 4, we can observe that:
(1) DCAFormer outperforms ST in node classification accuracy on all datasets, indicating that ST

is difficult to process graph data directly. ST cannot effectively utilize graph structural information,
which is crucial for node classification tasks.
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(2) Compared with ST, DCAFormer significantly reduces training time and GPU memory
consumption. Specifically, on the PubMed and CS datasets, the training time is reduced by 90% and
87%, respectively, and the GPU memory consumption is decreased by 95% and 84%, which proves
the efficiency of DCAFormer. In addition, on larger-scale datasets like Ogbn-Arxiv and
Ogbn-Products, ST is unable to complete training due to memory constraints, while DCAFormer is
able to run smoothly, further proving its efficiency in processing large-scale graphs, which is also
consistent with the conclusion in Section 4.6.

5.3.2. Efficiency comparison between DCAFormer and other models

In addition, to further verify the efficiency of DCAFormer, we also compare it with other widely
used models, including two classic GNNs (GCN, GAT) and two latest GTs (NAGphormer,
CoBFormer). The results are shown in Table 5. It is worth noting that the number of attention heads
for GAT is set to 8, while the other models use the default parameter configurations recommended in
their respective papers.

From the results in Table 5, we can observe that:

(1) GCN, as a classic GNN model, has relatively low time and GPU memory consumption.
Although GAT does not consume much training time, its attention mechanism increases memory
overhead. Despite DCAFormer incorporating a GNN module, its time and memory consumption do
not increase significantly, which reflects the efficiency of the model design.

(2) NAGphormer is designed as a mini-batch training model, and its tokenization mechanism
effectively reduces memory consumption, but at the same time increases training time. CoBFormer
employs graph partitioning and a bi-level global attention mechanism, demonstrating higher
efficiency. In contrast, DCAFormer is comparable to both in terms of training time and memory
consumption.

Table 5. Efficiency comparison between DCAFormer and other models.

Method
PubMed CoraFull Computer

Train/Epoch (s) Mem. (GB) Train/Epoch (s) Mem. (GB) Train/Epoch (s) Mem. (GB)

GCN 0.0069 0.16 0.0187 1.35 0.0143 1.05
GAT 0.0098 0.31 0.0309 3.09 0.0230 2.12
NAGphormer 0.3440 0.60 17.0219 1.13 0.2096 0.42
CoBFormer 0.0257 0.17 0.0276 0.85 0.0279 0.31
DCAFormer 0.0184 0.36 0.0491 1.79 0.0267 1.07

Photo CS Physics

GCN 0.0100 0.55 0.0135 1.00 0.0128 1.52
GAT 0.0143 1.10 0.0194 1.91 0.0203 3.06
NAGphormer 0.1029 0.10 1.4450 1.70 49.3211 0.98
CoBFormer 0.0258 0.16 0.0260 0.62 0.0337 1.41
DCAFormer 0.0203 0.56 0.0323 1.17 0.0315 1.62

Electronic Research Archive Volume 33, Issue 2, 1093–1119.



1110

5.4. Ablation study and analysis

In this section, we conduct ablation experiments on the critical modules of DCAFormer, aiming to
further analyze the contribution of each module to the model performance.

5.4.1. Ablation of dual-branch Transformer module

This module includes not only the local and global branches but also the construction of Q, K, and
V matrices within the Transformer. To evaluate the contribution of each component in this module, we
design the following model variants:

• DCAFormer-Lo: This variant retains only the local branch for node classification.
• DCAFormer-Gl: This variant retains only the global branch for node classification.
• DCAFormer-G: This variant constructs the Q, K, and V matrices in Transformer using only the

GNN output.
• DCAFormer-X: This variant constructs the Q, K, and V matrices in Transformer using only the

original features.

The ablation results of this module are shown in Table 6. From the results in Table 6, we can observe
that:

(1) DCAFormer-Lo outperforms DCAFormer-Gl on all datasets, but neither performs as well as
the full DCAFormer. This indicates that it is more crucial to capture intracluster local information
than intercluster global information in node classification tasks. However, combining local and global
information can further enhance classification performance, highlighting the synergistic effect of the
dual-branch Transformer module.

Table 6. Performance of various variants of DCAFormer (%).

Method PubMed CoraFull Computer Photo CS Physics Ogbn-Arxiv

DCAFormer-Lo 89.94 71.47 93.42 95.78 95.17 97.28 72.87
DCAFormer-Gl 82.06 64.53 93.37 95.53 95.06 97.27 70.46
DCAFormer-G 89.88 72.19 93.66 95.80 94.95 97.33 72.90
DCAFormer-X 84.04 57.64 92.50 92.81 89.62 92.63 65.74

DCAFormer 89.95 72.20 94.00 95.85 95.32 97.37 73.04

(2) The performance of DCAFormer-Lo is close to that of the DCAFormer, demonstrating that
noly the local branch is capable of effectively representing graph data. Nevertheless, integrating
global information can still improve the node classification results, suggesting that the two types of
information are complementary and collectively enhance the overall performance of the model.

(3) The performance of DCAFormer-G is slightly lower than DCAFormer, indicating that using
the GNN output alone to construct the Q, K, and V matrices can effectively leverage graph structural
information and improve model performance. However, without the original features, the model’s
performance cannot reach its optimal level.

(4) The performance of DCAFormer-X is significantly lower than DCAFormer, demonstrateing
that using only the original features to construct the Q, K, and V matrices cannot fully utilize graph
structural information. When using Transformer for node classification, graph structural information
is crucial as it can help the model capture the dependencies between nodes.
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(5) DCAFormer constructs the Q and K matrices using GNN output, capturing graph structural
information and effectively calculating the attention between nodes. At the same time, it uses the
original features to construct the V matrix, preserving the original node information. Combining GNN-
generated features and original features maximizes the information utilization in graph data, thereby
improving the accuracy of node classification.

5.4.2. Ablation of GNN module

To explore the effects of different GNNs on the performance of DCAFormer, we replace the GCN
in the module with other commonly used GNNs, including GAT, APPNP, GPRGNN, and GCNII, and
conduct comparative experiments. All replacement models are implemented with a two-layer structure
to ensure a fair comparison in terms of model complexity. The experimental results are shown in
Table 7.

From the results in Table 7, we can observe that:
(1) Replacing GCN with GPRGNN and GCNII improves performance on all datasets, while using

GAT and APPNP also show better performance on most datasets. This indicates that the GNN module
in DCAFormer has a certain flexibility and can be compatible with other GNNs to further enhance
performance.

(2) Combined with the results in Table 2, it can be found that GAT, APPNP, and GPRGNN
outperform GCN on their own, so the performance of the base GNN model directly affects the overall
performance of DCAFormer. In other words, the better the base GNN model performs in node
classification tasks, the greater the improvement in DCAFormer’s performance.

(3) Regardless of the GNNs used, DCAFormer consistently outperforms using these models alone.
This demonstrates that the overall framework of DCAFormer can fully utilize the strengths of the base
models, further optimizing the node classification performance.

Table 7. Performance of GNN module using different models (%).

Method PubMed CoraFull Computer Photo CS Physics

GCN 89.95 72.20 94.00 95.85 95.32 97.37
GAT 89.61 72.61 94.07 96.80 94.89 97.45
APPNP 89.83 74.40 92.76 96.51 95.40 97.41
GPRGNN 91.43 74.65 94.12 96.69 96.45 97.80
GCNII 90.18 73.57 94.57 96.41 95.40 97.55

5.4.3. Ablation of graph partitioning algorithms

Table 8. Performance of DCAFormer using different graph partitioning algorithms(%).

Method PubMed CoraFull Computer Photo CS Physics

METIS 89.95 72.20 94.00 95.85 95.32 97.37
K-means 89.76 71.46 93.82 95.75 95.31 97.43
S3GC 90.10 72.78 94.36 95.85 95.35 97.47
CDC 90.05 72.50 94.29 96.11 95.46 97.43

Electronic Research Archive Volume 33, Issue 2, 1093–1119.



1112

This subsection explores the impact of different graph partitioning methods on the performance of
DCAFormer. We replace the default graph partitioning algorithm, METIS, with other clustering
methods, including a classical method, K-means [61], and two recent learning-based clustering
methods, S3GC [62] and CDC [63]. K-means is a popular clustering algorithm that partitions data
into K groups by minimizing intracluster variance. S3GC combines contrastive learning with GNNs
and node features to learn clusterable representations. CDC is an efficient clustering framework for
complex data that combines graph filtering and adaptive anchors to handle various data types with
linear complexity. The experimental results are shown in Table 8.

From the results in Table 8, we can observe that:
(1) K-means performs slightly worse than METIS across all datasets. This may be because K-

means relies solely on features for clustering and does not consider the structural information of the
graph. In contrast, METIS partitions the graph based on its topology, allowing the partitioning results
to better preserve adjacency relationships, thereby providing more reasonable subgraph divisions and
enhancing model performance.

(2) S3GC and CDC outperform METIS across all datasets. This may be due to their ability to
adaptively learn more reasonable cluster structures rather than relying on static graph partitioning
rules. A well-structured clustering strategy is crucial for DCAFormer’s information modeling, making
learning-based partitioning methods significantly improve the overall model performance.

5.5. Parameter study

Figure 2. Performance of DCAFormer for different α.
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In this section, we analyze two critical hyperparameters in DCAFormer: The weight coefficient α
used to fuse the outputs of the two branches (see Eq (4.7)) and the number of graph partitions P.

5.5.1. Analysis of weight coefficient α

In this subsection, we discuss the impact of the weight coefficient α on the model performance.
Based on the results of the ablation study in Table 6, the local branch outputs outperform those of the
global branch. Therefore, we empirically select a range of α values {0.1, 0.2, 0.3, 0.4, 0.5} and observe
their effect on the model’s performance. The experimental results are shown in Figure 2.

As can be seen in Figure 2, with the change of α, the overall accuracy changes more smoothly,
and the fluctuation of each dataset is relatively small. This demonstrates that the model exhibits good
robustness to the choice of α. Most datasets achieve their best performance when α is between 0.2 and
0.3, indicating that an appropriate balance between local and global information fusion is crucial for
improving model performance.

5.5.2. Analysis of number of graph partitions P

Figure 3. Performance of DCAFormer for different P.

In this subsection, we explore the impact of different graph partition numbers on the model
performance and report the results in Figure 3. In theory, if P is too small, each cluster will contain
too many nodes, increasing the computational burden; if P is too large, the partition will be too fine,
reducing partition quality and potentially introducing noise. Therefore, we choose P close to the
square root of the number of nodes or its multiple, i.e., close to

√
n or m ×

√
n, where n represents the
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number of nodes and m is a constant. This partition results in clusters with a more appropriate node
size, effectively reducing the computational burden while ensuring partition quality.

From Figure 3, it can be observed that on the Physics dataset, variations in P have minimal impact
on model performance, suggesting a lower dependency on graph partitioning, whereas on the other
datasets, the optimal P is crucial for achieving peak performance. Nonetheless, even without choosing
the optimal P, DCAFormer generally outperforms other models, validating its robustness under
different graph partition numbers.

6. Conclusions

In this paper, we propose a dual-branch graph Transformer model, DCAFormer, for the node
classification task. The model divides the graph into subgraphs by graph partitioning and utilizes the
dual-branch Transformer module to extract local and global information, respectively, thereby
effectively reducing the computational complexity of Transformer and reducing the noise interference
caused by long-distance irrelevant nodes. Additionally, we propose a hybrid feature approach to
optimize the construction of the query, key, and value matrices for Transformers of different branches
in order to better adapt to their specific needs. Experiments on several datasets of different sizes show
that DCAFormer outperforms existing representative GNNs and GTs in terms of performance.

In future work, we plan to further optimize DCAFormer to improve its efficiency on larger-scale
graph data and generalize it to more graph tasks, such as graph classification. In addition, there are
still some areas where the model can be improved. First, we will explore adaptive or learning-based
partitioning methods to improve the quality of graph partitioning and enhance the flexibility and
adaptability of the model. Second, how to effectively integrate the information of heterogeneous
graphs is also one of the improvement directions, which will help us better cope with the complex
relationships between different types of nodes and edges, thereby expanding the scope of application
of the model. Furthermore, designing a more effective information interaction mechanism between
the two branches could help improve prediction accuracy and robustness.
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