
Electronic  
Research Archive

https://www.aimspress.com/journal/era

ERA, 33(2): 890–906.
DOI: 10.3934/era.2025040
Received: 4 September 2024
Revised: 02 January 2025
Accepted: 15 January 2025
Published: 14 February 2025

Research article

Constructing hidden differential equations using a data-driven approach
with the alternating direction method of multipliers (ADMM)

Jye Ying Sia1,2,*, Yong Kheng Goh2, How Hui Liew2 and Yun Fah Chang3

1 School of Mathematical Sciences, Sunway University, Bandar Sunway, 47500 Selangor, Malaysia
2 Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar

Sungai Long, Cheras, 43000 Kajang, Selangor, Malaysia
3 School of Accounting and Finance, Taylor’s University, 47500 Subang Jaya, Selangor, Malaysia

* Correspondence: Email: jyeyings@sunway.edu.my.

Abstract: This paper adopted the alternating direction method of multipliers (ADMM) which aims
to delve into data-driven differential equations. ADMM is an optimization method designed to solve
convex optimization problems. This paper attempted to illustrate the conceptual ideas and parameter
discovery of the linear coupled first-order ODE. The estimation of the coefficients of the underlying
equation utilized a combination of algorithms between physics-informed neural networks (PINNs) and
sparse optimization. Both methods underwent a sufficient amount of looping during the search for
the best combinations of coefficients. The PINNs method took charge of updating weights and bi-
ases. The updated trainable variables were then fetched to the sparse optimization method. During the
sparse optimization process, ADMM was used to restructure the constrained optimization problems
into unconstrained optimization problems. The unconstrained optimization problem usually consists
of smooth (differentiable) and non-smooth (non-differentiable) components. By using the augmented
Lagrangian method, both smooth and non-smooth components of the equations can be optimized to
suggest the best combinations of coefficients. ADMM has found applications in various fields, such
as signal processing, machine learning, and image reconstruction, which involve decomposable struc-
tures. The proposed algorithm provides a way to discover sparse approximations of differential equa-
tions from data. This data-driven approach provides insights and a step-by-step algorithm guide to
allow more research opportunities to explore the possibility of representing any physical phenomenon
with differential equations.
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1. Introduction

Data-driven differential equations aim to formulate and study various types of differential equations
using simulated or available data without explicit knowledge of the underlying physical principles
governing the system. As we know, well-known differential equations are often derived from known
physical laws or theories. In data-driven approaches that solely rely on data, it is believed that the
data carries information and properties representing the physical system. Applying machine learning
mechanisms with the help of statistical methods, the underlying differential equations can be estimated
directly from the observed data.

In order to demonstrate the accuracy of the parameter estimation, a set of coupled first-order ODEs
is solved using both the numerical solution, the explicit Runge-Kutta method of order 5(4) (RK45), and
the analytical method, PINNs. As a general note, any selection of a suitable numerical method should
work to compare with the trained solutions obtained from the PINNs method. Generally, quoted from
one of the chapters in [1], the RK method is an effective and widely used method for solving the initial-
value problems of differential equations. In Python Scipy library documentation, the numeric 5(4)
indicates that the error is controlled assuming the accuracy of the fourth-order under the classification
of accuracy method, but steps are taken using the fifth-order accuracy formula. The analytical solutions
have been verified (see [2]) that they are similar to the numerical solutions. In the same paper, it
was illustrated that the universal approximation theorem (UAT) stated that neural networks (NN) have
universality, i.e., any function can be approximated by approaching the result with NNs. NNs can
achieve this by adjusting weight and bias parameters in the hidden layer to derive the staircase fitting of
the respective function. The weights determine the width of the function, whereas the biases determine
the position of the function.

The beauty of the data-driven approach is shown using the set of experimental data points in the
coefficient search. Simply put, the set of experimental data points portrays the features of the ODE,
specifying the parameter estimation of the unknown underlying equations. The parameter estimation
can be achieved with the combination of the PINNs method and the sparse optimization method. The
use of the PINNs method is due to its ability to provide reasoning on physical phenomena that model
the dynamic development of the system of equations, explained by the derivatives computed from the
PINNs method. In this paper, in order to achieve the purpose of parameter estimation, the known
coupled first-order ODE is kept aside, and then the analytical solution is employed as the experimental
data. Notation-wise, the experimental data for a coupled first-order ODE is denoted as u[x, y] during
the algorithm setting. Knowing the values of u[x, y], the derivatives, ut, can be computed by using the
PINNs method. To kickstart the estimation process, a column vector array, ϕ, consisting of all potential
variables, is formed. For example, ϕ =

[
1 x x2 x3 y ...

]
. If there are in total n number of potential

variables listed, then the dimension of the ϕ matrix follows n × 1. Since all the potential variables
are generated from the variables x and y, based on the given data, expressed in u in terms of x and y,
the numerical values of each variable listed in the ϕ array will be computed accordingly. The desired
coefficient matrix is denoted as Λ. This coefficient matrix, Λ, generally is defined to follow dimension
m × n, depending on the definition of the functions to be optimized. Hence, similar to the concept of
solving a system of linear equations, Ax = b, the setting to search for the best coefficient combination
is set to solve ΛTϕ = ut. The Λ matrix will undergo a series of training processes to optimize the
coefficients. It is expected that the outcome of the optimization should suggest the best-fit combination
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of the coefficients that represent the underlying equations. The detailed process of optimization is
illustrated in Section 3.2.

To the best of our knowledge, the most frequently used method in solving inverse problems with the
aim to uncover the coefficient of the governing equations can be achieved by optimization methods,
Bayesian inference, and regression techniques. Some of the examples are sparse modeling (demon-
strated in [3]) and unconstrained mathematical optimization such as the gradient descent algorithm
involving iterations in training machine learning models. Recently, Kamyab et al. [4] have conducted
a survey on current deep learning methods used for solving inverse problems. They categorized the
existing analytical methods into analytic inversion, iterative methods, discretization as regularization,
and variational methods, which often make use of the concept to regularize and constrain the problem
to obtain numerically stable solutions. In their paper, the alternating direction method of multipliers
(ADMM) is mentioned which can deal with a huge collection of images that need to be optimized with
a regularizer. This is because the ADMM algorithm suggests that by combining the features of dual
decomposition and the augmented Lagrangian method, it could efficiently handle large-scale prob-
lems. ADMM uses the augmented Lagrangian method as the optimization catalyst to search for the
best combinations of coefficients. Chen et al. [5] have further described the usage of ADMM in discov-
ering the coefficient of the underlying equation. In [6], they outlined the idea of ADMM in low-rank
matrix recovery. In fact, ADMM is an optimization algorithm being used to solve convex optimization
problems, particularly those involving separable objectives or constraints. The intention of this paper
is to apply ADMM for parameter estimation. The optimization problem setting in this paper contains
a combination of differentiable parts and non-differentiable parts. In this context, the concept of alter-
nating in ADMM refers to alternating between optimizing the differentiable part and non-differentiable
part while updating the Lagrange multipliers. The PINNs method is used to optimize the differentiable
part. Then, the sparse optimization method is applied to optimize the non-differentiable part which
could then suggest the best combination of parameters which leads to the simplest equations. Hence,
PINNs and sparse optimization are applied alternatively in a loop. This is a process to keep the train-
able variables (weights and biases) updated and at the same time search for optimized sparse solutions.
Both the PINNs and sparse optimization methods attempt to extract the underlying properties of the
differential equations that describe the relationships between variables within a system based solely on
experimental data. This invention allows for the discovery or modeling of complex systems where the
underlying governing equations might be unknown or difficult to ascertain through numerical methods.

2. Significance

It is commonly known, at least to the best of our literature review, that dealing with the inverse
problem of unknown underlying equations is difficult to recover. This means that given a set of data
from any physical phenomenon, it is a great challenge to search for the underlying equations that
govern the phenomena because the underlying equations are unknown. Hence, understanding the
features of the given data set is important. Since the experimental data is trained using the proposed
PINNs method, it could speed up the modeling process as the coupled first-order ODE is well studied
beforehand. The specialty of the PINNs method, which allows the training process to be done with
reasoning, has indirectly assisted the understanding of the dynamics of the system.

The aim is to uncover the equations governing a physical phenomenon directly from data, which
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can be done in the spirit of machine learning or statistical learning. This work develops a novel frame-
work to discover the underlying governing equations in a dynamical system. The proposed combi-
nations of algorithms provide a way to discover sparse approximations of differential equations from
data. This data-driven approach provides insights and a step-by-step algorithm guide to allow more
research opportunities to explore the possibility of representing any physical phenomenon with dif-
ferential equations. The illustration showing how the proposed method works on the simple linear
coupled first-order ODE can serve as a ground truth of the reliability and effectiveness of the method.
Then, the mechanism could be extended to deal with complex systems.

3. Materials and methods

This section will outline the details of the PINNs method and the sparse optimization method.

3.1. The physics-informed neural networks (PINNs) method

In every neural-network training process, trainable variables are initiated. Similar to the setting
of conventional neural networks (CNNs) and multi-layer perceptrons (MLPs) as described in [7], the
PINNs method requires the setting of hyperparameters. Since the setting of hyperparameters is done
before the training process, these parameters do not learn from the data. Instead, these parameters are
set to determine the training behavior and model architecture, specifying how models can be learned or
formed. Initially, it is required to set up the model architecture by deciding the number of input, hidden,
and output layers, number of neurons, and activation function in use. The number of neurons serves
as the communication platform between the input layer and hidden layers and then between hidden
layers and output layer during the training process. All the layers of neurons are connected by weights.
Hyperparameters such as the learning rate, batch size, number of epochs, and types of optimizers are
initialized for model compilation in the PINNs method. Every epoch of the training process will lead
to the trainable variables, i.e., weight and bias updates with backpropagation, particularly taking place
in the hidden layers. All CNNs, MLPs, and PINNs are also required to employ an activation function.
During the training process, the activation function is selected as a catalyst to increase the accuracy
of the model training. Some of the commonly used activation functions are ReLU, sigmoid, and tanh.
Lastly, the output layer provides the trained solutions. Unlike CNNs and MLPs, the PINNs method is
designed to approximate solutions to partial differential equations (PDEs) or ordinary differential equa-
tions (ODEs). This can be achieved because the PINNs method incorporates the underlying physics
of a problem by embedding differential equation constraints into the loss function. The uniqueness
of the PINNs method which incorporates the data and derivative loss in the model is classified as the
regularization step in neural networks. This regularization step can ensure the neural network learns
solutions consistent with the underlying physical laws and generalizes well to unseen scenarios. The
entire training process of PINNs is illustrated in Figure 1. With this, model compilation is initiated
to build the model so that the loss function embedded can assist in ensuring that optimization can be
achieved for data consistency, and at the same time complying with physical laws.

Usually, the loss function is formed based on the mean square difference from the data values part
and derivatives (gradients) part, as described in [8]. During this optimization process, the optimizer
algorithm is specified as well. The optimizer selected is Adam with a default learning rate of 0.001.
The Adam optimizer is chosen because Adam could adapt to the learning rate for each parameter
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individually, which is especially useful in solving differential equations. The default learning rate of
0.001 in Adam has been empirically tested and works well in many deep learning applications (see [9]).
The learning rate of 0.001 is also adopted in Scikit-learn from the Python library which provides tools
for machine learning, data mining, and data analysis. Once the model is compiled, the next training
step is to fine-tune and seek the best-trained solution with the smallest loss value. This step is where
the model fitting is executed. Model fitting is where the actual training process begins using training
data with forward and backpropagation processes to update the trainable variables in each epoch.

Figure 1. Procedure of PINNs.

In this paper, the PINNs method is used to obtain the experimental data sets to pass over to the
sparse optimization part to retrieve the coefficients of the underlying equations. The PINNs method
is one type of machine learning method that combines neural networks with physical characteristics
to solve differential equations and model physical systems. Hence, unlike ordinary neural networks,
the PINNs method is able to train the data and suggest a solution with reasoning. This statement
is supported by the paper written by [10]. In the same paper, some common activation functions
were listed such as sigmoid, hyperbolic tangent, rectified linear unit (ReLU), Gaussian error linear
unit (GELU), etc. Usually, the activation function is commonly assumed to be sufficiently smooth in
practice. The selection of an activation function and optimizer are subject to the suitability of the fitting
problem and there is no strict guide on which is better. Raissi et al. [11] are some of the pioneers who
used the PINNs method to solve forward and inverse problems for partial differential equations. Mishra
et al. [12] were also able to demonstrate that the PINNs method could efficiently approximate inverse
problems for PDEs. As stated in the paper by Stiasny et al. [13], the PINNs method can universally
approximate any continuous function with an arbitrary degree of accuracy. This means that the PINNs
method is not only able to ensure that the accuracy of the suggested solution can be achieved, but it
also makes sure that the gradients of the equation can be satisfied.

The computation of the gradients of the equation is performed by gradientTape (see [14]), which is
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a built-in command in TensorFlow. Sometimes, gradientTape is referred to as an automatic differentia-
tion mechanism. TensorFlow uses a “tape” to record the operations and input values from the forward
pass to compute the gradients using backpropagation. After the computation, all objects temporarily
stored in the tape will be discarded, and TensorFlow releases any associated resources. The com-
putation involved in automatic differentiation uses the concept of the dual numbers algorithm. Dual
numbers encode both the function value and its derivative simultaneously for efficient computation of
derivatives through the chain rule.

3.2. Sparse optimization method

Sparse optimization optimizes the solutions to optimization problems while encouraging sparsity
in the solution, meaning that the solution is expected to have many zero or close-to-zero elements.
This is because the sparse solutions aim to identify only a few parameters or variables that contribute
significantly, while the rest are close to zero. In the paper written by Schaeffer [15], it is stated that
sparsity plays a key role in optimization and data sciences. In particular, the regularization term, l1

norm, is often used as a proxy for sparsity. The paper stated that l1 norm is used to penalize the
number of nonzero coefficients in order to promote coefficient sparsity. Therefore, sparse optimization
often involves the use of regularization terms to be in use as a “penalty” to fine-tune the magnitude
of coefficients or parameters in optimization problems. In the survey paper written by Li et al. [16],
they reviewed and made comparisons on some sparse optimization methods used for modeling such
as LASSO, elastic net and others. In their paper, sparse modeling is introduced for feature selection.
It is emphasized that features with nonzero estimated coefficients are selected. Hence, with the same
principle, in this paper, the best coefficients are obtained based on nonzero estimated coefficients.

In situations where the underlying data or parameters have a sparse structure or where simplicity
and interpretability of the solution are desirable, sparse optimization appears to be particularly useful.
In machine learning, sparse optimization is employed for feature selection. Especially while dealing
with massive data (see [17]), sparse optimization can achieve the goal of identification of the most
relevant features or variables that contribute to a predictive model. As indicated in their paper, while
searching for the relevant patterns, aiming to strike a balance between accuracy and simplicity, sparse
optimization could efficiently select the crucial and essential variables, ignoring the less important
ones.

Any non-smooth function is non-differentiable and hence has limitations to be solved using well-
known optimization methods, such as steepest descent, conjugate gradient, etc. For a convex function,
it is not necessary that there exists a local or global minimum point. To tackle similar problems, as
stated in the paper written by Huang et al. [18], it is possible to make use of ADMM which could effi-
ciently decompose the complex problem into smaller pieces so that each piece will be easier to handle
by speeding up the optimization process. The construction of ADMM involves the minimization of
a sum of functions. Each component in the function is possibly subject to some constraints. As de-
scribed in [19], recently ADMM became a well-known optimization framework for many conventional
machine learning problems. As stated, ADMM serves as a gradient-free optimizer that can efficiently
overcome the gradient vanishing problem and poor-conditioning optimization problems. In summary,
ADMM restructures the constrained objective function into smaller parts. It is believed that by doing
so, the smaller parts of the functions will be less complicated and comparatively able to be solved more
easily. The technique applied for restructuring the objective function in ADMM uses the augmented
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Lagrangian method so that the resulting objective function will be unconstrained and can be solved
term by term in the function.

Generally, to illustrate the algorithm, recall that our intention is to uncover the underlying equations.
Hence, it is assumed that f (x) denotes the smooth convex function of the underlying equations, which
is done by solving ΛTϕ − ut = 0 which is required to be minimized, written as minimize

x
f (x). Due

to the convexity of the coupled first-order ODE, another function g(x) is introduced to represent the
non-smooth part. The objective function has now become minimize

x
f (x) + g(x). This construction of

the objective function tallies with what has been recommended by Nishihara et al. [20]. In order to
avoid confusion of the terms, the objective function can be re-written as

minimize
x, z

f (x) + g(z),

subject to h(x − z) = 0.
(3.1)

The constraint h(x, z) = h(x − z) = 0 is an artificially created constraint. During the process of mini-
mizing the function f (x), an l1 regularization term is imposed, contributed by the function g(z) = λ||z||1
to ensure the suggested outcome (a combination of coefficients of the model) is at its simplest form.
The constraint, h(x − z) = 0, compares the difference between the smooth (x) and non-smooth (z)
terms, which are assumed to be approximately zero. Ideally, no dissimilarity between x and z should
appear, whereby x and z should match exactly. As suggested by Yuan et al. [21], the formation of Eq
(3.1) is a nonconvex sparsity constrained/ sparse-regularized optimization problem, which is difficult
to solve. Therefore, by applying ADMM, the constrained optimization problem can be transformed
into unconstrained optimization, and hence, the general augmented Lagrangian form of the objective
function is:

minimize
x, z

f (x) + g(z) + yT h(x, z) +
ρ

2
||h(x, z)||22. (3.2)

Looking at the objective function written in the form of Eq (3.2), the notations f (x) and g(z) are
represented in the same context as in Eq (3.1). The term yT is introduced as the Lagrange multiplier for
the constraint h(x, z); whereas ρ is the augmentation parameter controlling the penalty on the constraint
violation. Usually, ρ is assigned to the value of one being the natural scaling of the baseline result.
Specifically, for the coupled first-order ODE in this paper, the augmented Lagrangian form is:

minimize
Λ, z

1
2 ||Λ

Tϕ − ut||
2
2 + λ||z||1 +

∑
i, j

(yi jΛ
T − yi jzT ) +

ρ

2
||ΛT − zT ||22. (3.3)

Referring to Eq (3.3), the dimension of ΛTϕ − ut, z, yi jΛ
T − yi jzT follows m × n. Particularly, the

smooth function 1
2 ||Λ

Tϕ − ut||
2
2 usually will be solved by the least squares estimator method. The least

squares estimator method minimizes the sum of the squares of the difference between the entries of
ΛTϕ and ut. As for the non-smooth function, it is observed that the non-smooth function g(z) = λ||z||1
utilizes the l1 norm which tries to retain z to zero. The accompanied coefficient λ is a penalty set
to control how sparse the non-smooth function should be. The larger the value for λ, the higher the
sparsity of the outcome will be, leading to more zeros in the coefficients. In [22] on the details of
ADMM in optimization, the sparsity can be achieved in the suggested outcome, i.e., the sparse matrix
because of the regularization norm 1 term. In order to deal with the non-smooth function, z, the soft
thresholding denoted as S , will be introduced to “smoothen” the term ||z||1. Then, the notation y here
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serves as an indicator of minimization on the function ΛT − zT . Since ΛT − zT approaches zero, the
term

∑
i, j

(yi jΛ
T − yi jzT ) will converge to zero. The last term with notation ΛT − zT in the equation is

accompanied by another penalty, ρ. This penalty term controls how strictly the condition of ΛT − zT

should be satisfied. The larger ρ is, the more strict it is to ensure ΛT − zT must be zero to satisfy the
condition.

Solving for Eq (3.3) under sparse optimization involves an iteration update of the terms Λ, z, and y,
which is

ΛT
k+1

(
ϕϕT + ρI

)
=
(
utϕ

T − yk
i j + ρz

T
k

)
, (3.4)

zT
k+1 = S

λρ, y
k
i j

ρ
+ ΛT

k

 , (3.5)

yk+1
i j = yk

i j + ρ
(
ΛT

k+1 − zT
k+1

)
. (3.6)

During iteration updates, components Λ, z, and y are updated to suggest the best combinations of
coefficients for the coefficient matrix, Λ.

3.3. PINNs-sparse method

As mentioned earlier, with the intention of building the ground truth of the problem, this paper
combined the PINNs method and sparse optimization approach to uncover the coefficients of the un-
derlying equations. In short, the combination of methods is named the PINNs-sparse method. The
PINNs method will be specifically applied to obtain the analytical solutions of the coupled first-order
ODE. First, given an initial-value coupled first-order ODE problem with

[
dx
dt ,

dy
dt

]
, the analytical solu-

tions are estimated using the PINNs method with time t as the input data and u as the output trained
solutions in terms of x and y, i.e., u[x, y]. Then, the ϕ array is constructed consisting of the guessing of
potential variables and is computed numerically, with the trained experimental data x and y.

The data-driven parameter estimation process kickstarts with the PINNs method when the experi-
mental data, u[x, y], are being passed over to the model setting and compilation process to set up the
model and obtain the derivative, ut. The coefficient estimation process starts by alternating the PINNs
algorithm and sparse optimization iterations in a loop. Similar to passing ut, after the initiated ΛT

coefficient matrix with all ones is passed to the sparse optimization part, the process begins with the
updates of the ΛT , z, and y components. Then, the new updated ΛT coefficient matrix will pass back
to the PINNs algorithm to repeat the training process. The PINNs part will always be in charge of
updates of trainable variables resulting in the changes in ut to pass to the sparse optimization part. This
alternating process is repeated until the loss value from PINNs and sparse optimization are both at a
minimum. In other words, once the Λ coefficient matrix is stable, loss values from both PINNs and
sparse optimization remain unchanged at minimum, and then the coefficient estimation process is com-
plete. Ideally, the training process shall not continue when the values of ut and ΛT remain unchanged.
For checking purposes, the product of the outcome obtained from sparse optimization, ΛT , and the ex-
perimental data array, ϕ, is expected to be approximately equal to ut, obtained from the PINNs method,
i.e., ΛTϕ = ut. Therefore, upon completion of the estimating process, the accuracy of the coefficient
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matrix can be determined by finding the mean square error between ΛTϕ and ut. Summarized below is
the step-by-step PINNs-sparse algorithm.

Algorithm 1 PINNs-Sparse Algorithm
Require: Initialization of hyperparameters, variables, and the model architecture setting
Ensure: Data: Analytical solutions, u[x, y], from the PINNs method.

1. Compute the derivatives, ut, on PINNs and pass over to Sparse. ▷ First PINNs
2. Find the numerical values of ut and ΛT ((Eq 3.3)).
3. Solve Eq (3.3) by performing iteration updates on ΛT (3.4), z (3.5), and y (3.6). ▷ First Sparse
4. Pass back ΛT from sparse optimization to the PINNs method.
5. Update ut in PINNs then pass to Sparse. ▷ Second PINNs
6. Repeat Steps 3 – 5 until ut and ΛT remain unchanged. ▷ Looping between PINNs and Sparse
7. Computation of the loss function and accuracy checking between ΛTϕ and ut.
8. Graphical representation based on the estimated coefficient model.

In short, the complexity of neural networks falls under the set up of the model architecture as so
far there has been no specific guide on the ideal number of hidden layers needed in the neural-network
training process. However, the computation time and the optimization process of the PINNs method
are short and efficient. The training process can be done in just a few iterations, as illustrated in the
examples in the Results section. Generally, some commonly used optimization methods such as gra-
dient descent and conjugate gradient are not suitable for large-scale, non-smooth convex optimization
problems because these methods are sensitive to the step size whereby gradients are not well-defined
everywhere causing the solutions to be hard or fail to converge. As a comparison, ADMM in the
PINNs-sparse algorithm can excel in large-scale, non-smooth convex optimization problems because
it can decompose the smooth and non-smooth components into smaller parts to solve, with the assis-
tance of the augmented Lagrangian formation and l1 norm regularization introduced.

4. Results

In this section, the derivation of the results in the searching coefficient for a linear coupled first-order
ODE using the PINNs-sparse method is demonstrated.

4.1. Linear coupled first-order ODE

The linear coupled first-order ODE illustrated in this paper is dx
dt = 1 + 0.2x − 0.3y,
dy
dt = 2 − 0.4x + 0.5y,

(4.1)

with initial condition u[t = 0] = [0, 1]. From the coupled first-order ODE, it can be observed that this
is similar to solving a system of two linear equations. Hence, the dimension of the solution, u, will be
2 × 1. Letting the dimension of the variable array, ϕ, be 3 × 1, and by convention, the dimension
of the coefficient matrix follows 3 × 2, then, represented in vector form, the equation is written as
ut = Λ

Tϕ. In this problem, the hyperparameters setting is with seven hidden layers with the number of
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neurons being 8, 16, 32, 64, 32, 16, and 8, and the activation function is GELU, running on 100 epochs
with a batch size of 4. GELU was selected because it has a significantly smoother gradient transition
than the sharp and abrupt ReLU. One of the advantages for both ReLU and GELU activation functions
is that both of them do not activate all the neurons at the same time.

4.1.1. Validation of results

The linear coupled first-order ODE is solved using both the numerical method, RK45, and the
analytical method, PINNs. The intention of having it solved by the numerical method is to make sure
the PINNs method can produce the same solutions. The trained solutions, u[x, y], obtained from the
PINNs method are compared with the numerical solutions from RK45. The comparison of the results
is shown below. It can be observed from Figure 2 that the solutions trajectory based on the PINNs
method is able to nearly overlap with the solutions trajectory of the numerical method, RK45.

Figure 2. Results between RK45 and PINNs for the linear coupled first-order ODE.

Figure 3. PINNs part training results between RK45 and PINNs for the linear coupled first-
order ODE.
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Putting aside the coupled first-order ODE, the trained solutions, u[x, y], are referred to in the search
for best combinations of coefficients to uncover the underlying equations. The known coupled first-
order ODE will not be used for any computation until the end of the coefficient search because it is used
as a reference of comparison to verify the performance of the parameter estimation of the PINNs-sparse
method.

In this paper, to demonstrate the ability of the PINNs-sparse method in coefficient search, the ϕ
array is set to include only the definite potential variable, i.e., [1 x y]. The initialization of Λ and y are
formed with a matrix of all ones, and then a random number initializes the z matrix. By performing the
PINNs-sparse procedure steps listed under Section 3.3, the coefficient search process is stopped after
observing unchanged values of ut and Λ. Figure 3 shows the PINNs part of the PINNs-sparse method,
verified by comparison with the trajectory solutions of the numerical method, RK45.

The outcome obtained from the PINNs-sparse method on the suggested parameters for the coupled
first-order ODE is shown in Eq (4.2). It is compared with the known linear coupled first-order ODE
earlier, shown in Eq (4.1). Observing the coefficients, it can be concluded that they are quite similar.
In particular, this set of combinations of coefficients is generated based on 10 iterations, with a switch
between PINNs and sparse optimization being the best fit. The learning rate is not applicable in this
problem due to setting the maximum likelihood of the function equal to zero, which is optimal. dx

dt = 0.9993 − 1.1657x − 0.1711y,
dy
dt = 1.9588 − 3.1502x + 0.7653y.

(4.2)

In order to visualize the performance of the suggested parameters for the linear coupled first-order
ODE, the estimation of the coefficients obtained from the PINNs-sparse method is substituted to be
solved using the numerical method, RK45. The trajectory solutions, based on the estimated coeffi-
cients, are compared with the trajectory solutions of the known coupled first-order ODE, solved by the
numerical method, RK45. As a graphical result of the outcome of the PINNs-sparse method, shown in
Figure 4, the parameters fit well. As an additional remark, the loss value contributed by the PINNs part
is 0.4736 whereas the loss value contributed by the sparse part is 0.01011. Hence, the total loss value
of the PINNs-sparse method is 0.4837.

Figure 4. Training results between RK45 and the PINNs-sparse method for the linear cou-
pled first-order ODE.
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As a side note, the convergence rate of PINNs in solving direct (4.1) and inverse (4.2) problems
is determined based on the indication from the log-loss of PINNs, as shown in Figure 5. It can be
observed that in the direct problem, the PINNs method is able to converge after approximately 10
epochs; the PINNs part from the inverse problem (4.2) converges after 2 epochs.

Figure 5. Log-loss of PINNs between Figures 2 and 3.

4.2. Non-linear coupled ODE

The non-linear coupled ODE showcases how the proposed method could uncover the underlying
equations of its simplest form, verified by the exact trajectory match. The proposed problem isdx

dt = 1 + 0.2x2,
dy
dt = 2 − 0.4xy − 0.3y,

(4.3)

with initial conditions u[t = 0] = [0, 1]. In this problem, hyperparameters are set to seven hidden layers
with a number of neurons of 8, 16, 32, 64, 32, 16, and 8, and the activation function is GELU, with
100 epochs and a batch size of 4. The optimizer selected is Adam with a default learning rate of 0.001.

4.2.1. Validation of results

With a similar approach, the nonlinear coupled ODE is solved using both the numerical method,
RK45, and the analytical method, PINNs. It is verified that the PINNs method works well in nonlinear
coupled equations too because both trajectories match exactly, as shown in Figure 6.

Putting aside the equations, the trained solutions, u[x, y], obtained from the PINNs method are
referred to in the search for best combinations of coefficients to uncover the underlying equations. The
known equations will not be used for any computation until the end of the coefficient search because
they are used as a reference of comparison to verify the performance of the parameter estimation of the
PINNs-sparse method.

In this problem, to demonstrate the ability of the PINNs-sparse method in coefficient search, the
ϕ array is set to include the simplest form of the potential variable, i.e., [1 x y]. The initialization of
Λ and y are formed with a matrix of all ones, and then a random number initializes the z matrix. By
performing the PINNs-sparse procedure steps listed under Section 3.3, the coefficient search process is
stopped after observing unchanged values of ut and Λ. Figure 7 shows the PINNs part of the PINNs-
sparse method, verified by comparison with the trajectory solutions of the numerical method, RK45.
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Figure 6. Results between RK45 and PINNs for the non-linear coupled ODE.

Figure 7. PINNs part training results between RK45 and PINNs for the non-linear coupled
ODE.

The outcome obtained from the PINNs-sparse method on the suggested parameters for the coupled
first-order ODE is shown in Eq (4.4). It is compared with the known non-linear coupled first-order
ODE earlier, shown in Eq (4.3).dx

dt = −0.4210 − 1.01478x + 1.2057y,
dy
dt = 0.8545 − 1.8863x + 0.7413y.

(4.4)

This set of combinations of coefficients provides an estimation of best fit. Although the terms vary
from the original equations, the trajectory for both estimated solutions and the known non-linear cou-
pled first-order ODE fit well, as shown in Figure 8. This is often the case and reasonable because under
the situation whereby the underlying equations are not known, the estimated form of the coefficients
can be freely in any form. As an additional remark, the loss value contributed by the PINNs part is
0.2636 whereas the loss value contributed by the sparse part is 0.004619. Hence, the total loss value
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of the PINNs-sparse method in this case results in value of 0.2682.

Figure 8. Training results between RK45 and the PINNs-sparse for the non-linear coupled
ODE.

Similarly, the convergence rate of PINNs in solving direct (4.3) and inverse (4.4) problems is deter-
mined based on the indication from the log-loss of PINNs, as shown in Figure 9. It can be observed
that in the direct problem, the PINNs method is able to converge after approximately 2 epochs; the
PINNs part from the inverse problem converges after 3 epochs.

Figure 9. Log-loss of PINNs between Figures 6 and 7.

5. Conclusions and future work

Regarding the comparisons of computational resource consumption and computational accuracy
between the PINNs method and any numerical method (here referring to the RK45 method), numerical
methods are well-known for their efficiency in computing power and accuracy when dealing with well-
defined optimization problems. However, when dealing with situations where equations are unknown
and only experimental and derivative data are known, here is where the PINNs method could be applied
to estimate the coefficients of the unknown equations. Generally, numerical methods are good at esti-
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mating unique solutions with specific initial and boundary conditions. However, when the optimization
problem arises with multiple conditions needing to be incorporated, then the PINNs method could be
used to optimize the parameter estimation by satisfying all the conditions as well as being able to meet
the gradient of the solution trajectory. This is because the PINNs method can naturally incorporate
boundary conditions, initial conditions, and any additional physical constraints directly into the loss
function with regularization.

As a conclusion, this paper has made use of ADMM to investigate data-driven differential equa-
tions, particularly focusing on solving convex optimization problems. The iterative process, involving
multiple loops of updating weights and biases with PINNs and employing ADMM for constrained op-
timization restructuring, underscores the complexity and efficacy of the proposed approach. This paper
has provided insights and shown how the novel method, PINNs-sparse, could uncover the governing
differential equations. This initiative could provide an alternative option to deal with similar research
problems on how to recover the underlying differential equations. This simple approach demonstrates
the potential of how the underlying differential equations can be retrieved, solely based on data. During
the search for the governing differential equations, optimization techniques are applied to ensure that
the combination of coefficients is the most ideal case with minimum error. This could also increase the
reliability of the research.

In this paper, we have demonstrated the proposed method for solving linear and non-linear coupled
ODEs for direct and inverse problems. In real applications, the linear coupled ODEs have several appli-
cations in finance and tomography, particularly in modeling systems where multiple variables influence
each other dynamically over time. The research direction is still continuously being carried out to ex-
tend the concept of parameter estimation using the PINNs-sparse method in nonlinear or more complex
systems. It is believed that this study could contribute to the broader understanding and application
of this versatile optimization method in solving complex and decomposable problems across various
fields. For example, it is under our radar to make use of the comprehensive collection of machine
learning data sets encompassing 15 terabytes of numerical simulations across various spatiotemporal
physical systems (see [23]) with the proposed method to model complex physical systems. The beauty
of unveiling the hidden equations from given data is encouraging in finding out how the world works
and discovering previously unknown aspects of physical phenomena. It is particularly useful when an
extreme physical phenomenon comes to our attention, such as a flood, extreme weather, traffic prob-
lems, etc., where we could educationally apply the method proposed in this paper in order to explain
the scenario with functions or equations.
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