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Abstract: This article studies a distributed data-driven iterative learning control (ILC) strategy based 
on the identified input–output coupled parameters (IOCPs) to address the consensus trajectory tracking 
problem of discrete time-varying multi-agent systems (MASs). First, by leveraging the repeatability 
of the control system, a special learning scheme is designed by using system input and output data to 
identify the unknown IOCPs. Then the reciprocal of the identified IOCPs is selected as the learning 
gain to construct the ILC law of the MASs. Second, the case of measurement noise in the MASs is 
considered, where the maximum allowable control deviation is incorporated into the learning 
mechanism for identification of the IOCPs, thereby minimizing adverse effects of the noise on the 
learning scheme’s performance and bolstering robustness. Finally, three numerical simulations are 
employed to validate the effectiveness of the designed IOCP identification method and iterative 
learning control strategy. 
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1. Introduction  

With the development and advancement of control technology, iterative learning control (ILC) 
was first proposed as an intelligent learning mechanism in [1] to enhance the efficiency of systems. 
The core idea of ILC is that the previously collected input–output data from the repeatedly operated 
dynamic system are utilized to produce the control inputs for the subsequent operation. This process 
aims to obtain the subsequent control input of the system, ultimately achieving precise tracking of the 
desired trajectory. Due to the simple and effective structure, ILC has been successfully applied to 
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autonomous vehicles [2], robot manipulators [3], mechatronic systems [4], computer numerical control 
machine tool [5], multi-agent systems (MASs) [6], and other fields. 

On the other hand, the level of automation in the production process has increased and the 
cooperative control of MASs has garnered significant attention and interest. These systems have the 
advantages of autonomy, distribution, coordination, and learning ability, and they have been widely 
used in the fields of multi-robot systems [7], power-supply systems [8], traffic control [9], distributed 
coordination [10], smart grids [11], etc. These papers primarily concentrate on how to devise the 
appropriate control program to attain consensus control within the system. 

Since the ILC method was first introduced into multi-agent formation in [12], the advantages of 
using the distributed ILC method to address the consensus tracking issue in MASs have been analyzed. 
MASs improve work efficiency through communication and coordination between agents, constantly 
adjusting and updating the behavior, enabling all agents to converge or achieve consistent tracking of 
the desired trajectory within a specified timeframe. The application of ILC to MASs promoted research 
into the consensus tracking problem. Subsequently, many researchers have studied the cooperative 
control problem of repetitive systems. Meng and Jia [13] researched the application of a P-type ILC to 
MASs, and Dai et al. [14] studied the P-type ILC to solve the time-delay problem of MASs. In a few 
words, the ILC method has shown good performance in previous MAS control. Furthermore, several 
multi-agent control approaches rooted in ILC have proven effective in practical applications [15]. 

In particular, the improvement of actual production requirements has led to upgrading of the 
system’s complexity, and the complexity of the system has also escalated. Numerous problems such 
as unknown models, unknown or uncertain system parameters, measurement noise, and other problems 
have affected the development and application of MASs. For the nonlinear system, Hou and Jin [16] 
proposed a model-free adaptive iterative learning control method to control the system to complete 
the tracking task. This method was introduced into the MASs in Bu et al. [17] to solve the trajectory 
tracking problem, and a system with iteration-varying topologies was considered. For a linear system 
with unknown parameters, Liu and Ruan [18] constructed an adaptive parameter estimation algorithm 
by using the input and output data of the system in the form of the Markov matrix. In a similar way, 
Geng et al. [19] transformed a class of multi-phase batch processes into a switched linear system, and 
then used the strategy of ILC to control the system. Furthermore, Lin et al. [20] proposed a point-to-
point iterative learning control strategy that addresses the optimal consensus problem at specified data 
points for heterogeneous networked agents with iteration-switching topologies. Hence, how to design 
an appropriate ILC scheme for the MASs with unknown parameters is a challenging problem.  

Within the conventional framework of ILC, the identified input–output coupled parameters 
(IOCPs) are defined as the resulting product of the output and input matrices pertaining to a single-
input–single-output (SISO) system, serving as the only system information for ILC construction. 
Zhang et al. [21] designed an iterative learning mechanism that exploits the inherent repeatability of 
the control system to estimate the unknown IOCPs accurately. This mechanism involves running the 
repetitive system twice under controlled conditions. By comparing the system’s outputs during these 
two runs, the researchers can infer the IOCP information, which is then used to design an effective 
ILC algorithm. This approach allows for the implementation of ILC in systems where the IOCP is not 
known beforehand, thereby enhancing the applicability and flexibility of ILC techniques. On the basis 
of the previous research, Liu et al. [22] formulated an iterative learning approach for determining an 
unknown IOCP by utilizing the repeatability of the control system and input–output data. Additionally, 
they introduced a refinement of this scheme to enhance its robustness against various disturbances, 
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such as measurement noise, system noise, and initial state variations. This enhancement incorporates 
a maximum allowable control deviation to ensure that the learning process remains stable and robust 
in practical applications. Most of the existing work prioritizes the study of uncertain systems for 
parameter identification. Inspired by this, we considered the appropriate iterative learning mechanism 
to identify the IOCPs and then establish the ILC algorithm by designing an appropriate learning gain 
to ensure that the system can accurately track the desired trajectory. 

For the MASs, distributed ILC achieves control of MASs where only a subset of agents has direct 
access to the desired trajectory and only neighboring agents can communicate. Hock and Schoellig [23] 
focused on enabling a team of quadrotors to track a desired trajectory within a given formation. They 
presented a distributed ILC approach and proved the stability of any causal learning function when its 
gains meet a scalar condition. Pakshin et al. [24] designed an ILC law for the MASs with random 
perturbations, based on minimizing the deviations from a reference model and also based on the theory 
of stochastic stability of repetitive processes. Inspired by this, we were able to devise a distributed 
data-driven ILC strategy with the aim of effectively addressing MASs. This approach utilizes data 
analytics and advanced control algorithms to ensure the MASs achieve optimal performance in 
complex and dynamic conditions. 

The primary focus of this article is as follows. At first, a distributed data-driven iterative learning 
scheme is designed, based on input and output signals to identify the IOCPs for time-varying discrete 
MASs with unknown parameters. To tackle the consensus trajectory tracking problem, we design an 
ILC by selecting the reciprocal of the IOCPs as the learning gain. Second, we analyze MASs with 
random measurement noise by introducing a maximum allowable control deviation. The approach 
mitigates the adverse effects of noise on the iterative learning strategy’s performance and enhances the 
robustness of the mechanism. 

The primary achievements of this paper can be summarized as follows: 
1) The discrete linear MASs are transformed into the lower triangular parameter matrix form; this 

simplifies the system’s structure for further analysis. An N-step iterative learning mechanism is 
devised, leveraging repetitive system traits and input–output data to identify the unknown IOCPs. This 
data-driven approach suits complex systems with uncertainties and improves the accuracy of 
identifying the parameters. 

2) Considering the measurement noise prevalent in industrial applications, a strategy is introduced 
by setting the maximum allowable control deviation. This minimizes noise’s adverse impact on the 
learning scheme’s performance to bolster the system’s robustness under noisy conditions. 

3) The reciprocal of the identified IOCPs is selected as the learning gain. The proposed ILC is 
constructed, based on the input–output data of the system, and also features a simple structure and 
strong applicability, thus enhancing the system’s practicability and robustness. Rigorous mathematical 
proofs demonstrate that the designed distributed data-driven ILC strategy is capable of achieving 
consistent trajectory tracking. 

The organization of the remainder of this paper is as follows. Section 2 introduces the MASs and 
graph theory. Section 3 describes the IOCP identification mechanism and ILC for MASs. Section 4 
discusses the case of measurement noise in the system. The simulation and conclusion of this paper 
are given in Sections 5 and 6, respectively. 
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2. Preliminaries and problem formulation 

2.1. Preliminaries 

The communication topology of MASs can be represented and described as a graph 𝜁 = (𝑣, 𝜀, 𝒜) 
with the nodes 𝑣 = ሼ𝑣ଵ, 𝑣ଶ ⋯ 𝑣ெሽ and the edges 𝜀 ⊆ 𝑣 × 𝑣. The matrix 𝒜 is the adjacency matrix 
of the graph 𝜁; its main diagonal entries are all 0. When agent 𝑖 is connected to agent 𝑗, 𝑎௜௝ ≠ 0, or 
else 𝑎௜௝ = 0. Note that 𝒟 is the degree matrix of graph 𝜁, 𝒟 = 𝑑𝑖𝑎𝑔(𝑑ଵ, 𝑑ଶ, ⋯ , 𝑑ெ), where 𝑑௜ =∑ 𝑎௝௜௝∈ெ೔  (the 𝑗 ∈ 𝑀௜ represents the set of agents associated with agent 𝑖. The Laplacian matrix of 

graph 𝜁 is ℒ = 𝒟 − 𝒜. 
The virtual leader is denoted as Agent 0. The graph 𝜁ሜ contains 𝑀 agents and one virtual leader. 

In the graph 𝜁ሜ, if the agent 𝑖 and the leader 0 are connected, 𝑠௜ ≠ 0; otherwise, 𝑠௜ = 0. Here, 𝑆 =𝑑𝑖𝑎𝑔(𝑠ଵ, 𝑠ଶ, ⋯ , 𝑠ெ) denotes the degree matrix of graph 𝜁ሜ. We write 𝑃 = ℒ+ 𝑆. 
Assumption 1: In this paper, the graph 𝜁  is considered to be connected, and 𝑆  has at least one 
nonzero diagonal element term. 
Remark 1. In a connected graph 𝜁, any two agents are linked by a path. The matrix 𝑆 must possess 
at least one nonzero diagonal element, implying that there must be at least one agent capable of 
receiving the target trajectory signal from the leader. 

2.2. Problem formulation 

The linear discrete time-varying SISO MAS with 𝑀 agents is described as 

 ቊ𝒙௝,௞(𝑡 + 1) = 𝑨௝(𝑡)𝒙௝,௞(𝑡) + 𝒃௝(𝑡)𝑢௝,௞(𝑡), 𝑡 ∈ 𝑇,𝑦௝,௞(𝑡) = 𝒄௝(𝑡)𝒙௝,௞(𝑡), 𝑡 ∈ 𝑇ା,  (2.1) 

where 𝑇 = ሼ0,1, ⋯ , 𝑁 − 1ሽ, 𝑇ା = ሼ1,2, ⋯ , 𝑁ሽ, 𝑁 denotes the total sampling number, 𝑗 = 1, 2, ⋯ , 𝑀 
is the label number of the agents, 𝑡 and 𝑘 represent time and the iteration number, 𝒙௝,௞(𝑡) ∈ 𝑅௡ is 
the system’s state, 𝑢௝,௞(𝑡) ∈ 𝑅 is the control input, and 𝑦௝,௞(𝑡) ∈ 𝑅 denotes the system output of the 

agent 𝑗. 𝑨௝(𝑡) ∈ 𝑅௡×௡, 𝒃௝(𝑡) ∈ 𝑅௡×ଵ and 𝒄௝(𝑡) ∈ 𝑅ଵ×௡ are the unknown constant matrix, column 

vector, and row vector, respectively. Given a desired trajectory 𝑦ௗ(𝑡),  𝑡 ∈ 𝑇ା, the distributed data-
driven ILC scheme is constructed under the following two basic assumptions. 
Assumption 2: For the MAS (2.1), a given desired trajectory 𝑦ௗ(𝑡),  𝑡 ∈ 𝑇ା is realizable. For any 
specified desired state 𝒙௝,ௗ(𝑡),  𝑡 ∈ 𝑇ା, there is always a particular control input 𝑢௝,ௗ(𝑡),  𝑡 ∈ 𝑇 that 
can be found to achieve that state: 

 ቊ𝒙௝,ௗ(𝑡 + 1) = 𝑨௝(𝑡)𝒙௝,ௗ(𝑡) + 𝒃௝(𝑡)𝑢௝,ௗ(𝑡), 𝑡 ∈ 𝑇,𝑦ௗ(𝑡) = 𝒄௝(𝑡)𝒙௝,ௗ(𝑡),  𝑡 ∈ 𝑇ା,  (2.2) 

which implies that the IOCPs are 𝒄௝(𝑡 + 1)𝒃௝(𝑡) ≠ 0,  𝑡 ∈ 𝑇. 
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Assumption 3: The initial condition 𝒙௝,௞(0) fulfills the condition 𝒙௝,௞(0) = 𝑥௝,଴ for all 𝑘, where 𝑥௝,଴ is an arbitrarily given point. In other words, the initial state is precisely reset at the start of each 
iteration. Without loss of generality, we set 𝒙௝,௞(0) = 0. 
Remark 2. Assumption 3 is a fundamental condition for ILC, which is used to guarantee the 
consistency of tracking in the ILC algorithm. Definitely, in industrial engineering applications, the 
system’s initial state shift is a common problem. On the other hand, the repetitive initial state is a 
fundamental postulation in theoretical research on ILC. In this paper, we only consider the initial state 
without a shift. 

For the MASs, since the parameters of the system are unknown, by leveraging the system’s 
repeatability and designing an appropriate iterative learning strategy, we can obtain the exact values 
of the unknown IOCPs on the basis of the input and output data. On the basis of the assumptions above, 
we can design an iterative learning mechanism for the IOCPs of unknown systems and construct the 
ILC law for the MASs to achieve the consensus tracking task. 

3. Distributed data-driven iterative learning control for the system  

3.1. N-step iterative learning identification for IOCPs 

In this section, we design an appropriate iterative learning mechanism for each agent to identify 
the IOCPs. 
Theorem 1: For the MAS in (2.1), if each agent abides by Assumptions 2 and 3, then the IOCPs ൛𝒄௝(1)𝒃௝(0), 𝒄௝(2)𝒃௝(1), ⋯ , 𝒄௝(𝑁)𝒃௝(𝑁 − 1)ൟ  can be obtained by constructing an appropriate 

iterative learning mechanism. 
Proof: First, define the super-vectors as follows: 𝒖௝,௞ = ൣ𝑢௝,௞(0), 𝑢௝,௞(1), ⋯ , 𝑢௝,௞(𝑁 − 1)൧், 

𝒚௝,௞ = ൣ𝑦௝,௞(1), 𝑦௝,௞(2), ⋯ , 𝑦௝,௞(𝑁)൧். 
Thus, the system in (2.1) can be characterized as 

 𝒚௝,௞ = 𝑮௝𝒖௝,௞, (3.1) 

where 𝑮௝ = ⎝⎜
⎛ 𝒄௝(1)𝒃௝(0) 0 ⋯ 0𝒄௝(2)𝑨௝(1)𝒃௝(0) 𝒄௝(2)𝒃௝(1) ⋯ 0⋮ ⋮ ⋱ ⋮𝒄௝(𝑁) ∏ 𝑨௝(𝑝)ேିଵ௣ୀଵ 𝒃௝(0) 𝒄௝(𝑁) ∏ 𝑨௝(𝑝)ேିଵ௣ୀଶ 𝒃௝(1) ⋯ 𝒄௝(𝑁)𝑏௝(𝑁 − 1)⎠⎟

⎞. 
Next, we introduce each step of the iterative learning mechanism. 
Step 0: The control input signals of each agent are arbitrarily given as 

 𝒖௝,଴ = ൛𝑢௝,଴(0), 𝑢௝,଴(1), ⋯ , 𝑢௝,଴(𝑁 − 1)ൟ, (3.2) 
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and the outputs of MAS (2.1) 𝒚௝,଴ = ൛𝑦௝,଴(1), 𝑦௝,଴(2), ⋯ , 𝑦௝,଴(𝑁)ൟ are generated by 

 ,0 ,0j j j=y G u . (3.3) 

Step 1: Select the control input signals 𝒖௝,ଵ = ൛𝑢௝,ଵ(0), 𝑢௝,ଵ(1), ⋯ , 𝑢௝,ଵ(𝑁 − 1)ൟ that satisfy 

𝒖௝,ଵ = ൛𝑢௝,଴(0) + 1, 𝑢௝,଴(1), 𝑢௝,଴(2), ⋯ , 𝑢௝,଴(𝑁 − 1)ൟ, 
and the outputs of MAS (2.1) 𝒚௝,ଵ = ൛𝑦௝,ଵ(1), 𝑦௝,ଵ(2), ⋯ , 𝑦௝,ଵ(𝑁)ൟ are generated by 

 𝒚௝,ଵ = 𝑮௝𝒖௝,ଵ. (3.4) 

Subtracting (3.3) from (3.4) yields  

 𝒚௝,ଵ − 𝒚௝,଴ = 𝑮௝൫𝒖௝,ଵ − 𝒖௝,଴൯ ⇒ 𝑦௝,ଵ(1) − 𝑦௝,଴(1) = 𝑐௝(1)𝑏௝(0). (3.5) 

Step 2: Select the control input signals 𝒖௝,ଶ = ൛𝑢௝,ଶ(0), 𝑢௝,ଶ(1), ⋯ , 𝑢௝,ଶ(𝑁 − 1)ൟ that satisfy 

 𝒖௝,ଶ = ൛𝑢௝,଴(0), 𝑢௝,଴(1) + 1, 𝑢௝,଴(2) ⋯ , 𝑢௝,଴(𝑁 − 1)ൟ, (3.6) 

and the outputs of MAS (2.1) 𝒚௝,ଶ = ൛𝑦௝,ଶ(1), 𝑦௝,ଶ(2), ⋯ , 𝑦௝,ଶ(𝑁)ൟ are generated by  

 𝒚௝,ଶ = 𝑮௝𝒖௝,ଶ. (3.7) 

Subtracting (3.3) from (3.7) gives 

 𝒚௝,ଶ − 𝒚௝,଴ = 𝑮௝൫𝒖௝,ଶ − 𝒖௝,଴൯ ⇒ 𝑦௝,ଵ(2) − 𝑦௝,଴(2) = 𝑐௝(2)𝑏௝(1). (3.8) 

…… 

Step N: Select the control input signals 𝒖௝,ே = ൛𝑢௝,ே(0), 𝑢௝,ே(1), ⋯ , 𝑢௝,ே(𝑁 − 1)ൟ that satisfy 

 𝒖௝,ே = ൛𝑢௝,଴(0), 𝑢௝,଴(1), ⋯ , 𝑢௝,଴(𝑁 − 1) + 1ൟ, (3.9) 

and the outputs of MAS (2.1) 𝒚௝,ே = ൛𝑦௝,ே(1), 𝑦௝,ே(2), ⋯ , 𝑦௝,ே(𝑁)ൟ are generated by 

 𝒚௝,ே = 𝑮௝𝒖௝,ே. (3.10) 

Subtracting (3.3) from (3.10) gives 

 𝒚௝,ே − 𝒚௝,଴ = 𝑮௝൫𝒖௝,ே − 𝒖௝,଴൯ ⇒ 𝑦௝,ே(𝑁) − 𝑦௝,଴(𝑁) = 𝑐௝(𝑁)𝑏௝(𝑁 − 1). (3.11) 
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According to the steps above, when the initial states of each agent in the system are fixed, we 

can obtain the IOCPs ൛𝒄௝(1)𝒃௝(0), 𝒄௝(2)𝒃௝(1), ⋯ , 𝒄௝(𝑁)𝒃௝(𝑁 − 1)ൟ of each agent accurately in the 

MAS by applying the iterative learning mechanism.  
Remark 3. Here, for 𝑡 ∈ 𝑇ା , it is obvious that 𝑦௝,௧(𝑡 + 1) − 𝑦௝,଴(𝑡 + 1) = 𝒄௝(𝑡 + 1)𝒃௝(𝑡) . After 
running the system 𝑁 times, we can accurately get the unknown IOCPs of the system. This iterative 
learning mechanism can only be applied to systems with fixed initial states and in the absence of noise. 
We will continue to study other types of systems. 

3.2. Distributed data-driven iterative learning control 

In the context of iterative learning control, the control input for subsequent iterations is refined 
through learning from the input data and errors encountered in the preceding iteration. Let 𝒆௝,௞(𝑡 + 1) = 𝑦ௗ(𝑡 + 1) − 𝑦௝,௞(𝑡 + 1)  denote the tracking error, where 𝑦ௗ(𝑡 + 1)  is the desired 
trajectory of the system and can be regarded as the virtual leader. For the MAS (2.1), when combined 
with the communication topology, the agent’s consistency tracking error can be described as 𝜉௝,௞(𝑡 + 1), defined as 

 𝜉௝,௞(𝑡 + 1) = ∑ 𝑎௜,௝௜∈ெೕ ቀ𝑦௜,௞(𝑡 + 1) − 𝑦௝,௞(𝑡 + 1)ቁ + 𝑠௝ ቀ𝑦ௗ(𝑡 + 1) − 𝑦௝,௞(𝑡 + 1)ቁ. (3.12) 

This can be reformulated to express it in terms of tracking errors 

 𝜉௝,௞(𝑡 + 1) = ∑ 𝑎௜,௝ ቀ𝒆௝,௞(𝑡 + 1) − 𝒆௜,௞(𝑡 + 1)ቁ + 𝑠௝𝒆௝,௞(𝑡 + 1)௜∈ெೕ . (3.13) 

Even though the parameters of the MASs remain unknown, the previously identified unknown 
IOCPs of these systems are utilized. The reciprocal of the IOCPs is selected as the learning gain for 
designing ILC to control the MASs. In our study, we focus on the iterative learning control strategy 
applicable to MASs, which is designed utilizing the IOCPs as follows: 

 𝑢௝,௞ାଵ(𝑡) = 𝑢௝,௞(𝑡) + ଵ௬ೕ,೟(௧ାଵ)ି௬ೕ,బ(௧ାଵ) 𝜉௝,௞(𝑡 + 1), (𝑡 ∈ 𝑇ା). (3.14) 

Before proving Theorem 2, it is essential to introduce the definition of the 𝜆-norm. 
Definition: The 𝜆-norm of the discrete-time vector function 𝒉: ሼ1,2, ⋯ , 𝑁ሽ → 𝑅௡ is defined as ‖𝒉(𝑡)‖ఒ = 𝑠𝑢𝑝௧∈ሼଵ,ଶ,⋯,ேሽሼ𝜆௧‖𝒉(𝑡)‖ሽ,  0 < 𝜆 < 1, 
where ‖∙‖ is a vector norm on 𝑅௡.  
Theorem 2: Suppose that the MAS (2.1) satisfies Assumptions 1–3. If the communication topology 

matrix of the MAS (2.1) satisfies ฮ൫𝐼ேெ − (𝑃 ⊗ 𝐼ே)൯ฮ = 𝜌 < 1, then the iterative learning control 

strategy (3.14) can precisely track the desired trajectory.  
Proof: For convenience of the proof, the system (2.1) can be solved by the induction method 

 𝒙௝,௞(𝑡) = 𝛷௝(𝑡, 0)𝒙௝,௞(0) + ∑ 𝛷௝(𝑡, 𝑠 + 1)𝒃௝(𝑠)௧ିଵ௦ୀ଴ 𝒖௝,௞(𝑠), (3.15) 
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where 𝛷௝(𝑡, 𝑠) is the state transition matrix, which is determined by 𝑨௝(𝑡), and 𝛷௝(𝑡, 𝑠) satisfies 

 𝛷௝(𝑡, 𝑠) = 𝑨௝(𝑡 − 1)𝑨௝(𝑡 − 2) ⋯ 𝑨௝(𝑠), 𝑡 > 𝑠 and 𝛷௝(𝑠, 𝑠) = 𝐼. (3.16) 

For the convenience of analysis, we write 𝒙௞(𝑡) = ൣ𝒙ଵ,௞(𝑡), 𝒙ଶ,௞(𝑡), ⋯ , 𝒙ெ,௞(𝑡)൧், 

𝜱(𝑡, 𝑠) = 𝑑𝑖𝑎𝑔൫𝛷ଵ(𝑡, 𝑠), 𝛷ଶ(𝑡, 𝑠), ⋯ , 𝛷ெ(𝑡, 𝑠)൯, 

𝒖௞(𝑡) = ൣ𝑢ଵ,௞(𝑡), 𝑢ଶ,௞(𝑡), ⋯ , 𝑢ெ,௞(𝑡)൧், 𝒚ௗ(𝑡) = [𝑦ௗ(𝑡), 𝑦ௗ(𝑡), ⋯ , 𝑦ௗ(𝑡)]், 𝒚௞(𝑡) = ൣ𝑦ଵ,௞(𝑡), 𝑦ଶ,௞(𝑡), ⋯ , 𝑦ெ,௞(𝑡)൧், 

𝒆௞(𝑡 + 1) = ൣ𝑒ଵ,௞(𝑡), 𝑒ଶ,௞(𝑡), ⋯ , 𝑒ெ,௞(𝑡)൧், 

𝑪(𝑡 + 1) = 𝑑𝑖𝑎𝑔൫𝒄ଵ(𝑡 + 1), 𝒄ଶ(𝑡 + 1), ⋯ , 𝒄ெ(𝑡 + 1)൯. 

The compact representation can also be utilized to express the solution of the system (2.1) 

 𝒙௞(𝑡) = 𝜱(𝑡, 0)𝒙௞(0) + ∑ 𝜱(𝑡, 𝑠 + 1)𝒃(𝑠)௧ିଵ௦ୀ଴ 𝒖௞(𝑠), (3.17) 

The agent consistency tracking error (3.13) and the iterative learning control law (3.14) can be 
expressed as follows: 

 𝝃௞(𝑡 + 1) = (𝑃 ⊗ 𝐼ே)𝒆௞(𝑡 + 1), (3.18) 

 𝒖௞ାଵ(𝑡) = 𝒖௞(𝑡) + 𝑯(𝑡)(𝑃 ⊗ 𝐼ே)𝒆௞(𝑡 + 1), (3.19) 

where 𝑯(𝑡) = 𝑑𝑖𝑎𝑔 ൬ ଵ௬భ,೟(௧ାଵ)ି௬భ,బ(௧ାଵ) , ଵ௬మ,೟(௧ାଵ)ି௬మ,బ(௧ାଵ) , ⋯ , ଵ௬ಾ,೟(௧ାଵ)ି௬ಾ,బ(௧ାଵ)൰. 

By calculating the deviation in tracking, 

 
𝒆௞ାଵ(𝑡 + 1) = 𝒚ௗ(𝑡 + 1) − 𝒚௞(𝑡 + 1)= 𝒆௞(𝑡 + 1) − 𝒄(𝑡 + 1)[𝒙௞ାଵ(𝑡 + 1) − 𝒙௞(𝑡 + 1)]= 𝒆௞(𝑡 + 1) − 𝑪(𝑡 + 1) ∑ 𝜱(𝑡 + 1, 𝑠 + 1)𝒃(𝑠)௧௦ୀ଴ ൫𝒖௞ାଵ(𝑠) − 𝒖௞(𝑠)൯= 𝒆௞(𝑡 + 1) − 𝑪(𝑡 + 1) ∑ 𝜱(𝑡 + 1, 𝑠 + 1)𝒃(𝑠)௧௦ୀ଴ 𝑯(𝑠)(𝑃 ⊗ 𝐼ே)𝒆௞(𝑠 + 1). (3.20) 

By taking out the 𝑠 = 𝑡 item, we get  

 
𝒆௞ାଵ(𝑡 + 1) = 𝒆௞(𝑡 + 1) − 𝑪(𝑡 + 1)𝒃(𝑡)𝑯(𝑡)(𝑃 ⊗ 𝐼ே)𝒆௞(𝑡 + 1)− ∑ ൫𝑪(𝑡 + 1)𝜱(𝑡 + 1, 𝑠 + 1)𝒃(𝑠)൯௧ିଵ௦ୀ଴ 𝑯(𝑠)(𝑃 ⊗ 𝐼ே)𝒆௞(𝑠 + 1)= ൫𝐼ேெ − (𝑃 ⊗ 𝐼ே)൯𝒆௞(𝑡 + 1) − ∑ 𝑪(𝑡 + 1)𝜱(𝑡 + 1, 𝑠 + 1)𝒃(𝑠)௧ିଵ௦ୀ଴ 𝑯(𝑠)(𝑃 ⊗ 𝐼ே)𝒆௞(𝑠 + 1). (3.21) 

Taking the norm in both sides of (3.21), we have 
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 ‖𝒆௞ାଵ(𝑡 + 1)‖ ≤ ฮ൫𝐼ேெ − (𝑃 ⊗ 𝐼ே)൯ฮ‖𝒆௞(𝑡 + 1)‖ + ∑ ‖𝑪(𝑡 + 1)𝜱(𝑡, 𝑠 + 1)𝒃(𝑠)𝑯(𝑠)(𝑃 ⊗ 𝐼ே)‖௧ିଵ௦ୀ଴ ‖𝒆௞(𝑠 + 1)‖. (3.22) 

We now write ฮ൫𝐼ேெ − (𝑃 ⊗ 𝐼ே)൯ฮ = 𝜌, (0 < 𝜌 < 1), 

𝑠𝑢𝑝  ௧∈ሼଵ,ଶ,⋯,ேሽ௦∈൛଴，ଵ,ଶ,⋯,௧ିଵൟ‖𝑪(𝑡 + 1)𝜱(𝑡, 𝑠 + 1)𝒃(𝑠)𝑯(𝑠)(𝑃 ⊗ 𝐼ே)‖ = 𝜎. 

For each 𝑡 ∈ ሼ1,2, ⋯ , 𝑁ሽ, multiply by 𝜆௧ାଵ on both sides of Eq (3.22), where 0 < 𝜆 < 1, 
which yields 

 

𝜆௧ାଵ‖𝒆௞ାଵ(𝑡 + 1)‖ ≤ 𝜌𝜆௧ାଵ‖𝒆௞(𝑡 + 1)‖ + 𝜎 ∑ 𝜆௧ି௦𝜆௦ାଵ௧ିଵ௦ୀ଴ ‖𝒆௞(𝑠 + 1)‖≤ 𝜌𝜆௧ାଵ‖𝒆௞(𝑡 + 1)‖ + 𝜎 ∑ 𝜆௧ି௦ 𝑠𝑢𝑝௦∈ሼଵ,ଶ,⋯,ேሽሼ𝜆௦ାଵ‖𝒆௞(𝑠 + 1)‖ሽ௧ିଵ௦ୀ଴≤ 𝜌𝜆௧ାଵ‖𝒆௞(𝑡 + 1)‖ + 𝜎 ఒ൫ଵିఒಿ൯ଵିఒ 𝑠𝑢𝑝௧∈ሼଵ,ଶ,⋯,ேሽሼ𝜆௧ାଵ‖𝒆௞(𝑡 + 1)‖ሽ . (3.23) 

Therefore, we obtain 

 𝑠𝑢𝑝௧∈ሼଵ,ଶ,⋯,ேሽሼ𝜆௧ାଵ‖𝒆௞ାଵ(𝑡 + 1)‖ሽ ≤ ቀ𝜌 + 𝜎 ఒ൫ଵିఒಿ൯ଵିఒ ቁ 𝑠𝑢𝑝௧∈ሼଵ,ଶ,⋯,ேሽሼ𝜆௧ାଵ‖𝒆௞(𝑡 + 1)‖ሽ. (3.24) 

According the definition of the 𝜆-norm, we have 

 ‖𝒆௞ାଵ(𝑡 + 1)‖ఒ ≤ ቀ𝜌 + 𝜎 ఒ൫ଵିఒಿ൯ଵିఒ ቁ ‖𝒆௞(𝑡 + 1)‖ఒ. (3.25) 

Under the condition 0 < 𝜌 < 1 and if we select a sufficiently small 𝜆, this yields 

 0 < ቀ𝜌 + 𝜎 ఒ൫ଵିఒಿ൯ଵିఒ ቁ < 1. (3.26) 

By (3.25) and (3.26), we have 

 𝑙𝑖𝑚௞→∞‖𝒆௞ାଵ(𝑡 + 1)‖ఒ = 0. (3.27) 

This means that the agents can accurately track the desired trajectory. Therefore, if ฮ൫𝐼ேெ − (𝑃 ⊗ 𝐼ே)൯ฮ = 𝜌 < 1 is guaranteed, the MAS can complete the consistency tracking task of 

the desired trajectory under the ILC law (3.14). 

4. Distributed data-driven iterative learning control for the system with measurement noise 

In Part 3, for MASs with a fixed initial state and no noise, IOCPs can be accurately obtained by 
designing an iterative learning mechanism, but in the actual environment, the system often contains 
different types of noise factors. In this section, we consider the situation when the MASs incorporate 
measurement noise and identify the IOCPs of the system through a suitable iterative learning 
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mechanism. Then, by integrating it into the ILC law, we aim to achieve consistent tracking of the 
desired trajectory for the MASs. 

We account for the inclusion of measurement noise within system (2.1) with 

 ቊ𝒙௝,௞(𝑡 + 1) = 𝑨௝(𝑡)𝒙௝,௞(𝑡) + 𝒃௝(𝑡)𝑢௝,௞(𝑡), 𝑡 ∈ 𝑇,𝑦௝,௞(𝑡) = 𝒄௝(𝑡)𝒙௝,௞(𝑡) + 𝜔௝,௞(𝑡), 𝑡 ∈ 𝑇ା, . (4.1) 

where 𝜔௝,௞(𝑡) is measurement noise that satisfies Assumption 4. 
Assumption 4: The measurement noise 𝜔௝,௞(𝑡)  is independent and identically distributed. The 

expectation and variance of 𝜔௝,௞(𝑡)  are represented as 𝐸൛𝜔௝,௞(𝑡)ൟ = 0  and 𝐸 ቄห𝜔௝,௞(𝑡)หଶቅ = 𝜒௝ଶ , 

respectively, and the noise signal is bounded as ห𝜔௝,௞(𝑡)ห ≤ 𝜛௝. 

4.1. N-step iterative learning identification for IOCPs  

To mitigate the impact of noise on the iterative learning process and bolster its robustness, this 
part introduces the concept of the maximum allowable control deviation, denoted 𝛿௝,௧, in the design 
of the iterative learning mechanism. The maximum allowable control deviation 𝛿௝,௧(𝑡 ∈ 𝑇) is defined 
as the difference between the maximum and minimum allowable control signals. If 𝛿௝,௧ = 0, we are 
unable to obtain valuable information regarding the controlled system. Therefore, we assume 𝛿௝,௧ > 0, (𝑡 ∈ 𝑇) in this part.  
Theorem 3: Assume that the MAS (4.1) is subject to the Assumptions 3 and 4. The IOCPs ൛𝒄௝(1)𝒃௝(0), 𝒄௝(2)𝒃௝(1), ⋯ , 𝒄௝(𝑁)𝒃௝(𝑁 − 1)ൟ can then be captured by designing a proper iterative 

learning mechanism through running the system (4.1) 𝑁  times. Moreover, the expectation and 
variance of the IOCPs are  𝐸 ൜௬ೕ,೟(௧ାଵ)ି௬ೕ,బ(௧ାଵ)ఋೕ,೟ ൠ = 𝒄௝(𝑡 + 1)𝒃௝(𝑡), (𝑡 ∈ 𝑇ା), 

𝐸 ቊฬ௬ೕ,೟(௧ାଵ)ି௬ೕ,బ(௧ାଵ)ఋೕ,೟ − 𝒄௝(𝑡 + 1)𝒃௝(𝑡)ฬଶቋ = ଶ൫ఞೕ൯మ൫ఋೕ,೟൯మ , (𝑡 ∈ 𝑇ା). 

We define the super-vectors as follows: 𝝎௝,௞ = ൣ𝜔௝,௞(1), 𝜔௝,௞(2), ⋯ , 𝜔௝,௞(𝑁)൧். 
Thus, the system (4.1) can be described as 

 𝒚௝,௞ = 𝑮௝𝒖௝,௞ + 𝝎௝,௞. (4.2) 

The detailed process is summarized as follows: 
Step 0: The control input signals of each agent are arbitrary given as  

 𝒖௝,଴ = ൛𝑢௝,଴(0), 𝑢௝,଴(1), ⋯ , 𝑢௝,଴(𝑁 − 1)ൟ, (4.3) 
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Then, the outputs of the MAS (4.1) 𝒚௝,଴ = ൛𝑦௝,଴(1), 𝑦௝,଴(2), ⋯ , 𝑦௝,଴(𝑁)ൟ are generated by 

 𝒚௝,଴ = 𝑮௝𝒖௝,଴ + 𝝎௝,଴. (4.4) 

Step 1: Select the control input signals 𝒖௝,ଵ = ൛𝑢௝,ଵ(0) + 𝛿௝,ଵ, 𝑢௝,ଵ(1), ⋯ , 𝑢௝,ଵ(𝑁 − 1)ൟ that satisfy  

 𝒖௝,ଵ = ൛𝑢௝,଴(0) + 𝛿௝,ଵ, 𝑢௝,଴(1), 𝑢௝,଴(2), ⋯ , 𝑢௝,଴(𝑁 − 1)ൟ, (4.5) 

where 𝛿௝,ଵ is the maximum allowable control deviation. 

Then, the outputs of the MAS (4.1) 𝒚௝,ଵ = ൛𝑦௝,ଵ(1), 𝑦௝,ଵ(2), ⋯ , 𝑦௝,ଵ(𝑁)ൟ are generated by 

 𝒚௝,ଵ = 𝑮௝𝒖௝,ଵ + 𝝎௝,ଵ. (4.6) 

Subtracting (4.4) from (4.6) yields 𝒚௝,ଵ − 𝒚௝,଴ = 𝑮௝൫𝒖௝,ଵ − 𝒖௝,଴൯ − ൫𝝎௝,ଵ − 𝝎௝,଴൯, 

 ⇒ ௬ೕ,భ(ଵ)ି௬ೕ,బ(ଵ)ఋೕ,భ = 𝒄௝(1)𝒃௝(0) + ఠೕ,భ(ଵ)ିఠೕ,బ(ଵ)ఋೕ,భ . (4.7) 

According to Assumption 4 of measurement noise, the mean and variance are calculated as 

 ⎩⎨
⎧𝐸 ൜௬ೕ,భ(ଵ)ି௬ೕ,బ(ଵ)ఋೕ,భ ൠ = 𝒄௝(1)𝒃௝(0),𝐸 ቊฬ௬ೕ,భ(ଵ)ି௬ೕ,బ(ଵ)ఋೕ,భ − 𝒄௝(1)𝒃௝(0)ฬଶቋ = ଶ൫ఞೕ൯మ൫ఋೕ,భ൯మ . (4.8) 

Step 2: Select the control input signals 𝒖௝,ଶ = ൛𝑢௝,ଶ(0), 𝑢௝,ଶ(1), ⋯ , 𝑢௝,ଶ(𝑁 − 1)ൟ that satisfy  

 𝒖௝,ଶ = ൛𝑢௝,଴(0), 𝑢௝,଴(1) + 𝛿௝,ଶ, 𝑢௝,଴(2), ⋯ , 𝑢௝,଴(𝑁 − 1)ൟ, (4.9) 

where 𝛿௝,ଶ is the maximum allowable control deviation. 

Then, the outputs of the MASs (4.1) 𝒚௝,ଶ = ൛𝑦௝,ଶ(1), 𝑦௝,ଶ(2), ⋯ , 𝑦௝,ଶ(𝑁)ൟ are generated by 

 𝒚௝,ଶ = 𝑮௝𝒖௝,ଶ + 𝝎௝,ଶ. (4.10) 

Subtracting (4.4) from (4.10) yields  𝒚௝,ଶ − 𝒚௝,଴ = 𝑮௝൫𝒖௝,ଶ − 𝒖௝,଴൯ − ൫𝝎௝,ଶ − 𝝎௝,଴൯, 

 ⇒ ௬ೕ,మ(ଶ)ି௬ೕ,బ(ଶ)ఋೕ,మ = 𝒄௝(2)𝒃௝(1) + ఠೕ,మ(ଶ)ିఠೕ,బ(ଶ)ఋೕ,మ . (4.11) 

By the measurement noise limitation in Assumption 4, the mean and variance of the noise are 
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calculated as follows: 

 ⎩⎨
⎧𝐸 ൜௬ೕ,మ(ଶ)ି௬ೕ,బ(ଶ)ఋೕ,మ ൠ = 𝒄௝(2)𝒃௝(1),𝐸 ቊฬ௬ೕ,మ(௦)ି௬ೕ,బ(௦)ఋೕ,మ − 𝒄௝(2)𝒃௝(1)ฬଶቋ = ଶ൫ఞೕ൯మ൫ఋೕ,మ൯మ .. (4.12) 

Step N: By using the method above, analogous to the case when 𝑡 = 𝑁, select the control input 

signals 𝒖௝,ே = ൛𝑢௝,ே(0), 𝑢௝,ே(1), ⋯ , 𝑢௝,ே(𝑁 − 1)ൟ that satisfy 

𝒖௝,ே = ൛𝑢௝,ே(0), 𝑢௝,ே(1), 𝑢௝,଴(2), ⋯ , 𝑢௝,଴(𝑁 − 1) + 𝛿௝,ேൟ, 

Then, the outputs of the MAS (4.1) 𝒚௝,ே = ൛𝑦௝,ே(1), 𝑦௝,ே(2), ⋯ , 𝑦௝,ே(𝑁)ൟ are generated by 

 𝒚௝,ே = 𝑮௝𝒖௝,ே + 𝝎௝,ே. (4.13) 

Subtracting (4.4) from (4.13) yields  𝒚௝,ே − 𝒚௝,଴ = 𝑮௝൫𝒖௝,ே − 𝒖௝,଴൯ − ൫𝝎௝,ே − 𝝎௝,଴൯, 

 ⇒ ௬ೕ,ಿ(ே)ି௬ೕ,బ(ே)ఋೕ,ಿ = 𝒄௝(𝑁)𝒃௝(𝑁 − 1) + ఠೕ,ಿ(ே)ିఠೕ,బ(ே)ఋೕ,ಿ . (4.14) 

By the measurement noise limitation in Assumption 4, the mean and variance are calculated as 

 ⎩⎨
⎧𝐸 ൜௬ೕ,ಿ(ே)ି௬ೕ,బ(ே)ఋೕ,ಿ ൠ = 𝒄௝(𝑁)𝒃௝(𝑁 − 1),𝐸 ቊฬ௬ೕ,ಿ(ே)ି௬ೕ,బ(ே)ఋೕ,ಿ − 𝒄௝(𝑁)𝒃௝(𝑁 − 1)ฬଶቋ = ଶ൫ఞೕ൯మ൫ఋೕ,ಿ൯మ . (4.15) 

According to the steps above, when the initial states of each agent in the system are fixed, we can 

obtain the IOCPs ൛𝒄௝(1)𝒃௝(0), 𝒄௝(2)𝒃௝(1), ⋯ , 𝒄௝(𝑁)𝒃௝(𝑁 − 1)ൟ of each agent accurately in the MAS 

by applying the identification mechanism. 
Remark 4. Owing to the randomness of the noise signal, measurement of the output is challenging. 
Hence, we obtain IOCPs by repeating the experiment to obtain the mean value. Suppose that we repeat 
the experiment 𝑄 times. We can calculate the mean as the approximate value 𝒄௝(𝑡 + 1)𝒃௝(𝑡), that is, 𝒄௝(𝑡 + 1)𝒃௝(𝑡) = ଵொ ∑ ௬ೕ,೟೜ (௧ାଵ)ି௬ೕ,బ೜ (௧ାଵ)ఋೕ,೟ொ௤ୀଵ  , where the superscript 𝑞  represents the number of 

experiments. The accuracy of IOCPs is improved through multiple experiments.  

4.2. Distributed data-driven iterative learning control 

The ILC law (3.14), which is based on the estimated IOCPs, is utilized to regulate the MAS (4.1) with 
measurement noise and ensure consistent tracking of the desired trajectory. For simplicity, write it as 
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𝑧௝(𝑡) = 𝐸 ൜௬ೕ,೟(௧ାଵ)ି௬ೕ,బ(௧ାଵ)ఋೕ,೟ ൠ. 

Accordingto Theorem 3, we can derive 

 𝑢௝,௞ାଵ(𝑡) = 𝑢௝,௞(𝑡) + ଵ௭ೕ(௧) 𝜉௝,௞(𝑡 + 1), (𝑡 ∈ 𝑇ା). (4.16) 

Theorem 4: Assume that the iterative learning control strategy (4.16) is utilized for the MAS (4.1) 
under Assumptions 1–4. The tracking error is bounded if the communication topology matrix of the 

MAS (4.1) satisfies ฮ൫𝐼ேெ − (𝑃 ⊗ 𝐼ே)൯ฮ = 𝜌 < 1. 

Proof: We calculate the solution of the system (4.1) as follows  

 𝑦௝,௞(𝑡 + 1) = 𝒄௝(𝑡 + 1)𝛷௝(𝑡 + 1,0)𝒙௝,௞(0) + 𝒄௝(𝑡 + 1) ∑ 𝛷௝(𝑡 + 1, 𝑠 + 1)𝒃௝(𝑠)௧௦ୀ଴ 𝑢௝,௞(𝑠) + 𝜔௝,௞(𝑡). (4.17) 

Utilizing the result of the calculation (3.17), we can represent the solution of the system (4.1) as 

 𝒚௞(𝑡 + 1) = 𝒄(𝑡 + 1)𝒙௞(𝑡 + 1) + 𝝎௞(𝑡 + 1), (4.18) 

where 𝝎௞(𝑡 + 1) = ൣ𝜔ଵ,௞் (𝑡 + 1), 𝜔ଶ,௞் (𝑡 + 1), ⋯ , 𝜔ெ,௞் (𝑡 + 1)൧். 

By computing the tracking error, we have 

 
𝒆௞ାଵ(𝑡 + 1) = ൫𝐼ேெ − 𝑪(𝑡 + 1)𝒃(𝑡)𝒁(𝑡)(𝑃 ⊗ 𝐼ே)൯𝒆௞(𝑡 + 1)− ∑ 𝑪(𝑡 + 1)𝜱(𝑡 + 1, 𝑠 + 1)𝒃(𝑠)௧ିଵ௦ୀ଴ 𝒁(𝑠)(𝑃 ⊗ 𝐼ே)𝒆௞(𝑠 + 1) − ൫𝝎௞ାଵ(𝑡 + 1) − 𝝎௞(𝑡 + 1)൯, (4.19) 

where 𝒁(𝑡) = 𝑑𝑖𝑎𝑔 ቀ ଵ௭భ(௧) , ଵ௭మ(௧) , ⋯ , ଵ௭ಾ(௧)ቁ. 

The demonstration adheres to the pattern of Theorem 2. Consequently, for the sake of brevity, the 
comprehensive steps have been excluded. 

Write 𝛥𝝎௞ାଵ(𝑡 + 1) = ൫𝝎௞ାଵ(𝑡 + 1) − 𝝎௞(𝑡 + 1)൯ . On the basis of the noise from 

Assumption 4, we know ฮ𝛥𝜔௝,௞ାଵ(𝑡 + 1)ฮ ≤ 2𝑁𝜛௝, where 𝛥𝝎௞ାଵ(𝑡 + 1) satisfies 

 ‖𝛥𝝎௞ାଵ(𝑡 + 1)‖ ≤ 2𝑁𝑀𝜛 = 𝜔෥. (4.20) 

Taking the norm in the both sides of (4.19) gives 

 ‖𝒆௞ାଵ(𝑡 + 1)‖ ≤ ‖𝐼ேெ − 𝒄(𝑡 + 1)𝒃(𝑡)𝒁(𝑡)(𝑃 ⊗ 𝐼ே)‖‖𝒆௞(𝑡 + 1)‖+ ∑ ‖𝑪(𝑡 + 1)𝜱(𝑡 + 1, 𝑠 + 1)𝒃(𝑠)𝒁(𝑠)(𝑃 ⊗ 𝐼ே)‖௧ିଵ௦ୀ଴ ‖𝒆௞(𝑠 + 1)‖ + 𝜔෥ (4.21) 

For each 𝑡 ∈ ሼ1,2, ⋯ , 𝑁ሽ, by multiplying by 𝜆௧ାଵ on both sides of the inequation (4.21), with 0 < 𝜆 < 1, while applying the similar derivation process from (3.23) to (3.24), we get 

 𝑠𝑢𝑝௧∈ሼଵ,ଶ,⋯,ேሽሼ𝜆௧ାଵ‖𝒆௞ାଵ(𝑡 + 1)‖ሽ ≤ ቆ𝜌 + 𝜎 ቀఒ൫ଵିఒಿ൯ଵିఒ ቁቇ 𝑠𝑢𝑝௧∈ሼଵ,ଶ,⋯,ேሽሼ𝜆௧ାଵ‖𝒆௞(𝑡 + 1)‖ሽ + 𝜔෥. (4.22) 

Let 𝜌ଵ = ቆ𝜌 + 𝜎 ቀఒ൫ଵିఒಿ൯ଵିఒ ቁቇ. Since the condition is 0 < 𝜌 < 1, by choosing a sufficiently small 𝜆, 
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we have 0 < 𝜌ଵ < 1.  
Thus, by (4.22), we have  

 ‖𝒆௞ାଵ(𝑡 + 1)‖ఒ ≤ 𝜌ଵ‖𝒆௞(𝑡 + 1)‖ఒ + 𝜔෥, (4.23) 

which implies that 

 𝑙𝑖𝑚௞→∞‖𝒆௞ାଵ(𝑡 + 1)‖ఒ ≤ ఠ෥ଵିఘభ. (4.24) 

Consequently, the tracking error is confined within a certain limit, thereby concluding the proof. 

5. Simulation 

To assess the efficacy of the introduced algorithm, a linear time-varying discrete MAS composed 
of one virtual leader and four agents is considered. 

Example 1. The multi-agent system without measurement noise 

Replace the desired trajectory with a virtual leader 𝑦ௗ(𝑡) = 1.1 ∗ 𝑠𝑖𝑛൫(𝜋𝑡)/20൯ +0.25 𝑐𝑜𝑠൫(𝜋𝑡)/20൯. The parametric equations of each agent are expressed as 

 ⎩⎪⎨
⎪⎧𝒙ଵ,௞(𝑡 + 1) = ൭ 1 0.009 00 1 0.009−0.0540 −0.2711 0.237 − 0.27𝑒ିଶ௧൱ 𝒙ଵ,௞(𝑡) + ൭ 000.009൱ 𝑢ଵ,௞(𝑡), 𝑡 ∈ 𝑇

𝑦ଵ,௞(𝑡) = (6 30 84 + 30𝑒ିଶ௧)𝒙ଵ,௞(𝑡), 𝑡 ∈ 𝑇ା  (5.1) 

 ⎩⎪⎨
⎪⎧𝒙ଶ,௞(𝑡 + 1) = ൭ 1 0.009 00 1 0.009−0.0540 −0.2711 0.237 − 0.27𝑒ିଶ௧൱ 𝒙ଶ,௞(𝑡) + ൭ 000.009൱ 𝑢ଶ,௞(𝑡), 𝑡 ∈ 𝑇

𝑦ଶ,௞(𝑡) = (6 30 55 + 30𝑒ିଶ௧)𝒙ଶ,௞(𝑡), 𝑡 ∈ 𝑇ା  (5.2) 

 ⎩⎪⎨
⎪⎧𝒙ଷ,௞(𝑡 + 1) = ൭ 1 0.009 00 1 0.009−0.0540 −0.2711 0.237 − 0.27𝑒ିଶ௧൱ 𝒙ଷ,௞(𝑡) + ൭ 000.009൱ 𝑢ଷ,௞(𝑡), 𝑡 ∈ 𝑇

𝑦ଷ,௞(𝑡) = (6 30 75 + 20𝑒ିଶ௧)𝒙ଷ,௞(𝑡), 𝑡 ∈ 𝑇ା  (5.3) 

 ⎩⎪⎨
⎪⎧𝒙ସ,௞(𝑡 + 1) = ൭ 1 0.009 00 1 0.009−0.0540 −0.2711 0.237 − 0.27𝑒ିଶ௧൱ 𝒙ସ,௞(𝑡) + ൭ 000.009൱ 𝑢ସ,௞(𝑡), 𝑡 ∈ 𝑇

𝑦ସ,௞(𝑡) = (6 25 60 + 30𝑒ିଶ௧)𝒙ସ,௞(𝑡), 𝑡 ∈ 𝑇ା  (5.4) 

where 𝑇 ∈ [0,79], 𝑇ା ∈ [1,80]. 
As shown in Figure 1, 0 represents the virtual leader and represents the desired trajectory of the 

system; the remaining four are Agents 1 to 4. According to Figure 1, it is notable that Agents 1 and 4 
have direct access to the desired trajectory information from the virtual leader 0. Agents 2 and 3 can 
indirectly obtain information by communicating with Agents 1 and 4. The degree matrix S  and the 
Laplacian matrix   are calculated as follows: 
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𝑆 = 𝑑𝑖𝑎𝑔(0.2 0 0 0.2), ℒ = ൮ 0.4 −0.4 0 0−0.2 0.7 −0.5 00 −0.2 0.7 −0.50 0 −0.2 0.2 ൲. 

 

Figure 1. Communication topology between agents. 

Thus, the convergence condition is satisfied by ฮ൫𝐼ேெ − (𝑃 ⊗ 𝐼ே)൯ฮ = 𝜌 = 0.9428 < 1 . 

Suppose that the IOCP identification mechanism in Section 3.1 and the ILC law (3.14) are applied to 
the system (3.1). The initial input states of each agent are set as 𝒙ଵ,௞(0) = 𝒙ଶ,௞(0) = 𝒙ଷ,௞(0) =𝒙ସ,௞(0) = 𝟎 . The initial input control signals of each agent are chosen as 𝑢ଵ,଴(𝑡) = 𝑢ଶ,଴(𝑡) =𝑢ଷ,଴(𝑡) = 𝑢ସ,଴(𝑡) = 0.1. The results are depicted in Figures 2 and 3. 

 

Figure 2. Tracking errors of each agent. 

As shown in Figure 2, the tracking error of each agent is demonstrated. It can be seen that under 
the control of the ILC law (3.14), the tracking error of each agent decreases gradually and converges 
to zero as the number of iteration increases. 
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Figure 3(a),(b) displays the outputs of the MAS at the 5th and 40th iterations. As the number of 
iterations rises, the ILC law guides the output of all followers closer to the desired trajectory. After 40 
iterations, all agents have achieved successful tracking of the desired trajectory. Thereby, the 
effectiveness of the algorithm is validated. 

  

(a)                                    (b) 

Figure 3. Outputs of agents at (a) the 5th iteration and (b) the 40th iteration. 

Example 2. The multi-agent systems (5.1)–(5.4) with measurement noise 
In this part, we verify the effectiveness of the proposed algorithm (4.16) in the MASs (5.1)–(5.4) 

with measurement noise.  
On the basis of the MASs (5.1)–(5.4), the initial conditions and topology are set as in Example 1. 

Assume the measurement noise is subject to Gaussian distribution, with the expectation being 0 and 

the variance being 0.01ଶ, i.e., 𝜔௝,௞(𝑡)~𝑁(0,0.01ଶ). 

We take Agent 1 for observation to illustrate the validity of Theorem 3. In addition, in order to 
illustrate the influence of different maximum allowable control deviations 𝛿ଵ,௧ on the approximation 
errors of IOCPs, we consider three situations: 𝛿ଵ,௧ = 5,  10,  20. 

When the measurement noise is involved, we use the mean of 100 group experiments to get the 
approximate IOCPs with different maximum allowable control deviations. Figure 4 shows the errors 
of the expected observed values compared with the real values. 

 ଵଵ଴଴ ∑ ௬ೕ,೟೜ (௧ାଵ)ି௬ೕ,బ೜ (௧ାଵ)ఋೕ,೟ଵ଴଴௤ୀଵ − 𝒄௝(𝑡 + 1)𝒃௝(𝑡). (5.5) 

Figure 5 displays the variances of the observed values in the presence of measurement noise with 
different maximum allowable control deviations to evaluate the discreteness of observed values. 

 ଵଵ଴଴ ∑ ൤௬ೕ,೟೜ (௧ାଵ)ି௬ೕ,బ೜ (௧ାଵ)ఋೕ,೟ − 𝒄௝(𝑡 + 1)𝒃௝(𝑡)൨ଶଵ଴଴௤ୀଵ . (5.6) 

The results presented in both Figures 4 and 5 clearly reveal that the approximation error of the 
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IOCPs exhibits an inverse relationship with the permissible maximum control error. In other words, as 
the maximum allowable control deviation increases, the approximate error of IOCPs tends to decrease. 

 

Figure 4. Errors of the observed values with different values of 𝛿ଵ,௧. 

 

Figure 5. Variance of the observed values with different values of 𝛿ଵ,௧. 

In Figure 6, the tracking error of each agent is precisely displayed. Under the control of the ILC 
law (4.16), it can be clearly observed that the tracking error of each agent gradually converges to a 
fixed boundary as the number of iterations increases. This shows the effectiveness and reliability of 
the proposed algorithm in this paper. 
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Figure 6. Tracking error of MASs with measurement noise. 

In Figure 7(a),(b), the outputs of the MASs are demonstrated at the 5th and 40th iterations, 
respectively. It can be observed that the output of all followers tends towards the desired trajectory. 
This result of the simulation experiment is consistent with the boundedness of Theorem 4; it also 
illustrates that the proposed ILC (4.16) is effective. 

  

(a)                                    (b) 

Figure 7. Outputs of the agents at (a) the 5th iteration and (b) the 40th iteration. 

Example 3. Engineering practice 
To verify the feasibility of the distributed data-driven ILC algorithm, we take the Parrot AR 

unmanned aerial vehicle (UAV) [25] with periodic operation features as the simulation object. To 
conduct the yaw model identification, a step response experiment was designed and the relevant flight 
data were recorded. The mathematical model in transfer function form is as follows: 
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 ట(௦)௎ഗ(௦) = ௞ఠ೙మ௦యାଶ఍ఠ೙௦మାఠ೙మ ௦ (5.7) 

The speed of the yaw angle 𝜓ሶ  of the UAV is related to the control input. The dynamic model for 
yaw orientation represented in state space is given as follows: 

 𝒙(𝑡) = ቎𝜓𝜓ሶ𝜓ሷ ቏ , 𝑈ట(𝑡) = 𝑢(𝑡), 𝒙ሶ (𝑡) = ቎𝜓ሶ𝜓ሷ𝜓ሸ቏ , 𝑦(𝑡) = [1 0  0]𝒙(𝑡) (5.8) 

If we consider the MASs consisting of four UAVs, the state space model of each UAV is 
obtained as follows:  

 ⎩⎪⎨
⎪⎧𝒙ሶ௝.௞(𝑡) = ቎𝜓ሶ𝜓ሷ𝜓ሸ቏ = ൥0 1 00 0 10 −𝜔௡ଶ −2𝜁𝜔௡൩ 𝒙௝,௞(𝑡) + ൥ 00𝑘𝜔௡ଶ൩ 𝑈௝,௞(𝑡)𝑦௝,௞(𝑡) = [1 0  0]𝒙௝,௞(𝑡) , 𝑗 = ሼ1,2,3,4ሽ (5.9) 

Set 𝑘 = 106.3128, 𝜔௡ = 15.0994, 𝜁 = 1.1002. Using the zero-order holder for discretization 
and setting the sampling period and sampling step as 𝑇 = 1𝑠, 𝑇௦ = 0.05𝑠 , we get the following 
discrete system: 

 ൞𝒙௝,௞(𝑡 + 1) = ൥1.0000 0.0468  0.00070 0.8314  0.02220 -5.0676 0.0929 ൩ 𝒙௝,௞(𝑡) + ൥ 0.340917.9218538.753൩ 𝑈௝,௞(𝑡) 𝑦௝,௞(𝑡) = [1 0  0]𝒙௝,௞(𝑡) + 𝜔௝,௞(𝑡) , 𝑗 = ሼ1,2,3,4ሽ. (5.10) 

Assume that the four agents have the same structure. The communication topology and initial 
states are identical to Example 1. It is easy to calculate 𝜌 = 0.9428 < 1. In addition, we set the system 

noise as 𝜔௝,௞(𝑡)~𝑁(0,0.02ଶ). The initial input control signal of each agent is chosen as 0.03. Let 𝑦ௗ(𝑡) = 1.1 ∗ 𝑠𝑖𝑛൫(𝜋𝑡)/10൯ + 0.25 𝑐𝑜𝑠൫(𝜋𝑡)/10൯. The results are depicted in Figures 8–10. 

We consider three situations, 𝛿௧ = 5,  10,  20. Figure 8 shows the errors of the expected observed 
values compared with the real values. Figure 9 shows the convergence of the tracking errors of the 
UAV systems under the ILC law (4.16). Figure 10 displays the output of each agent.  

As the number of iterations increases, the tracking error of the agents gradually tends to a fixed 
boundary. After 60 iterations, the output of the agents approaches the desired trajectory. Therefore, the 
proposed control law (4.16) can effectively control the UAV to complete the task of tracking the desired 
trajectory. In general, it is suitable for practical engineering practice.  
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Figure 8. Errors of the observed values with different values of 𝛿௧. 

 

Figure 9. Tracking errors of each agent. 

 

Figure 10. Output of the agents at the 60th iteration. 
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6. Conclusions 

This paper investigated the distributed data-driven ILC strategy for linear time-varying MASs 
with unknown parameters. First, a N-step iterative learning mechanism was designed to identify the 
unknown IOCPs by using the repetitive control system and input and output data. Then the reciprocal 
of the identified IOCPs was selected as the learning gain to construct the ILC law. Second, we 
considered the presence of measurement noise in MASs, and the maximum allowable control deviation 
was introduced to minimize the adverse effect of measurement noise on identification of the IOCPs. 
Rigorous theoretical analysis was used to verify the effectiveness of the proposed ILC protocol. The 
effectiveness of the proposed method was illustrated by three examples. This investigation provides a 
feasible scheme for the MASs to track a trajectory. 
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