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Abstract: We clarify a relation between the arithmetic autocorrelation and pattern distribution of
binary sequences, then we apply the relation to study the upper bound of arithmetic autocorrelation
for two binary sequences constructed by Fermat quotient and the generalized cyclotomic class of order
2, respectively. Our results indicate that the sequences with large “long term” correlations may have
small “short term” pattern distribution; and thus have rather small arithmetic autocorrelations.
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1. Introduction

Pseudorandom sequences are widely used in measurement, code-division multiple-access (CDMA)
systems, wireless communication systems, digital communication systems, and cryptography. The
correlation properties analysis of pseudorandom sequences is an important problem for pseudorandom
sequences theory.

The arithmetic autocorrelation of a (purely) periodic binary sequence is investigated by Mandel-
baum [1] on arithmetic codes. Let (an) be a binary sequence of (purely) period T . For 1 ≤ τ < T , let
(an+τ) be the shift of (an). Put

xτ =
T−1∑
n=0

an+τ2n and ατ =

∞∑
n=0

an+τ2n, 0 ≤ τ < T.

Write

α0 − ατ =

∞∑
n=0

sn,τ2n (1.1)

with unique sn,τ ∈ {0, 1}. If x0 ≥ xτ, (sn,τ) is (purely) periodic with period T ; otherwise, (sn,τ) is even-
tually periodic with period T from T on (see [2]). In terms of the case, the arithmetic autocorrelation
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function A(τ) of (an) is defined as

A(τ) = N0 − N1, 1 ≤ τ < T, (1.2)

where Ni = |{T ≤ n ≤ 2T − 1 : sn,τ = i}|, i = 0, 1.
Compared to the classical autocorrelation, arithmetic autocorrelation is the with-carry correlation

function of pseudorandom sequences. Goresky and Klapper [3] extended the arithmetic autocorrelation
to cross-correlation and gave large families of binary sequences which have ideal arithmetic cross-
correlations. Later, they generalized the arithmetic autocorrelation to non-binary sequences in [4, 5].
For more background, the reader is referred to [6].

The arithmetic correlation of sequences is expected to be as small as possible. A nontrivial bound
on the arithmetic autocorrelation of the Legendre sequence was proposed in [2]. Hofer, Mérai, and
Winterhof [7] proved the arithmetic autocorrelation and the correlation measure of higher orders have
the relation as follows:

Proposition 1.1. [7] Put

Γs = max
0≤d1<···<dℓ−1<T

1≤ℓ≤s

∣∣∣∣∣∣∣
T−1∑
n=0

(−1)en+en+d1+···+en+dℓ−1

∣∣∣∣∣∣∣ .
Then the arithmetic autocorrelation function of a T-periodic binary sequence (en) satisfies

A(τ) ≪ min
{
T 1/2Γ

1/2
⌊log T ⌋, 2

rΓ⌊log T ⌋ log T
}
,

where r = min{τ,T − τ} for 1 ≤ τ ≤ T − 1.

We write f (n) = O(g(n)) or f (n) ≪ g(n) if | f (n)| ≤ cg(n) for some absolute constant c > 0.
Pattern distribution is an important randomness feature of pseudorandom sequences, which reflects

any pattern (for fixed length) appearing in a period of the sequence. More precisely, let (bn) be a binary
sequence with period T , and let the binary vector f = { f0, f1, · · · , fℓ−1} ∈ {0, 1}ℓ be any pattern (with
fixed length ℓ). The number of pattern distribution is

N = |{0 ≤ n < T : (bn, bn+1, · · · , bn+ℓ−1) = ( f0, f1, · · · , fℓ−1)}|.

Ding [8] proved the bounds of the pattern distribution of binary Legendre sequences. Golomb [9]
presented the pattern distribution of binary m-sequences. Liu and Ren [10] showed the M-ary se-
quences derived from Sidel’nikov sequences have asymptotical uniform pattern distribution. Mauduit
and Sárközy [11] introduced a relation of pattern distribution and correlation measure of high order.
In view of the relation, Hofer, Mérai, and Winterhof [7] obtained another relation between correlation
measures of high order and arithmetic autocorrelation, indicating that pseudorandom binary sequences
with a small correlation measure of high order also have a small arithmetic autocorrelation; that is
Proposition 1.1.

Noting that many binary sequences with large “long term” correlations may have small “short term”
pattern distributions and thus they still have small arithmetic autocorrelations. In other words, there
are binary sequences that have a great value correlation measure of order ℓ for large value lags dℓ−1,
but a small pattern distribution for short lengths of patterns, and then they may have small arithmetic
autocorrelation. We shall establish the relation between the arithmetic autocorrelation and the pattern
distribution by using the idea in [7] with certain modifications.
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Theorem 1.2. Let ET = {e0, e1, · · · , eT−1} ∈ {0, 1}T be a binary sequence of period T . Let k ≥ 1, 1 ≤
τ ≤ T − 1 be integers. For any binary vectors a = {a0, · · · , ak} ∈ {0, 1}k+1, b = {b0, · · · , bk} ∈ {0, 1}k+1

and c = {c0, · · · , ck+τ} ∈ {0, 1}k+τ+1, we write pattern distribution as

N(a,b,k,τ)(ET ) = |{n : T ≤ n ≤ 2T − 1, (en−k, en−k+1, · · · , en) = (a0, a1, · · · , ak) and

(en−k+τ, en−k+τ+1, · · · , en+τ) = (b0, b1, · · · , bk)}|,

when τ > k, otherwise

N(c,k,τ)(ET ) = |{n : T ≤ n ≤ 2T − 1, (en−k, en−k+1, · · · , en+τ) = (c0, c1, · · · , ck+τ)}|.

Denote
δ2k+2(ET ) = max

a,b

∣∣∣∣∣N(a,b,k,τ)(ET ) −
T

22k+2

∣∣∣∣∣ , (1.3)

and
λk+τ+1(ET ) = max

c

∣∣∣∣∣Nc,k,τ(ET ) −
T

2k+τ+1

∣∣∣∣∣ , (1.4)

where the above maximums are taken over all binary vectors a, b, c, respectively, and any integer τ
with 1 ≤ τ < T. Put

∆s = max
1≤h1,h2≤s

{
δh1(ET ), λh2(ET )

}
.

Then we have
A(τ) ≪ min

{
T 1/2∆

1/2
⌊log T ⌋, 2

r∆⌊log T ⌋ log T
}
, (1.5)

where r = min{τ,T − τ} for 1 ≤ τ ≤ T − 1.

This paper is organized as follows. We establish a relation between arithmetic autocorrelation and
pattern distribution of binary sequences; and prove the relation in Section 2. In terms of the relation,
we consider the arithmetic autocorrelation of two types of binary sequences constructed by Fermat
quotient and generalized cyclotomic classes of order 2 in Section 3.

2. Arithmetic autocorrelation and pattern distribution

In this section, our main content is to prove Theorem 1.2 using the idea of Proposition 1.1, with
the difference being that we focus on the direct relation between arithmetic autocorrelation and more
specific pattern distributions with “short term”.

Now we prove Theorem 1.2. As the arithmetic autocorrelation is symmetric with A(τ) = A(T −
τ)( [7], Proposition 2.1.), we consider 1 ≤ τ ≤ ⌊T

2 ⌋ in the following. Let 1 ≤ k < m be integers. Take
a ∈ {0, 1}, assume

(en−k, en−k+τ) = (a, 1 − a),
en−k+ j = en−k+τ+ j, j = 1, · · · , k − 1
(en, en+τ) ∈ {0, 1}2,

(2.1)

for k = 1, · · · ,m − 1 and n = T, · · · , 2T − 1. First we let m + 1 ≤ τ ≤ ⌊T
2 ⌋. For fixed a, from (1.3) we

have the number of patterns (
en−k en−k+1 · · · en

en−k+τ en−k+τ+1 · · · en+τ

)
(2.2)
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that satisfy the assumptions (2.1) is at least T
22k+2 − δ2k+2. We discuss the specific cases of assumption

(2.1). If a = 1, from (1.1) we have

2n−k+1 >

n−k∑
n=0

(en2n − en+τ2n) =
n−k−1∑

n=0

(en2n − en+τ2n) + 2n−k ≥ 1.

This means there is no need to carry to make sn−k,τ ≥ 0 for the subtraction of en−k+τ = 0 from en−k = 1.
Hence

sn,τ =

{
1, if en , en+τ,

0, if en = en+τ.

Obviously, there are 2k possibilities of the pattern (2.2), then we have at least T
2k+2 − 2kδ2k+2 different n

with T ≤ n < 2T such that sn,τ = 1.
If a = 0, from (1.1) we have

n−k∑
n=0

(en2n − en+τ2n) =
n−k−1∑

n=0

(en2n − en+τ2n) − 2n−k < 0.

This means there is a need to give a carry for the subtraction of 1 from 0. Hence

sn,τ =

{
1, if en = en+τ,

0, if en , en+τ.

There are also 2k possibilities of the pattern (2.2); thus we have at least T
2k+2 − 2kδ2k+2 different n with

T ≤ n < 2T such that sn,τ = 1.
In both cases, we count at least T

2k+1 − 2k+1δ2k+2 different n with T ≤ n < 2T satisfying en−k , en−k+τ,
(en−k+ j, en−k+τ+ j) ∈ {(0, 0), (1, 1)} for j = 1, · · · , k − 1 and sn,τ = 1. Then we have

N1 ≥
1
2

m−1∑
k=1

1
2k

 T −
m−1∑
k=1

2k+1δ2k+2

≥
T
2
− 2−mT − 2m+1∆2m.

Analogously, we have the number N0 satisfies

N0 ≥
T
2
− 2−mT − 2m+1∆2m.

Hence, we obtain
|A(τ)| = |N0 − N1| ≤ 2−m+1T + 2m+2∆2m.

Next, we let 1 ≤ τ ≤ m, that indicates some indices in pattern (2.2) coincide, so we have two types
of pattern distributions. For fixed a, if k ≤ τ − 1, from (1.3) we have the number of patterns (2.2) that
satisfy the assumptions (2.1) is at least

T
22k+2 − δ2k+2,

if k ≥ τ, we have the pattern as(
en−k en−k+1 · · · en en+1 · · · en+τ

)
. (2.3)
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From (1.4), we know the number of patterns (2.3) satisfies the assumption (2.1) is at least

T
2k+τ+1 − λk+τ+1.

Similar to before, if a = 1, we have

sn,τ =

{
1, i f en , en+τ,

0, i f en = en+τ.

If a = 0, we have

sn,τ =

{
1, i f en = en+τ,

0, i f en , en+τ.

In each case, we have 2k possibilities of pattern (2.2) and 2τ−1 possible choices of pattern (2.3). Thus,
we have at least

T
2k+1 − 2k+1δ2k+2, k ≤ τ − 1,

T
2k+1 − 2τλk+τ+1, k ≥ τ.

different n with T ≤ n < 2T satisfies en−k , en−k+τ, (en−k+ j, en−k+τ+ j) ∈ {(0, 0), (1, 1)} for j = 1, · · · , k−1
and sn,τ = 1.

Let m′ = 2m − τ, we obtain

N1 ≥
T
2

m′−1∑
k=1

2−k −

τ−1∑
k=1

2k+1δ2k+2 −

m′−1∑
k=τ

2τλk+τ+1

≥
T
2
− 2−2m+τT − 2τ+1(m − τ + 1)∆2m,

and

N0 ≥
T
2
− 2−2m+τT − 2τ+1(m − τ + 1)∆2m.

Therefore
|A(τ)| ≤ 2−2m+τ+1T + 2τ+2(m − τ + 1)∆2m.

Choosing

m =
⌊
1
2

log
T
∆⌊log T ⌋

⌋
,

We prove the result of Theorem 1.2.

3. Arithmetic autocorrelation of binary sequences

We shall study the arithmetic autocorrelation of two pseudorandom binary sequences by applying
Theorem 1.2.
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3.1. Binary sequence related to Fermat quotient

Let p be a prime and let n be an integer with (n, p) = 1. The Fermat quotient qp(n) is defined as

qp(n) ≡
np−1 − 1

p
(mod p), 0 ≤ qp(n) ≤ p − 1.

We also define qp(kp) = 0 for k ∈ Z. Fermat quotients have numerous applications in computational
and algebraic number theory, and many authors studied their properties (see [12–19] for details). For
example, Gómez and Winterhof [15] defined the binary sequence Ep2 =

(
e0, e1, · · · , ep2−1

)
∈ {0, 1}p

2
as

follows:

en =

{
0, if qp(n) is a quadratic residue modulo p or qp(n) = 0,
1, otherwise,

(3.1)

and showed that the upper bound of the f -correlation measure of order ℓ is ℓp
5
3 . The high linear

complexity of Ep2 was studied in [20]. Chen [21] described the trace representation of the above
binary sequence Ep2 by determining the defining pairs of all binary characteristic sequences of cosets.
There is the research on generalizations of the sequence Ep2 (see [22, 23]). The binary sequence Ep2

has the desired pseudorandomness; however, the arithmetic correlation of the sequence Ep2 remains
open. We would study the arithmetic autocorrelation of the sequence Ep2 through Theorem 1.2.

In order to calculate the pattern distribution of the binary sequence Ep2 , an upper bound estimate
for multiplicative character sums of Fermat quotients is needed.

Lemma 3.1. [15] Let χ1, · · · , χℓ be nontrivial multiplicative characters modulo p. Then we have

N−1∑
n=0

χ1(qp(n + d1)) · · · χℓ(qp(n + dℓ)) ≪ max
{
ℓN
p1/3 , ℓp

3/2 log p
}

for any integers 0 ≤ d1 < · · · < dℓ ≤ p2 − 1 and 1 ≤ N ≤ p2.

We use the lemma to analyze the pattern distribution of the binary sequence.

Lemma 3.2. Let Ep2 be the binary sequence with period p2 defined in (3.1). Let 1 ≤ k < τ < p2 be
integers. For any pattern a = {a0, · · · , ak} ∈ {0, 1}k+1 and b = {b0, · · · , bk} ∈ {0, 1}k+1, we know

N(a,b,k,τ)(Ep2) = |{n : p2 ≤ n ≤ 2p2 − 1, (en−k, en−k+1, · · · , en) = (a0, a1, · · · , ak) and

(en−k+τ, en−k+τ+1, · · · , en+τ) = (b0, b1, · · · , bk)}|,

then
δ2k+2(Ep2) ≪ (2k + 2)p

5
3 , (3.2)

for 1 ≤ k < 1
6 log2 p .

Proof. From the definition of pattern distribution, we have

N(a,b,k,τ)(Ep2) −
p2

22k+2 =
1

22k+2

2p2−1∑
n=p2

k∏
j=0

(
1 + (−1)en−k+ j+a j

) (
1 + (−1)en−k+τ+ j+b j

)
−

p2

22k+2

=
1

22k+2

∑
U,V⊆{0,1,··· ,k}

U∪V,∅

2p2−1∑
n=p2

∏
j1∈U

(−1)en−k+ j1+a j1

∏
j2∈V

(−1)en−k+τ+ j2+b j2 .
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In the following, we classify and discuss the first sum in the above equation. Let η be the Legendre
symbol modulo p. When U , ∅ and V = ∅, by (3.1) and Lemma 3.1, we have

1
22k+2

∑
U⊆{0,1,··· ,k}\{∅}

2p2−1∑
n=p2

∏
j1∈U

(−1)en−k+ j1+a j1

≤
2k+1 − 1

22k+2 max
U,∅

∣∣∣∣∣∣∣∣
2p2−1∑
n=p2

∏
j1∈U

(−1)en−k+ j1

∣∣∣∣∣∣∣∣
≤

2k+1 − 1
22k+2 max

U,∅

∣∣∣∣∣∣∣∣
2p2−1∑
n=p2

∏
j1∈U

η(qp(n − k + j1)) + |U | · p

∣∣∣∣∣∣∣∣
≪

1
2k+1 (k + 1)p

5
3 , (3.3)

where |U | denotes the number of elements in set U. When U = ∅ and V , ∅, we also have

2k+1 − 1
22k+2 max

V,∅

∣∣∣∣∣∣∣∣
2p2−1∑
n=p2

∏
j2∈V

(−1)en−k+τ+ j2

∣∣∣∣∣∣∣∣ ≪ 1
2k+1 (k + 1)p

5
3 . (3.4)

When U , ∅ and V , ∅, by (3.1) and Lemma 3.1 we obtain

1
22k+2

∑
U,V⊆{0,1,··· ,k}\{∅}

2p2−1∑
n=p2

∏
j1∈U

(−1)en−k+ j1+a j1

∏
j2∈V

(−1)en−k+τ+ j2+b j2

≤
22k+2 − 2k+2 + 1

22k+2 max
U,V,∅

∣∣∣∣∣∣∣∣
2p2−1∑
n=p2

∏
j1∈U

(−1)en−k+ j1

∏
j2∈V

(−1)en−k+τ+ j2

∣∣∣∣∣∣∣∣
≤ max

U,V,∅

∣∣∣∣∣∣∣∣
2p2−1∑
n=p2

∏
j1∈U

η(qp(n − k + j1))
∏
j2∈V

η(qp(n − k + τ + j2)) + (|U | + |V |) · p

∣∣∣∣∣∣∣∣
≪ (2k + 2)p

5
3 . (3.5)

Combing (3.3)–(3.5), we immediately obtain∣∣∣∣∣∣N(a,b,k,τ)(Ep2) −
p2

22k+2

∣∣∣∣∣∣ ≪ (2k + 2)p
5
3 .

This completes the proof of lemma. □

Lemma 3.3. Let Ep2 be the binary sequence with period p2 defined in (3.1). Let 1 ≤ τ ≤ k be integers.
For any pattern c = {c0, c1, · · · , ck+τ} ∈ {0, 1}k+τ+1, we have

N(c,k,τ)(Ep2) = |{n : p2 ≤ n ≤ 2p2 − 1, (en−k, en−k+1, · · · , en+τ) = (c0, c1, · · · , ck+τ)}|,

then
λk+τ+1(Ep2) ≪ (k + τ + 1)p

5
3 , (3.6)

for 1 ≤ k < 1
6 log2 p .
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Proof. Similar to the proof of Lemma 3.2. Let η be the Legendre symbol modulo p, from (3.1) and
Lemma 3.1 we have

N(c,k,τ)(Ep2) −
p2

2k+τ+1 =
1

2k+τ+1

2p2−1∑
n=p2

k+τ∏
j=0

(
1 + (−1)en−k+ j+c j

)
−

p2

2k+τ+1

=
1

2k+τ+1

∑
W⊆{0,1,··· ,k+τ}\{∅}

2p2−1∑
n=p2

∏
j∈W

(−1)en−k+ j+c j

≤
2k+τ+1 − 1

2k+τ+1 max
W,∅

∣∣∣∣∣∣∣∣
2p2−1∑
n=p2

∏
j∈W

(−1)en−k+ j

∣∣∣∣∣∣∣∣
≤ max

W,∅

∣∣∣∣∣∣∣∣
2p2−1∑
n=p2

∏
j∈W

η(qp(n − k + j)) + |W | · p

∣∣∣∣∣∣∣∣
≪ (k + τ + 1)p

5
3 .

Hence, we obtain ∣∣∣∣∣∣N(c,k,τ)(Ep2) −
p2

2k+τ+1

∣∣∣∣∣∣ ≪ (k + τ + 1)p
5
3 .

This completes the proof of lemma. □

As a direct result of Theorem 1.2, Lemmas 3.2 and 3.3, we obtain the arithmetic autocorrelation of
binary sequence in (3.1).

Theorem 3.4. Let Ep2 be the binary sequence with period p2 defined by (3.1). The arithmetic autocor-
relation of sequence Ep2 satisfies

A(τ) ≪ min
{√

2p
11
6 (log p)

1
2 , 2r+2 p

5
3 (log p)2

}
, (3.7)

where r = min{τ, p2 − τ} for 1 ≤ τ ≤ p2 − 1.

We illustrate the upper bound derived from Theorem 3.4 with some actual maximum arithmetic
autocorrelation values of the binary sequence Ep2 in Figure 1. Then Theorem 3.4 implies that the binary
sequence Ep2 has a small arithmetic autocorrelation for a large enough period p2. In addition, the ε-
correlation measure of sequence Ep2 was mentioned in [15], we have the upper bound of arithmetic
autocorrelation of order of magnitude O(p

11
6 (log p)

1
2 ) from Proposition 1.1 that equals the upper bound

of arithmetic autocorrelation of order of magnitude in Theorem 3.4.
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Figure 1. The actual maximum arithmetic autocorrelation values and the upper bounds of
binary sequence Ep2 .

3.2. The generalized cyclotomic sequence of order 2

Let p and q be distinct primes, T = pq. Let gcd(p − 1, q − 1) = d and e = (p−1)(q−1)
d . By the Chinese

Remainder Theorem: there exists a common primitive root g of both p and q, and an integer x such
that

x ≡ g(mod p), x ≡ 1(mod q),

and ordT (g) = e. A generalized cyclotomic class of order d is defined by Whiteman [24] as

Di = {gsxi|s = 0, 1, · · · , e − 1}, i = 0, 1, · · · , d − 1.

Let Zpq be the residue class ring modulo pq. Whiteman [24] proved

Z∗pq =

d−1⋃
i=0

Di, Di ∩ D j = ∅, for i , j.

The generalized cyclotomic classes is an important approach to constructing pseudorandom sequences.
Let P = {p, 2p, · · · , (q − 1)p}, Q = {q, 2q, · · · , (p − 1)q}, and Q0 = Q ∪ {0}. Take d = 2, Ding [25]
defined the generalized cyclotomic sequence of order 2 S pq = {s0, s1, · · · , spq−1} by

sn =


0, if n mod pq ∈ Q0,

1, if n mod pq ∈ P,
i, if n mod pq ∈ Di,

(3.8)

obviously, the sequence is periodic with pq and can be expressed as [26]

sn =


0, if n mod pq ∈ Q0,

1, if n mod pq ∈ P,
1−( n

p )( n
q )

2 , otherwise,
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where ( ·p ) is the Legendre symbol.
The high linear complexity and low autocorrelation values with certain properties of the primes

of the generalized cyclotomic sequences S pq have been determined by Ding [25, 27], respectively.
Brandstätter and Winterhof [28] got the lower bound of linear complexity profile and the upper bound
of aperiodic autocorrelation. Dai et al. [29] showed the trace representation of the generalized cy-
clotomic sequence S pq. Hofer and Winterhof [30] demonstrated the 2-adic complexity of the above
generalized cyclotomic sequence S pq is close to the period. More generalization refers to [31–34]. As
we know, the arithmetic autocorrelation of the generalized cyclotomic sequence of order 2 has yet to
be concerned.

We would study the arithmetic autocorrelation of the generalized cyclotomic sequence S pq based
on the upper bound estimates of multiplicative character sums with composite moduli.

Lemma 3.5. [35] Let p, q be distinct prime numbers and f (x) = aℓxℓ + · · · + a1x + a0 ∈ Z[x] and
X,Y are real numbers with 0 < Y ≤ pq. Let χ be a primitive multiplicative character modulo pq and
write χ = χ1χ2, where χ1 is a character modulo p of order dp > 1 and χ2 is a character modulo q of
order dq > 1. Assume that in Fp[x], f (x) is not the constant multiple of the dp-power of a polynomial
and it has sp distinct zeros in Fp, and in Fq[x], f (x) is not the constant multiple of the dq-power of a
polynomial, and it has sq distinct zeros in Fq, we have∣∣∣∣∣∣∣ ∑

X<x≤X+Y

χ( f (x))

∣∣∣∣∣∣∣ ≪ ℓ2 p1/2q1/2 log(pq).

We first represent the generalized cyclotomic sequence using a multiplicative character. Let χ be
the multiplicative character modulo pq. By the orthogonality relations of multiplicative character, we
have

n ∈ Di ⇐⇒ there is s with 0 ≤ s ≤ e − 1 such that n ≡ gsxi(mod pq)

⇐⇒
1
ϕ(pq)

e−1∑
s=0

∑
χ mod pq

χ(n)χ(gsxi) = 1

⇐⇒
1
ϕ(pq)

∑
χ mod pq

χ(n)χ(xi)
e−1∑
s=0

χ(gs) = 1

⇐⇒
1
2

∑
χ mod pq
χ(g)=1

χ(n)χ(xi) = 1.

That means
1
2

∑
χ mod pq
χ(g)=1

χ(n) =
{

1, if n mod pq ∈ D0 ∪ Q0,

0, if n mod pq ∈ D1 ∪ P.

Let H = {χ mod pq |χ(g) = 1 and χ is non-trivial}. Since the order of χ modulo pq is 2, we have
|H| = 1 and χ ∈ H is the primitive multiplicative character modulo pq, denoted by χpq. Hence

(−1)sn =


+1, if n mod pq ∈ Q0,

−1, if n mod pq ∈ P,
χpq(n), if n mod pq ∈ Z∗pq.

(3.9)
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According to Theorem 1.2, we will calculate the pattern distribution of the generalized cyclotomic
sequence of order 2 in (3.8).

Lemma 3.6. Let p and q be two distinct primes with gcd(p − 1, q − 1) = 2. Let S pq be the binary
sequence with period pq defined in (3.8). Let 1 ≤ k < τ < pq be integers. For any pattern a =
{a0, · · · , ak} ∈ {0, 1}k+1 and b = {b0, · · · , bk} ∈ {0, 1}k+1, we know

N(a,b,k,τ)(S pq) = |{n : pq ≤ n ≤ 2pq − 1, (sn−k, sn−k+1, · · · , sn) = (a0, a1, · · · , ak) and

(sn−k+τ, sn−k+τ+1, · · · , sn+τ) = (b0, b1, · · · , bk)}|,

then
δ2k+2(S pq) ≪ (2k + 2)2 p1/2q1/2 log(pq) + (2k + 2)(p + q), (3.10)

for 1 ≤ k < log2 p+log2 q
4 .

Proof. From (1.3) we have

N(a,b,k,τ)(S pq) −
pq

22k+2 =
1

22k+2

2pq−1∑
n=pq

k∏
j=0

(
1 + (−1)sn−k+ j+a j

) (
1 + (−1)sn−k+τ+ j+b j

)
−

pq
22k+2

=
1

22k+2

∑
U,V⊆{0,1,··· ,k}

U∪V,∅

2pq−1∑
n=pq

∏
j1∈U

(−1)sn−k+ j1+a j1

∏
j2∈V

(−1)sn−k+τ+ j2+b j2

=
1

22k+2

∑
U,V⊆{0,1,··· ,k}\{∅}

2pq−1∑
n=pq

∏
j1∈U

(−1)sn−k+ j1+a j1

∏
j2∈V

(−1)sn−k+τ+ j2+b j2

+
1

22k+2

∑
U⊆{0,1,··· ,k}\{∅}

V=∅

2pq−1∑
n=pq

∏
j1∈U

(−1)sn−k+ j1+a j1

+
1

22k+2

∑
V⊆{0,1,··· ,k}\{∅}

U=∅

2pq−1∑
n=pq

∏
j2∈V

(−1)sn−k+τ+ j2+b j2

=
∑

1

+
∑

2

+
∑

3

.

Next, we discuss the above three sum equations separately. By (3.9) and Lemma 3.5 we have

∑
1

≤
22k+2 − 2k+2 + 1

22k+2 max
U,V,∅

∣∣∣∣∣∣∣
2pq−1∑
n=pq

∏
j1∈U

(−1)sn−k+ j1

∏
j2∈V

(−1)sn−k+τ+ j2

∣∣∣∣∣∣∣
≤

22k+2 − 2k+2 + 1
22k+2 max

U,V,∅

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
pq−1∑
n=0

n−k+ j1∈Zpq∗

n−k+τ+ j2∈Z∗pq

∏
j1∈U

(−1)spq+n−k+ j1

∏
j2∈V

(−1)spq+n−k+τ+ j2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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+ (2k + 2)(p + q)

≤ max
U,V,∅

∣∣∣∣∣∣∣∣
∑

n∈Zpq

χpq

∏
j1∈U

(pq + n − k + j1)

 χpq

∏
j2∈V

(pq + n − k + τ + j2)


∣∣∣∣∣∣∣∣

+ (2k + 2)(p + q)
≪ (2k + 2)2 p1/2q1/2 log(pq) + (2k + 2)(p + q),

and ∑
2

≤
2k+1 − 1

22k+2 max
U,∅

∣∣∣∣∣∣∣
2pq−1∑
n=pq

∏
j1∈U

(−1)sn−k+ j1

∣∣∣∣∣∣∣
≤

2k+1 − 1
22k+2 max

U,∅

∣∣∣∣∣∣∣∣
∑

n∈Zpq

χpq

∏
j1∈U

(pq + n − k + j1)

 + |U |(p + q)

∣∣∣∣∣∣∣∣
≪

(k + 1)2

2k+1 p1/2q1/2 log(pq) +
(k + 1)

2k+1 (p + q).

Similarly, we have ∑
3

≪
(k + 1)2

2k+1 p1/2q1/2 log(pq) +
(k + 1)

2k+1 (p + q).

Hence, we obtain∣∣∣∣∣N(a,b,k,τ)(S pq) −
pq

22k+2

∣∣∣∣∣ ≪ (2k + 2)2 p1/2q1/2 log(pq) + (2k + 2)(p + q).

This completes the proof of lemma. □

Lemma 3.7. Let p and q be two distinct primes with gcd(p − 1, q − 1) = 2. Let S pq be the bi-
nary sequence with period pq defined in (3.8). Let 1 ≤ τ ≤ k be integers. For any pattern
c = {c0, c1, · · · , ck+τ} ∈ {0, 1}k+τ+1, we know

N(c,k,τ)(S pq) = |{n : pq ≤ n ≤ 2pq − 1, (sn−k, sn−k+1, · · · , sn+τ) = (c0, c1, · · · , ck+τ)}|,

then
λk+τ+1(S pq) ≪ (k + τ + 1)2 p1/2q1/2 log(pq) + (k + τ + 1)(p + q), (3.11)

for 1 ≤ k < log2 p+log2 q
4 .

Proof. By (3.9) and Lemma 3.5, we have

N(c,k,τ) −
pq

2k+τ+1 =
1

2k+τ+1

2pq−1∑
n=pq

k+τ∏
j=0

(
1 + (−1)sn−k+ j+c j

)
−

pq
2k+τ+1

≤
2k+τ+1 − 1

2k+τ+1 max
W,∅

∣∣∣∣∣∣∣
2pq−1∑
n=pq

∏
j∈W

(−1)sn−k+ j

∣∣∣∣∣∣∣
≤

2k+τ+1 − 1
2k+τ+1 max

W,∅

∣∣∣∣∣∣∣∣
∑

n∈Zpq

χpq

∏
j∈W

(pq + n − k + j)

 + |W |(p + q)

∣∣∣∣∣∣∣∣
≪ (k + τ + 1)2 p1/2q1/2 log(pq) + (k + τ + 1)(p + q).
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This concludes the proof of lemma. □

Substituting the results of Lemmas 3.6 and 3.7 into Theorem 1.2, we immediately have the arith-
metic autocorrelation of the binary generalized cyclotomic sequence.

Theorem 3.8. Let p and q be two distinct primes with gcd(p − 1, q − 1) = 2. Let S pq be the binary
sequence with period pq defined by (3.8). The arithmetic autocorrelation of sequence S pq satisfies

A(τ) ≪ min
{√

2 p
3
4 q

3
4 (log(pq))

3
2 , 2r+1 p

1
2 q

1
2 (log(pq))4

}
, (3.12)

where r = min{τ, p2 − τ} for 1 ≤ τ ≤ p2 − 1.

We enumerate some actual maximum arithmetic autocorrelation values and the upper bounds ob-
tained from Theorem 3.8 for small periods of binary sequence S pq in Figure 2. The graph shows that
the upper bound is greater than the actual maximum value of arithmetic autocorrelation. Then the
result derived from Theorem 3.8 indicates the arithmetic autocorrelation of the sequence S pq is rather
small for a sufficiently large period pq.

Figure 2. The actual maximum arithmetic autocorrelation values and the upper bounds of
binary sequence S pq.

Remark 3.9. Rivat and Sárközy [35] studied the pseudorandom correlation measure of the binary
Jacobi sequence of period pq defined with polynomial f (n). For f (n) = n, their results imply∣∣∣∣∣∣∣

pq−p−q∑
n=1

(−1)sn sn+p sn+q sn+p+q

∣∣∣∣∣∣∣ ≥ pq − 35p1/2q1/2,

that means “long term” correlation of order 4 of the generalized cyclotomic sequence S pq in (3.8) is
large. Then we cannot obtain the arithmetic autocorrelation of the sequence by Proposition 1.1. In
contrast to this, we get a rather small “short term” pattern distribution, resulting in a small arithmetic
autocorrelation of the binary sequence S pq.
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4. Final remarks

Let p, q and T be prime numbers, and d, n, and k be integers. We list the previously known and cur-
rently proposed arithmetic autocorrelation functions A(τ) as well as conditions with binary sequences
in Table 1.

Table 1. Know arithmetic autocorrelation of binary sequences.

No. A(τ) ≪ period of sequence conditions reference
1 0 pr−1(p − 1) 2 is primitive root modulo pr [19]
2 4p3/4(log2 p)1/2 p [26]
3 d1/2 p3/4 p d < 1

2 log log p log p [25]
or 2 is a primitive root modulo p

4 p3n/4 pn − 1 [25]
5 d1/2 p1/4T 1/2 T d < log p

log log p [25]
or 2 is a primitive root modulo T

6 d1/223k/4 2k − 1(is prime) k ≤ d + 1 [25]
0 pr−1(p − 1)/2 p ≡ 1(mod 8)

7 pr−1/2 ln p pr−1(p − 1)/2 p ≡ −1(mod 8) [8]
2p−1 . 1(mod p2), ordp(2) = p−1

2
8 2n−1 − 1 2n − 1 [10]
9

√
2p11/6(log p)1/2 p2 Theorem 3.4

10
√

2 (pq)3/4(log(pq))3/2 pq Theorem 3.8

Goresky and Klapper [4, 5] presented the expected arithmetic autocorrelation over all binary se-
quences with period T , which is T

2T−gcd(τ,T ) for fixed τ. Subsequently, Hofer, Mérai, and Winterhof [7]
gave the upper bound of arithmetic autocorrelation for any pseudorandom binary sequence of period T
with a small correlation measure, A(τ) = O(T

3
4 (log2 T )

1
2 ). They studied the arithmetic autocorrelation

of several sequences, including binary sequences from the Legendre symbol, the Sidelnikov–Lempel–
Cohn–Eastman sequence, and the sequence from the trace function, as in the 3–6-th row of Table 1.
The arithmetic autocorrelation of these sequences is relatively small with respect to its period when the
period is sufficiently large, but obtaining these results relies on a small correlation measure of high or-
der. Moreover, Goresky and Klapper [3] proved ℓ-sequence have ideal arithmetic autocorrelation, as in
the 1-th row of Table 1; however, the classical autocorrelation equals the period, which is not desired.
Chen et al. [36] presented the arithmetic autocorrelation of the binary m-sequence, which amounts to
half of the period, as in the 8-th row of Table 1. Compared with these sequences, the generalized cy-
clotomic sequence of order 2 studied in Theorem 3.8 has rather small arithmetic autocorrelation with
upper bound of order of magnitude O(p

3
4 q

3
4 (log(pq))3/2) for sufficiently large period pq, although its

correlation measure of order 4 is quite large. As well as binary sequence Ep2 studied in Theorem 3.4,
which has a small upper bound of arithmetic autocorrelation relative to its large enough period, its
f -correlation measure is also small.
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5. Conclusions

In this paper we constructed the relation between arithmetic autocorrelation and pattern distribution
of binary sequences. Based on this relation, we proved the arithmetic autocorrelation of the binary
sequence defined in [15]; and pointed out that the generalized cyclotomic sequence defined in [25] has
a small “short term” pattern distribution and gave an upper bound of arithmetic autocorrelation. Our
results indicate that some pseudorandom sequences with large “long term” pseudorandom correlations
of order k may have small arithmetic correlations; and therefore can also be used for research in certain
cryptographic fields. It may be interesting to find and study these pseudorandom sequences.
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