
Electronic
Research Archive

http://www.aimspress.com/journal/era

ERA, 33(2): 826–848.
DOI: 10.3934/era.2025037
Received: 08 December 2024
Revised: 19 January 2025
Accepted: 23 January 2025
Published: 13 February 2025

Research article

Advanced machine learning technique for solving elliptic partial differential
equations using Legendre spectral neural networks

Ishtiaq Ali*

Department of Mathematics and Statistics, College of Science, King Faisal University, P. O. Box 400,
Al-Ahsa 31982, Saudi Arabia

* Correspondence: Email: iamirzada@kfu.edu.sa.

Abstract: In this work, a novel approach based on a single-layer machine learning Legendre spectral
neural network (LSNN) method is used to solve an elliptic partial differential equation. A Legendre
polynomial based approach is utilized to generate neurons that fulfill the boundary conditions. The loss
function is computed by using the error back-propagation principles and a feed-forward neural network
model combined with automatic differentiation. The main advantage of using this methodology is that
it does not need to solve a system of nonlinear and nonsparse equations compared with other traditional
numerical schemes, which makes this algorithm more convenient for solving higher-dimensional
equations. Further, the hidden layer is eliminated with the help of a Legendre polynomial to enlarge
the input pattern. The neural network’s training accuracy and efficiency were significantly enhanced by
the innovative sampling technique and neuron architecture. Moreover, the Legendre spectral approach
can handle equations on more complex domains because of numerous networks. Several test problems
were used to validate the proposed scheme, and a comparison was made with other neural network
schemes consisting of the physics-informed neural network (PINN) scheme. We found that our
proposed scheme has a very good agreement with PINN, which further enhances the reliability and
efficiency of our proposed method. The absolute and relative error in both L2 and L∞ between exact
and numerical solutions are provided, which shows that our numerical method converges exponentially.

Keywords: feed-forward neural network; single-layer Legendre neural network; automatic
differentiation; elliptic partial differential equations; complex domains

1. Introduction

Among the most frequent outcomes of mathematical modeling for describing physical, biological,
or chemical phenomena are partial differential equations (PDEs), which are used in all branches of
engineering and science. In addition, a dramatic increase has been seen in recent years in the use of

http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2025037

827

these PDEs in fields like chemistry, computer sciences (especially in relation to image processing and
graphics), and economics (finance) [1]. These PDEs are subject to some appropriate initial and
boundary conditions. Solving these PDEs and analyzing their solutions is one of the key factors. In
most cases, the closed form solution of these PDEs is not possible or is very hard to obtain. Therefore,
one must look for some approximate method to find their solution. Most of these methods are based
on predictor–corrector, Runge–Kutta, finite difference, and finite element [2–4]. In order to use these
numerical approaches, the domain must be discretized into a number of finite domains or locations
where the functions are locally approximated. However, such methods still have many limitations,
despite their strength and potential to help us approximate solutions to issues where analytical
approaches are unable to. Finite difference techniques involve the creation of a grid on which the
solution is to be found and can be difficult to specify over complicated geometries. Similar to the
finite difference approach, the finite element method is simple to define over complicated geometries
but can struggle with nonlinear issues and may become slow or unfeasible when dealing with
high-dimensional problems or when an extraordinarily small error is needed. There is still a need for
innovative numerical techniques to solve PDEs because of these constraints [5].

Elliptic PDEs are a class of PDEs that explain the global and steady-state phenomena that arise
in many areas of computational sciences, such as fluid dynamics, heat transfer, electromagnetism,
geophysics, biology, and other application areas. They are used by coastal engineers to approximate
the motion of the sea, and are used to model electric potential. Many elliptical problems can be
solved easily, but those with complicated meshes or complex geometries are more difficult to solve.
Only in very rare situations can closed analytical expressions for their solutions be found, most of
which are of not much theoretical or practical significance. Apart from this, many elliptical PDEs
are defined in higher-dimensional domains, which cause computational complexities for traditional
numerical schemes. Therefore, it is natural that mathematicians and scientists look for techniques for
estimating solutions. In fact, the development of computational mathematics, which focuses primarily
on the development and mathematical analysis of numerical methods for the approximate solution of
elliptic PDEs, has been accelerated by the introduction of digital computers.

Neural network techniques are emerging as effective tools for resolving PDEs, especially elliptical
PDEs when alternative approaches are impractical or may not work. If one can figure out a way to
sample from the underlying domain, neural networks can be used to solve high-dimensional problems
without suffering too much from the curse of dimensionality, as well as nonlinear partial differential
equations, and even domains with complex geometries. Neural network-based approaches were
employed whenever the need for highly precise solutions to PDEs was in demand. In terms of
accuracy, the neural networks that were able to acquire any nonlinear function performed more
effectively than the conventional techniques. More than two and a half decades ago, Lagaris et al. [6]
applied neural networks to solve ordinary and PDEs, which marked the beginning of the use of neural
networks in the solution of differential equations. Since then, there have been a number of
advancements in the use of neural networks in the numerical solution of differential equations. For
example, Mall and Chakraverty in [7], and Dufera in [8] introduced a deep neural network-based
approach to solve ordinary differential equations (ODEs). The neural network was trained using the
traditional gradient descent approach. Rivera et al. in [9], proposed a method to solve the PDEs using
neural networks after determining the loss function using the quadrature approach. The quadrature
weight was added to the loss function using this application of the quadrature rule. Tan et al. [10]

Electronic Research Archive Volume 33, Issue 2, 826–848.

828

solved two-dimensional elliptic PDEs using a machine learning technique based on the unsupervised
form of wavelet neural networks. Recently, Sabir et al. [11] used artificial neural network procedures
to solve the susceptible-exposed-infectious-recovered (SEIR) mathematical model for Zika virus
transmission, together with the hybridization effectiveness of local search schemes and global
swarming. An accurate, fast, and reliable neural network approach based on physics that solves
differential equations was used in [12]. For more details about the use of neural network technique to
solve integer-order differential equations, we refer the reader to [13–18]. Apart from solving the
integer-order differential equations, the neural network technique has also been effectively applied to
solve fractional-order differential equations [19, 20].

The development of techniques for solving PDEs has advanced significantly in scientific
computing over the past years. Because of their natural hierarchical structure, links to approximation
theory, and advantageous convergence qualities, spectral methods are an important component of
scientific computing’s tools. For the purpose of guaranteeing that the underlying PDE is satisfied in a
suitable sense, spectral methods often expand the solution of a PDE as a linear combination of basis
functions and estimate the coefficients of the linear combination. Despite their potential potency,
spectral approaches’ are highly dependent on the basis function selection, which is not always clear
for practical uses. The geometry of the domain where the answer is to be approximated can be a
source of difficulties. For instance, while commonly used basis functions, such as orthogonal
polynomials, are appropriate only for regular domains, fluid dynamics applications usually use
complicated domains. The existence of highly localized characteristics in the solution, such as
excessively steep gradients, might also cause issues. The approximation of the order function
characterizing the evolving sharp phase boundary is one example of an application in phase field
modeling. Unless the specifics of the application are taken into account while building the basis
functions, the resolution of such localized features can reduce the effectiveness of a spectrum
approach because the basis functions employed in spectral methods are global in nature [21–25]. For
more details about spectral methods, we refer the reader to [26–31].

Among the significant sequences of orthogonal polynomials that have been extensively
investigated and are utilized in computational fluid dynamics, interpolation and approximation theory,
numerical integration, and the solution of differential equations, particularly elliptic differential
equations, are the Legendre polynomials. These are an essential part of numerical integration and the
approximate solution of differential and integral equations, along with being an effective tool for
approximating hard-to-calculate functions. Excellent error characteristics are demonstrated by the
Legendre spectral methods when approximating a smooth function. Orthogonal polynomial
expansion appears in many real-world scenarios and applications and is crucial to many branches of
physics and mathematics [32]. Typical neural network structures have several disadvantages, despite
the fact that they have generated outstanding outcomes when it comes to solving differential
equations. For example physics-informed neural networks (PINNs) have a weaker theoretical
underpinning and a lack of useful error analysis tools due to their recent inception as a numerical
method. Since the provided loss function in PINNs is frequently non-convex, it might be difficult to
comprehend the convergence criteria in the optimization process, where solutions may become
trapped in the local minima. It is necessary to overcome problems such as weak generality and low
solution precision, and, in some cases, training can be difficult, particularly when the equation’s
solution has high-frequency features [33]. Other issues with conventional neural networks, including

Electronic Research Archive Volume 33, Issue 2, 826–848.

829

the local minimum, poor convergence speed, and initial weight values. As a result, numerous
scientists are investigating ways to overcome these obstacles by adjusting the network architecture,
and training methodologies, as well as other strategies to overcome these challenges.

Traditional spectral methods, such as Fourier and Chebyshev spectral methods, rely on solving
systems of linear or nonlinear equations derived from the discretization of the governing PDE. This
process involves matrix assembly and factorization, which can become computationally expensive for
high-dimensional problems or irregular domains. Additionally, the global nature of traditional
spectral basis functions may require a dense representation of the solution domain, further increasing
computational effort. In contrast, the Legendre spectral neural network (LSNN) bypasses the need for
matrix assembly by directly minimizing a loss function through an optimization process. The
elimination of hidden layers and the use of Legendre–Gauss–Lobatto points significantly reduce the
computational overhead. Moreover, the LSNN employs automatic differentiation for evaluating
derivatives, which simplifies the implementation and avoids the overhead associated with numerical
differentiation. Inspired by [34], a novel single-layer neural network is developed in this study that is
based on the Legendre spectral method, which is a natural choice due to its exponential rate of
convergence combined with its inherited property to satisfy the boundary conditions without making
any adjustment, and a robust strategy for sampling in the form of Legendre–Gauss–Lobatto points
enhances the training speed and accuracy. Neural network methods based on Legendre polynomials
have been extensively used for solving differential equations in [35–41]. Most recently, the PINN
technique for solving the PDEs, mainly the elliptic PDEs has been successfully used in [42–48].
Among these methods, the LSNN method holds significant potential for real-world applications
across various fields. In fluid dynamics, it can efficiently model steady-state flows and heat transfer in
complex geometries. In material science, LSNNs can simulate stress-strain analysis and thermal
conduction with high precision.

The remainder of the paper is structured as follows. In Section 2, we demonstrate the proposed
scheme for both regular and irregular geometries in details. Section 3 provides some error analysis,
followed by a number of numerical examples in Section 4. Section 5 presents the concluding remarks.

2. Description of the Legendre spectral neural network method

Consider the general differential equation for which we seek the solution v(x), defined over a domain
D ⊂ Rd, of the form:

G
(
x, v(x),∇v(x),∇2v(x), . . . ,∇mv(x)

)
= 0, x ∈ D, (2.1)

where G is the operator defining the structure of the differential equation, v(x) is the unknown solution,
and ∇,∇2, . . . ,∇m represent the gradient, Hessian, and higher-order derivatives of v(x). Equation (2.1)
is subject to boundary conditions (BCs) given by (2.2)

H
(
v(x), x

)
= 0, x ∈ ∂D, (2.2)

whereH represents the boundary operator, imposing conditions such as Dirichlet, Neumann, or Robin.
To solve the model equation (2.1), subject to the BCs given by Eq (2.2) using the LSNN method, we

construct the approximate function space for the solution based on Legendre polynomials of the form:

Υk(x) = Lk(x) + γkLk+1(x) + δkLk+2(x), (2.3)

Electronic Research Archive Volume 33, Issue 2, 826–848.

830

where Lk(x) denotes the k-th Legendre polynomial and γk, δk are coefficients determined by the
boundary conditions. Legendre–Gauss–Lobatto (LGL) points are special sampling points that include
the endpoints of the domain, −1 and 1, ensuring that the boundary conditions are automatically
satisfied. These points are the roots of the equation:

(1 − x2)L′k(x) = 0. (2.4)

The corresponding weights for the LGL points are given by:

wi =
2

k(k + 1)[Lk(xi)]2 , (2.5)

where xi are the LGL points, k is the polynomial degree, and wi is the weight associated with xi.

2.1. LSNNs for rectangular geometry

Consider a one-dimensional boundary value problem with homogeneous boundary conditions:

p1v(−1) + q1v′(−1) = 0, p2v(1) + q2v′(1) = 0. (2.6)

If the boundary conditions are non-homogeneous, the problem is homogenized by introducing a
function W(x) such that:

p1W(−1) + q1W ′(−1) = c1, p2W(1) + q2W ′(1) = c2. (2.7)

The solution v(x) is then written as:

v(x) = W(x) − v̂(x), (2.8)

where v̂(x) satisfies the homogeneous boundary conditions. In this case, the coefficients γk, δk given in
Eq (2.1) are given by:

γk = −

(
p2 + q2(k + 2)2)(− p1 + q1k2) − (

p1 − q1(k + 2)2)(− p2 − q2k2)
∆k

, (2.9)

δk =

(
p2 + q2(k + 1)2)(− p1 + q1k2) + (

p1 − q1(k + 1)2)(− p2 − q2k2)
∆k

, (2.10)

where the determinant ∆k is given by:

∆k = 2p2 p1 − 2q2q1(k + 1)2(k + 2)2 +
(
p1q2 − p2q1

)(
(k + 1)2 + (k + 2)2). (2.11)

For homogeneous Dirichlet boundary conditions, the basis functions simplify to:

Υk(x) = Lk(x) − Lk+2(x). (2.12)

The approximation space for one-dimensional problems is represented as:

VN = span
{
Υi(x) : i = 0, 1, . . . ,N − 2

}
. (2.13)

Electronic Research Archive Volume 33, Issue 2, 826–848.

831

For higher-dimensional domains, such as D = [a, b] × [c, d], the basis functions are formed by
tensor products:

VN = span
{
Υi(x)Υ j(y) : i, j = 0, 1, . . . ,N − 2

}
. (2.14)

The detailed structure of an LSNN is shown in Figure 1. In the context of LSNNs, the residual
points for training are chosen as LGL points, which ensures that the spectral properties of Legendre
polynomials are fully utilized and that the solution space achieves high accuracy.

x

y

L
eg
en

d
re

E
x
p
an

si
o
n

Υ0(x)

ΥN−2(x)

...

Θ0(y)

ΘN−2(y)

...

Υ0(x) ·Θ0(y)

Υ0(x) ·ΘN−2(y)

...

ΥN−2(x) ·Θ0(y)

ΥN−2(x) ·ΘN−2(y)

...

output

ϖ0,0

ϖ0,N−2

ϖN−2,0

ϖN−2,N−2

Figure 1. Schematic structure of a single-layer Legendre neural network.

The residual loss function for the LSNN is formulated as:

L(Φ;T) =
1
|T |

∑
x∈T

∥∥∥∥G(x, v̂(x;Φ),∇v̂(x;Φ),∇2v̂(x;Φ), . . .
)∥∥∥∥2

2
, (2.15)

where Φ represents the trainable parameters, and T is the set of residual points sampled at the LGL
points. By minimizing this loss, the trainable parameters Φ are updated to approximate the solution
v(x). Automatic differentiation (AD) is used to compute derivatives of the neural network output
v̂(x;Φ), allowing the evaluation of all differential terms in the governing equations G. For a given
output v̂(x;Φ), AD is used to compute [49].

∂pv̂(x;Φ)
∂xp , p = 1, 2, . . . , n, (2.16)

which eliminates the need for manual differentiation or finite difference approximations.

Electronic Research Archive Volume 33, Issue 2, 826–848.

832

In order to minimize the loss and ensure convergence to the desired solution, an advanced optimizer
based on the Adam optimizer is used, which combines momentum and adaptive learning rates for
efficient training and updates the parameters by [50].

Φ(k+1) = Φ(k) −
η

√
v̂t + ϵ

m̂t, (2.17)

where m̂t and v̂t are the bias-corrected moment estimates of the gradients. This procedure is
summarized in Algorithm 1.

Algorithm 1 Pseudocode for solving a rectangular geometry problem with an LSNN

1: Input governing equation G(x, v,∇v,∇2v), boundary conditions and rectangular domain
2: if boundary conditions are non-homogeneous then
3: Define transformation W(x) to satisfy the boundary conditions
4: Represent solution as v(x) = W(x) − v̂(x), where v̂(x) satisfies the homogeneous conditions
5: end if
6: Compute the Legendre polynomial coefficients γk and δk based on boundary conditions
7: Construct the basis functions Υk(x) using Legendre polynomials and the coefficients γk, δk

8: Sample the residual points T using LGL points
9: Compute the derivatives ∇v̂(x) and ∇2v̂(x) using AD

10: Define the loss function:

L(Φ; T) = SUM over all points in T of squared residuals of G(x, v̂,∇v̂,∇2v̂)

11: Initialize the neural network parameters Φ
12: while the loss function has not converged do
13: Update the parameters Φ using the Adam optimizer
14: end while
15: Output The trained parameters Φ and the approximate solution v̂(x;Φ)

2.2. LSNNs for complex geometry

For complex geometries, the LSNN employs coordinate transformations to map irregular domains
into rectangular ones. Consider a domain described in polar coordinates:

fmin(θ) ≤ r ≤ fmax(θ), 0 ≤ θ < 2π. (2.18)

The mapping is defined as:

z = 2
r − fmin(θ)

fmax(θ) − fmin(θ)
− 1, θ = θ. (2.19)

This transforms the original domain to:-

−1 ≤ z ≤ 1, 0 ≤ θ < 2π. (2.20)

LGL points are used in the radial direction z, while uniform or Fourier sampling is applied in the
angular direction θ. This approach ensures spectral-level resolution in the radial direction while

Electronic Research Archive Volume 33, Issue 2, 826–848.

833

preserving periodicity in the angular direction. Agian, AD is used for computing mixed partial
derivatives with respect to the transformed variables. For the neural network output v̂(z, θ;Φ),
AD computes:

∂pv̂(z, θ;Φ)
∂zp ,

∂qv̂(z, θ;Φ)
∂θq , p, q = 1, 2, . . . , (2.21)

which ensures efficient handling of nonlinear terms and mixed derivatives arising from transformations.
Algorithm 2, summarizes this procedure.

Algorithm 2 Pseudocode for solving complex geometry problem with LSNN

1: Input governing equation G(x, v,∇v,∇2v) and the complex domain
2: Transform the complex domain to a rectangular domain:
3: for polar coordinates:
4: Map r to z = 2 · r−rmin

rmax−rmin
− 1

5: Map θ to θ without change
6: Update governing equation for transformed variables
7: Sample the residual points:
8: Use LGL points for radial direction z
9: Use Fourier sampling for the angular direction θ

10: Construct basis functions:
11: Define the Legendre polynomial basis for the radial direction z
12: Define the Fourier basis forthe angular direction θ
13: Compute the mixed derivatives AD
14: Define the loss function:

L(Φ; T) = SUM over all points in T of the squared residuals of the transformed G(z, θ, v̂,∇v̂,∇2v̂)

15: Initialize neural network parameters Φ
16: while loss function has not converged do
17: Update parameters Φ using the Adam optimizer
18: end while
19: Output The trained parameters Φ and the approximate solution v(z, θ)

3. Error analysis

Consider the model in Eq (2.1), subject to the BCs given in Eq (2.2). The total error E in can be
expressed as:

E := ∥v̂ − v∥ ≤ ∥v̂ − vN∥ + ∥vN − v∥, (3.1)

where v̂ denotes the neural network solution, vN corresponds to an approximation using the Legendre
polynomial basis, and v is the exact solution.

The term ∥v̂ − vN∥ accounts for the error introduced by the neural network optimization process,
while ∥vN − v∥ is the approximation error inherent in the Legendre polynomial representation.

Electronic Research Archive Volume 33, Issue 2, 826–848.

834

For a one-dimensional boundary value problem of the form:

−p(x)v′′(x) + q(x)v′(x) + r(x)v(x) = f (x), x ∈ (−1, 1), (3.2)

with the boundary conditions:
v(−1) = v(1) = 0, (3.3)

the solution vN(x) satisfies the variational formulation:∫ 1

−1

[
p(x)v′′N(x) + q(x)v′N(x) + r(x)vN(x)

]
w(x) dx

=

∫ 1

−1
f (x)w(x) dx, ∀w(x) ∈ VN .

(3.4)

Let v ∈ Hm(I) and f ∈ Hk(I), where Hm(I) is the Sobolev space. The error bounds for the Legendre
spectral approximation are:

∥v − vN∥1 ≲ N1−m∥∂m
x v∥ + N−k∥∂k

x f ∥, m, k ≥ 1. (3.5)

∥v − vN∥2 ≲ N−m∥∂m
x v∥ + N−k∥∂k

x f ∥, m, k ≥ 1. (3.6)

In Eq (3.5), ∥ · ∥1 refers to the H1-norm, which measures the error in both the function v and its first
derivative and is defined by:

∥v∥H1 =
(
∥v∥2L2 + ∥∂xv∥2L2

)1/2
.

The term N1−m∥∂m
x v∥ indicates that the approximation error decreases with increasing smoothness

m of the solution v, while N−k∥∂k
x f ∥ accounts for the smoothness k of the source term f , which

demonstrates that both the solution v and the source term f significantly influence the overall error in
the H1-norm.

In Eq (3.6), ∥ · ∥2 refers to the L2-norm, defined as:

∥v∥L2 =

(∫
I
|v(x)|2 dx

)1/2

.

In this equation, N−m∥∂m
x v∥ represents the contribution of the smoothness m of v to the error, which

decays faster than the H1-norm, as derivatives are not considered. The term N−k∥∂k
x f ∥ reflects the

influence of the regularity k of the source term f on the approximate error. The constants in both
Eqs (3.5) and (3.6) depend on the Sobolev norms of v and f . The H1-norm includes derivative
contributions, which may lead to a slower convergence rate compared with the L2-norm, which only
accounts for the function values.

4. Numerical examples

To confirm the exponential rate of convergence, in this section a number of numerical examples
taken from [34]. In our computations, we use a PC with a 12th Gen Intel(R) Core(TM) i7-1255U

Electronic Research Archive Volume 33, Issue 2, 826–848.

835

processor, and 16 GB RAM. The accuracy of the LSNN method is evaluated using the following three
standard error metrics:

∥E∥absolute-L∞ = maxi=1,...,K

∣∣∣v̂(xi) − v∗(xi)
∣∣∣,

∥E∥absolute-L2 =

√∑K
i=1

∣∣∣v̂(xi)−v∗(xi)
∣∣∣2

K ,

∥E∥relative-L2 =

√∑K
i=1

∣∣∣v̂(xi)−v∗(xi)
∣∣∣2√∑K

i=1

∣∣∣v∗(xi)
∣∣∣2 .

(4.1)

Example 4.1. We consider the following second-order differential equation:

v′′(x) + xv′(x) − v(x) = (24 + 5x)e5x + (2 + 2x2) cos(x2) − (4x2 + 1) sin(x2), x ∈ [−1, 1], (4.2)

subject to the Robin boundary conditions:

v(−1) − v′(−1) = −4e−5 + sin(1) + 2 cos(1), v(1) + v′(1) = 6e5 + sin(1) + 2 cos(1). (4.3)

The exact solution of this problem is given as:

v(x) = e5x + sin(x2). (4.4)

To solve this problem using the LSNN approach, we use different values of
N = 12, 14, 16, 18, 20, 22 to construct the networks. Each network is trained for 300 × N epochs.
The initial learning rate is set to 0.1 and dynamically adjusted using a scheduler that reduces it by a
factor of 0.7 if the loss function does not decrease for 600 consecutive iterations. The computational
domain is uniformly sampled with 501 test points within the interval [−1, 1]. The results demonstrate
that as N increases, the solution error decreases rapidly. This highlights the efficiency and accuracy of
the LSNN method compared with traditional approaches. The comparison between the exact and
LSNN solution is shown in Figure 2. The errors obtained for various N values confirm the
exponential convergence characteristic of the LSNN, showcasing its ability to achieve high precision
even with relatively small networks, as shown in Figure 3.

Electronic Research Archive Volume 33, Issue 2, 826–848.

836

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

0

50

100

150

v(
x)

Exact Solution
LSNN Solution

Figure 2. Example 4.1: Exact vs. LSNN solution for N = 22 collocation points.

12 13 14 15 16 17 18 19 20 21 22

N

10-7

10-6

10-5

Er
ro

r

Absolute L Error

Absolute L
2
 Error

Relative L
2
 Error

Figure 3. Example 4.1: Error behavior at different collocation points.

Example 4.2. Consider the two-dimensional Poisson equation defined as:

−∆v(x, y) = g(x, y), (x, y) ∈ Ω = [−1, 1]2, (4.5)

where the source term g(x, y) is determined by the exact solution:

v(x, y) = e−x sin(πy). (4.6)

The boundary conditions are Dirichlet and given as:

ϕ0(y) = v(−1, y), ϕ1(y) = v(1, y), (4.7)

Electronic Research Archive Volume 33, Issue 2, 826–848.

837

ψ0(x) = v(x,−1), ψ1(x) = v(x, 1), (4.8)

where these conditions satisfy the following continuity relations:

ϕ0(−1) = v(−1,−1) = ψ0(−1), ϕ0(1) = v(−1, 1) = ψ1(−1), (4.9)
ϕ1(−1) = v(1,−1) = ψ0(1), ϕ1(1) = v(1, 1) = ψ1(1). (4.10)

The trial solution is constructed as:

χ(x, y) = A(x, y) + ṽ(x, y; θ), (4.11)

where ṽ(x, y; θ) represents the output from the LSNN and A(x, y) is a function that satisfies the
nonhomogeneous boundary conditions:

A(x, y) =
(
1 − x

2
ϕ0(y) +

1 + x
2

ϕ1(y)
)
+

(
1 − y

2

[
ψ0(x) −

(
1 − x

2
ψ0(−1) +

1 + x
2

ψ0(1)
)])

+

(
1 + y

2

[
ψ1(x) −

(
1 − x

2
ψ1(−1) +

1 + x
2

ψ1(1)
)])

. (4.12)

The Adam optimizer is used for training with an initial learning rate of 0.1 and a maximum of 2000
iterations. A grid of 300 equally spaced points in both x and y directions is used to evaluate the solution.
Figure 4 provides a comparison of the LSNN and the exact solution. The numerical experiments reveal
that the LSNN approach achieves high accuracy, with the errors decreasing significantly as the network
complexity N increases, as shown in Table 1.

Figure 4. Example 4.2: Approximate (left) vs. exact solution (right) at N = 30 collocation
points.

Electronic Research Archive Volume 33, Issue 2, 826–848.

838

Table 1. Example 4.2: Error behavior of approximate vs. exact solutions.

N Absolute L∞ error Absolute L2 error Relative L2 error
6 2.2331 × 10−5 9.2731 × 10−6 1.0175 × 10−5

8 5.2232 × 10−6 2.1809 × 10−6 2.3697 × 10−6

10 2.9164 × 10−6 1.0119 × 10−6 1.0939 × 10−6

12 1.5641 × 10−6 4.2737 × 10−7 4.6047 × 10−7

15 4.6069 × 10−7 1.9532 × 10−7 2.0976 × 10−7

20 2.0294 × 10−7 6.4067 × 10−8 6.8584 × 10−8

Example 4.3. Consider the following two-dimensional (2D) Helmholtz equation on an annular
domain:

∆v(x, y) + v(x, y) = g(x, y), (x, y) ∈ Ω = {(r, θ) | 0.5 ≤ r ≤ 1, 0 ≤ θ < 2π}, (4.13)

where the source term g(x, y) and the Dirichlet boundary conditions are determined by the exact
solution:

v(x, y) = ex sin(πy). (4.14)

The annular domain is transformed into a rectangular parameter space using the coordinate
mapping:

x =
s + 3

4
cos((t + 1)π), y =

s + 3
4

sin((t + 1)π), (4.15)

where s, t ∈ [−1, 1]. In the transformed domain, the Helmholtz equation becomes:

1
s + 3

∂

∂s

(
(s + 3)

∂v
∂s

)
+

1
(s + 3)2

∂2v
∂t2 + v = g

(
s + 3

4
cos((t + 1)π),

s + 3
4

sin((t + 1)π)
)
. (4.16)

In the s-direction, Legendre basis functions are used, with sampling points chosen as LGL nodes.
For the t-direction, due to periodicity, trigonometric basis functions are employed, with uniform
sampling over the interval [−1, 1]. The loss function is defined as:

L(θ;T) =
1
|T |

∑
x∈T

∣∣∣∣∣∣ 1
s + 3

∂

∂s

(
(s + 3)

∂v
∂s

)
+

1
(s + 3)2

∂2v
∂t2 + v − g

∣∣∣∣∣∣2 , (4.17)

where T is the training set of sampled points. The initial learning rate is set to 0.01 and dynamically
adjusted by reducing it by a factor of 0.6 if the loss does not decrease after 500 iterations. Using an
LSNN network with N = 20, the training converges after 2000 iterations. The results are illustrated in
Table 2, which shows the error behaviors between the exact solution and numerical solution at different
collocation points. Figure 5 illustrates the LSNN and the exact solution.

To compare the efficiency and accuracy of the LSNN with traditional methods, we also applied
the PINNs approach. The PINNs’ setup included a network with four hidden layers, each with 128
neurons, and the same learning rate of 0.001. After 2000 iterations, the convergence of PINNs’ solution
with that of the LSNN is shown in Figure 6. This experiment highlights the ability of LSNNs to solve
Helmholtz equations efficiently on non-standard domains, achieving high accuracy with significantly
reduced computational effort.

Electronic Research Archive Volume 33, Issue 2, 826–848.

839

Figure 5. Example 4.3: Approximate (left) vs. exact solution (right) at N = 30 collocation
points.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Iterations

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Er
ro

r

CSNN Error
PINNs Error

Figure 6. Example 4.3: Error convergence comparison of LSNN vs PINNs.

Electronic Research Archive Volume 33, Issue 2, 826–848.

840

Table 2. Example 4.3: Error behavior of approximate vs. exact solutions.

N Absolute L∞ error Absolute L2 error Relative L2 error
6 8.33 × 10−4 2.40 × 10−4 7.12 × 10−6

8 6.94 × 10−4 2.08 × 10−4 5.34 × 10−6

10 7.80 × 10−4 1.96 × 10−4 4.51 × 10−6

12 6.93 × 10−4 1.79 × 10−4 3.76 × 10−6

14 6.09 × 10−4 1.62 × 10−4 3.15 × 10−6

16 6.00 × 10−4 1.49 × 10−4 2.72 × 10−6

18 4.85 × 10−4 1.43 × 10−4 2.46 × 10−6

20 5.98 × 10−4 1.35 × 10−4 2.19 × 10−6

Example 4.4. In this example, we address the Poisson equation on a circular domain:

−∆v(x, y) = g(x, y), (x, y) ∈ Ω = {(r, θ) | 0 ≤ r ≤ 1, 0 ≤ θ < 2π}, (4.18)

where the source term g(x, y) and the Dirichlet boundary conditions are determined by the exact
solution:

v(x, y) = ex cos(πy). (4.19)

To simplify the problem, the circular domain is mapped to a rectangular parameter space. Using
polar coordinates, the transformation is defined as:

x = r cos(θ), y = r sin(θ), (4.20)

where r ∈ [0, 1] and θ ∈ [0, 2π). In this transformed domain, the Poisson equation takes the
following form:

1
r
∂

∂r

(
r
∂v
∂r

)
+

1
r2

∂2v
∂θ2 = g(r cos(θ), r sin(θ)). (4.21)

The circular domain introduces an additional challenge: the value at the center of the circle (r = 0)
is undetermined. To address this, an auxiliary single-parameter neural network v̂0 is introduced to
approximate the value at the center. This parameter is optimized alongside the main LSNN. The loss
function is defined as:

L(θ;T) =
1
|T |

∑
x∈T

∣∣∣∣∣∣1r ∂

∂r

(
r
∂v
∂r

)
+

1
r2

∂2v
∂θ2 − g

∣∣∣∣∣∣2 , (4.22)

where T is the set of training points. Using the same parameter values as in Example 4.3, Figure 7
provides a comparison of the LSNN and true solution, while Figure 8 shows that error behavior for
different collocation points.

Electronic Research Archive Volume 33, Issue 2, 826–848.

841

Figure 7. Example 4.4: Approximate (left) vs. exact solution (right) at N = 30 collocation
points.

4 6 8 10 12 14 16 18 20 22

N

10-6

10-5

10-4

10-3

10-2

E
rr

or Absolute L Error

Absolute L
2
 Error

Relative L
2
 Error

Figure 8. Example 4.4: Error behavior at different collocation points.

The success of the LSNN method on this domain depends significantly on the learning rates for
both the main and auxiliary networks. Improper learning rate settings can result in slow convergence
or failure to reach the global minimum. To mitigate this issue, periodic corrections to the auxiliary
network parameter v̂0 are applied, ensuring better alignment with the true solution.

Electronic Research Archive Volume 33, Issue 2, 826–848.

842

Example 4.5. Consider a three-dimensional (3D) elliptic PDE with variable coefficients:

∇ · (σ(x, y, z)∇v) − κ(x, y, z)v = g(x, y, z), (x, y, z) ∈ Ω, (4.23)

where the coefficients are given as:

σ(x, y, z) = cos(π(x + y + z)) + 2, κ(x, y, z) = sin(π(x + y + z)) + 2. (4.24)

The source term g(x, y, z) and Dirichlet boundary conditions are determined by the exact solution:

v(x, y, z) = e
2
3 x+ 2

3 y+ 1
3 z sin(π(x + y + z)). (4.25)

The computational domain is a rolled-up cylindrical shell defined as:

Ω = {(x, y, z) | r ∈ [0.5, 1], θ ∈ [0, 2π), z ∈ [−1, 1]}, (4.26)

where r, θ are the cylindrical coordinates. The domain is mapped to a rectangular region using the
coordinate transformation:

x = r cos(θ), y = r sin(θ), (4.27)

where r ∈ [0.5, 1], θ ∈ [0, 2π), and z ∈ [−1, 1]. In the transformed domain, the elliptic operator
becomes:

∇ · (σ∇v) =
1
r
∂

∂r

(
rσ
∂v
∂r

)
+

1
r2

∂

∂θ

(
σ
∂v
∂θ

)
+
∂

∂z

(
σ
∂v
∂z

)
. (4.28)

In the r- and z-directions, Legendre basis functions are used with LGT points for sampling. In the
θ-direction, due to its periodicity, trigonometric basis functions are employed with uniform sampling.
The loss function is defined as:

L(θ;T) =
1
|T |

∑
x∈T

|∇ · (σ∇v) − κv − g|2 , (4.29)

where T represents the training points. Again keeping the same parameter values as in the previous
example, the true and computed solution is plotted in Figure 9. The error behaviors for different norms
and at different collocation points are shown in Figure 10, which confirms the exponential convergence
of our proposed scheme.

The LSNN method demonstrates excellent performance in solving this 3D problem, even for
irregular geometries like cylindrical shells. The method achieves high accuracy and rapid
convergence with modest computational resources, highlighting its robustness for variable-coefficient
PDEs in complex domains.

Electronic Research Archive Volume 33, Issue 2, 826–848.

843

Figure 9. Example 4.5: Approximate (left) vs. exact solution (right) at N = 30 collocation
points.

6 8 10 12 14 16 18 20

N

10-5

10-4

10-3

10-2

10-1

100

101

E
rr

or

Absolute L2 Error
Relative L2 Error

Figure 10. Example 4.5: Error behavior at different collocation points.

5. Conclusions

In this work, we demonstrate the ability of LSNNs to handle the problems of regular as well as
irregular domains. We show, through a number of numerical examples that our proposed scheme is
more stable and computationally efficient compared with other neural network techniques, e.g.,
PINNs. In particular, our scheme overcomes issues related to training instability and error oscillation
and achieves an exponential rate of convergence. Our numerical examples, especially those related to
complex geometries of annular and cylindrical shells, further enhance its potential to deal with

Electronic Research Archive Volume 33, Issue 2, 826–848.

844

real-world problems across various scientific disciplines. Moreover, the network structure is made
simple by eliminating the presence of hidden layers using a Legendre-based neuron layout that
improves training efficacy without compromising the solution’s accuracy. The present study
highlights the effectiveness of the LSNN method; however, its convergence may be impacted when
using a large number of nodes due to numerical instabilities and optimization challenges. Future work
could focus on adaptive strategies and improved optimization techniques to address these limitations
and extend it to time-dependent and nonlinear equations.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate
Studies and Scientific Research, King Faisal University, Saudi Arabia [Grant No. KFU250330].

Conflict of interest

The author declares there are no conflicts of interest.

References

1. Y. Pinchover, J. Rubinstein, An Introduction to Partial Differential Equations, Cambridge
University Press, 2005. https://doi.org/10.1017/CBO9780511801228

2. J. Douglas, B. F. Jones, On predictor-corrector methods for nonlinear parabolic differential
equations, J. Soc. Ind. Appl. Math., 11 (1963), 195–204. https://doi.org/10.1137/0111015

3. A. Wambecq, Rational Runge-Kutta methods for solving systems of ordinary differential
equations, Computing, 20 (1978), 333–342. https://doi.org/10.1007/BF02252381

4. J. N. Reddy, An Introduction to the Finite Element Method, McGraw-Hill, 1993.

5. R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-
state and Time-dependent Problems, SIAM, 2007. https://doi.org/10.1137/1.9780898717839

6. I. E. Lagaris, A. Likas, D. I. Fotiadis, Artificial neural networks for solving ordinary
and partial differential equations, IEEE Trans. Neural Networks, 9 (1998), 987–1000.
https://doi.org/10.1109/72.712178

7. S. Mall, S. Chakraverty, Application of Legendre neural network for solving ordinary differential
equations, Appl. Soft Comput., 43 (2016), 347–356. https://doi.org/10.1016/j.asoc.2015.10.069

8. T. T. Dufera, Deep neural network for system of ordinary differential equations:
Vectorized algorithm and simulation, Mach. Learn. Appl., 5 (2021), 100058.
https://doi.org/10.1016/j.mlwa.2021.100058

Electronic Research Archive Volume 33, Issue 2, 826–848.

http://dx.doi.org/https://doi.org/10.1017/CBO9780511801228
http://dx.doi.org/https://doi.org/10.1137/0111015
http://dx.doi.org/https://doi.org/10.1007/BF02252381
http://dx.doi.org/https://doi.org/10.1137/1.9780898717839
http://dx.doi.org/https://doi.org/10.1109/72.712178
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2015.10.069
http://dx.doi.org/https://doi.org/10.1016/j.mlwa.2021.100058

845

9. J. A. Rivera, J. M. Taylor, A. J. Omella, D. Pardo, On quadrature rules for solving partial
differential equations using neural networks, Comput. Methods Appl. Mech. Eng., 393 (2022),
114710. https://doi.org/10.1016/j.cma.2022.114710

10. L. S. Tan, Z. Zainuddin, P. Ong, Wavelet neural networks based solutions for elliptic partial
differential equations with improved butterfly optimization algorithm training, Appl. Soft Comput.,
95 (2020), 106518. https://doi.org/10.1016/j.asoc.2020.106518

11. Z. Sabir, S. A. Bhat, M. A. Z. Raja, S. E. Alhazmi, A swarming neural network computing
approach to solve the Zika virus model, Eng. Appl. Artif. Intell., 126 (2023), 106924.
https://doi.org/10.1016/j.engappai.2023.106924

12. M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential
equations, J. Comput. Phys., 378 (2019), 686–707. https://doi.org/10.1016/j.jcp.2018.10.045

13. E. Schiassi, R. Furfaro, C. Leake, M. De Florio, H. Johnston, D. Mortari, Extreme
theory of functional connections: A fast physics-informed neural network method for
solving ordinary and partial differential equations, Neurocomputing, 457 (2021), 334–356.
https://doi.org/10.1016/j.neucom.2021.06.015

14. S. Dong, Z. Li, Local extreme learning machines and domain decomposition for solving linear and
nonlinear partial differential equations, Comput. Methods Appl. Mech. Eng., 387 (2021), 114129.
https://doi.org/10.1016/j.cma.2021.114129

15. S. Dong, J. Yang, On computing the hyperparameter of extreme learning machines: Algorithm and
application to computational PDEs, and comparison with classical and high-order finite elements,
J. Comput. Phys., 463 (2022), 111290. https://doi.org/10.1016/j.jcp.2022.111290

16. G. B. Huang, Q. Y. Zhu, C. K. Siew, Extreme learning machine: Theory and applications,
Neurocomputing, 70 (2006), 489–501. https://doi.org/10.1016/j.neucom.2005.12.126

17. V. Dwivedi, B. Srinivasan, Physics-informed extreme learning machine (PIELM) – A rapid method
for the numerical solution of partial differential equations, Neurocomputing, 391 (2020), 96–118.
https://doi.org/10.1016/j.neucom.2019.12.099

18. F. Calabrò, G. Fabiani, C. Siettos, Extreme learning machine collocation for the numerical solution
of elliptic PDEs with sharp gradients, Comput. Methods Appl. Mech. Eng., 387 (2021), 114188.
https://doi.org/10.1016/j.cma.2021.114188

19. S. M. Sivalingam, P. Kumar, V. Govindaraj, A Chebyshev neural network-based numerical scheme
to solve distributed-order fractional differential equations, Comput. Math. Appl., 164 (2024), 150–
165. https://doi.org/10.1016/j.camwa.2024.04.005

20. A. Jafarian, M. Mokhtarpour, D. Baleanu, Artificial neural network approach for a class
of fractional ordinary differential equations, Neural Comput. Appl., 28 (2017), 765–773.
https://doi.org/10.1007/s00521-015-2104-8

Electronic Research Archive Volume 33, Issue 2, 826–848.

http://dx.doi.org/https://doi.org/10.1016/j.cma.2022.114710
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2020.106518
http://dx.doi.org/https://doi.org/10.1016/j.engappai.2023.106924
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2021.06.015
http://dx.doi.org/https://doi.org/10.1016/j.cma.2021.114129
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2022.111290
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2005.12.126
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2019.12.099
http://dx.doi.org/https://doi.org/10.1016/j.cma.2021.114188
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2024.04.005
http://dx.doi.org/https://doi.org/10.1007/s00521-015-2104-8

846

21. I. Ali, S. U. Khan, A dynamic competition analysis of stochastic fractional differential
equation arising in finance via the pseudospectral method, Mathematics, 11 (2023), 1328.
https://doi.org/10.3390/math11061328

22. S. U. Khan, M. Ali, I. Ali, A spectral collocation method for stochastic Volterra
integro-differential equations and its error analysis, Adv. Differ. Equ., 2019 (2019), 161.
https://doi.org/10.1186/s13662-019-2096-2

23. I. Ali, S. U. Khan, Dynamics and simulations of stochastic COVID-19 epidemic
model using Legendre spectral collocation method, AIMS Math., 8 (2023), 4220–4236.
https://doi.org/10.3934/math.2023210

24. S. U. Khan, I. Ali, Application of Legendre spectral-collocation method to delay
differential and stochastic delay differential equations, AIP Adv., 8 (2018), 035301.
https://doi.org/10.1063/1.5016680

25. C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral Methods: Fundamentals in Single
Domains, Springer, 2006. https://doi.org/10.1007/978-3-540-30726-6

26. G. Mastroianni, D. Occorsio, Optimal systems of nodes for Lagrange interpolation on bounded
intervals: A survey, J. Comput. Appl. Math., 134 (2001), 325–341. https://doi.org/10.1016/S0377-
0427(00)00557-4

27. D. Gottlieb, S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications,
SIAM, 1977. https://doi.org/10.1137/1.9781611970425

28. J. P. Boyd, Chebyshev and Fourier Spectral Methods, Dover Publications, 2001.

29. J. S. Hesthaven, S. Gottlieb, D. Gottlieb, Spectral Methods for Time-dependent Problems,
Cambridge University Press, 2007. https://doi.org/10.1017/CBO9780511618352

30. C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral Methods in Fluid Dynamics,
Springer, 2012. https://doi.org/10.1007/978-3-642-84108-8

31. J. Shen, T. Tang, L. L. Wang, Spectral Methods: Algorithms, Analysis and Aapplications, Springer,
2011. https://doi.org/10.1007/978-3-540-71041-7

32. N. Liu, Theory and Applications and Legendre Polynomials and Wavelets, Ph.D thesis, The
University of Toledo, 2008.

33. S. Wang, X. Yu, P. Perdikaris, When and why PINNs fail to train: A neural tangent kernel
perspective, J. Comput. Phys., 449 (2022), 110768. https://doi.org/10.1016/j.jcp.2021.110768

34. P. Yin, S. Ling, W. Ying, Chebyshev spectral neural networks for solving partial differential
equations, preprint, arXiv:2407.03347.

35. Y. Yang, M. Hou, H. Sun, T. Zhang, F. Weng, J. Luo, Neural network algorithm based on Legendre
improved extreme learning machine for solving elliptic partial differential equations, Soft Comput.,
24 (2020), 1083–1096. https://doi.org/10.1007/s00500-019-03944-1

36. M. Xia, X. Li, Q. Shen, T. Chou, Learning unbounded-domain spatiotemporal differential
equations using adaptive spectral methods, J. Appl. Math. Comput., 70, (2024), 4395–4421.
https://doi.org/10.1007/s12190-024-02131-2

Electronic Research Archive Volume 33, Issue 2, 826–848.

http://dx.doi.org/https://doi.org/10.3390/math11061328
http://dx.doi.org/https://doi.org/10.1186/s13662-019-2096-2
http://dx.doi.org/https://doi.org/10.3934/math.2023210
http://dx.doi.org/https://doi.org/10.1063/1.5016680
http://dx.doi.org/https://doi.org/10.1007/978-3-540-30726-6
http://dx.doi.org/https://doi.org/10.1016/S0377-0427(00)00557-4
http://dx.doi.org/https://doi.org/10.1016/S0377-0427(00)00557-4
http://dx.doi.org/https://doi.org/10.1137/1.9781611970425
http://dx.doi.org/https://doi.org/10.1017/CBO9780511618352
http://dx.doi.org/https://doi.org/10.1007/978-3-642-84108-8
http://dx.doi.org/https://doi.org/10.1007/978-3-540-71041-7
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2021.110768
http://dx.doi.org/https://doi.org/10.1007/s00500-019-03944-1
http://dx.doi.org/https://doi.org/10.1007/s12190-024-02131-2

847

37. Y. Ye, Y. Li, H. Fan, X. Liu, H. Zhang, SLeNN-ELM: A shifted Legendre neural network method
for fractional delay differential equations based on extreme learning machine, Netw. Heterog.
Media, 18 (2023), 494–512. https://doi.org/10.3934/nhm.2023020

38. Y. Yang, M. Hou, J. Luo, A novel improved extreme learning machine algorithm in solving
ordinary differential equations by Legendre neural network methods, Adv. Differ. Equ., 2018
(2018), 469. https://doi.org/10.1186/s13662-018-1927-x

39. Y. Wang, S. Dong, An extreme learning machine-based method for computational
PDEs in higher dimensions, Comput. Methods Appl. Mech. Eng., 418 (2024), 116578.
https://doi.org/10.1016/j.cma.2023.116578

40. D. Yuan, W. Liu, Y. Ge, G. Cui, L. Shi, F. Cao, Artificial neural networks for solving elliptic
differential equations with boundary layer, Math. Methods Appl. Sci., 45 (2022), 6583–6598.
https://doi.org/10.1002/mma.8192

41. H. Liu, B. Xing, Z. Wang, L. Li, Legendre neural network method for several classes of singularly
perturbed differential equations based on mapping and piecewise optimization technology, Neural
Process. Lett., 51 (2020), 2891–2913. https://doi.org/10.1007/s11063-020-10232-9

42. X. Li, J. Wu, X. Tai, J. Xu, Y. Wang, Solving a class of multi-scale elliptic PDEs by
Fourier-based mixed physics-informed neural networks, J. Comput. Phys., 508 (2024), 113012.
https://doi.org/10.1016/j.jcp.2024.113012

43. S. Zhang, J. Deng, X. Li, Z. Zhao, J. Wu, W. Li, et al., Solving the one-dimensional
vertical suspended sediment mixing equation with arbitrary eddy diffusivity profiles using
temporal normalized physics-informed neural networks, Phys. Fluids, 36 (2024), 017132.
https://doi.org/10.1063/5.0179223

44. X. Li, J. Deng, J. Wu, S. Zhang, W. Li, Y. Wang, Physics-informed neural networks with soft
and hard boundary constraints for solving advection-diffusion equations using Fourier expansions,
Comput. Math. Appl., 159 (2024), 60–75. https://doi.org/10.1016/j.camwa.2024.01.021

45. X. Li, J. Wu, L. Zhang, X. Tai, Solving a class of high-order elliptic PDEs using
deep neural networks based on its coupled scheme, Mathematics, 10 (2022), 4186.
https://doi.org/10.3390/math10224186

46. X. Li, J. Wu, Y. Huang, Z. Ding, X. Tai, L. Liu, et al., Augmented physics informed
extreme learning machine to solve the biharmonic equations via Fourier expansions, preprint,
arXiv:2310.13947.

47. Z. Fu, W. Xu, S. Liu, Physics-informed kernel function neural networks for
solving partial differential equations, Neural Networks, 172 (2024), 106098.
https://doi.org/10.1016/j.neunet.2024.106098

48. J. Bai, G. Liu, A. Gupta, L. Alzubaidi, X. Feng, Y. Gu, Physics-informed radial
basis network (PIRBN): A local approximating neural network for solving nonlinear
partial differential equations, Comput. Methods Appl. Mech. Eng., 415 (2023), 116290.
https://doi.org/10.1016/j.cma.2023.116290

Electronic Research Archive Volume 33, Issue 2, 826–848.

http://dx.doi.org/https://doi.org/10.3934/nhm.2023020
http://dx.doi.org/https://doi.org/10.1186/s13662-018-1927-x
http://dx.doi.org/https://doi.org/10.1016/j.cma.2023.116578
http://dx.doi.org/https://doi.org/10.1002/mma.8192
http://dx.doi.org/https://doi.org/10.1007/s11063-020-10232-9
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2024.113012
http://dx.doi.org/https://doi.org/10.1063/5.0179223
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2024.01.021
http://dx.doi.org/https://doi.org/10.3390/math10224186
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2024.106098
http://dx.doi.org/https://doi.org/10.1016/j.cma.2023.116290

848

49. A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, et al., Automatic differentiation
in PyTorch, in NIPS 2017 Workshop on Autodiff, (2017), 1–4.

50. D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, preprint, arXiv:1412.6980.

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 33, Issue 2, 826–848.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Description of the Legendre spectral neural network method
	LSNNs for rectangular geometry
	LSNNs for complex geometry

	Error analysis
	Numerical examples
	Conclusions

