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Abstract: Low-frequency vibration isolation is an attractive research topic in vibration control. In this 
study, a novel quasi-zero stiffness isolator utilizing shape memory alloy (SMA) springs is proposed. 
Leveraging the inherent stress plateau characteristics caused by the super-elastic effect of SMA, this 
design significantly improves the isolation performance at low-frequency excitations. We began by 
reformulating the static constitutive equation of the SMA spring, and the torsional strain of the spring 
was taken into account into the static constitutive equation. Subsequently, the dynamics of the SMA 
spring was modeled as an ordinary differential equation using the Euler-Lagrange equation. The SMA 
spring was fabricated and tensile tests were performed to validate the model given by dynamic 
differential function. Building on the validated spring model, a dynamic model of the quasi-zero 
stiffness isolator using SMA springs was proposed and its response under sinusoidal excitation was 
analyzed. The amplitude-frequency response of the system was determined using the harmonic balance 
method (HBM), and superior performance of the isolator in attenuating low-frequency vibrations was 
confirmed. Finally, an experimental platform was constructed to evaluate the isolator’s performance 
under low-frequency excitations at 0.5, 1.0, 1.5, and 2.5 Hz. Our results demonstrated the effectiveness 
of the proposed quasi-zero stiffness vibration isolator system in isolating low-frequency vibrations, 
and the simulation results were verified by the experimental counterparts. 

Keywords: quasi-zero stiffness; shape memory alloy spring; low-frequency vibration isolation; 
nonlinear system; analytical solution 
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1. Introduction  

With the development of the engineering equipment, the detrimental effects of low-frequency 
vibrations have become more pronounced, leading to increasing interest in low-frequency vibration 
isolation technologies with a broader frequency ranges [1]. In passive vibration isolation technology, 
structures or materials with nonlinear stiffness are employed to lower the natural frequency while 
maintaining a high static load-bearing capacity, thereby achieving effective low-frequency isolation [2]. 
Among these methods, quasi-zero stiffness (QZS) isolation is a representative nonlinear low-frequency 
isolation technique, characterized by relatively low dynamic stiffness, which enables effective 
vibration isolation of low frequencies [3]. In practical applications, Li et al. [4] applied QZS isolators 
to a propulsion shaft system of underwater vehicles, providing a feasible method for effectively 
isolating longitudinal vibrations transferred from the propulsion shaft to the housing. Wu et al. [5] 
introduced a quasi-zero stiffness structure into a triboelectric vibration sensor (TVS), achieving a new 
level of ultra-wide frequency response and high sensitivity and offering insights for the development 
of high-resolution TVSs. Abuabiah et al. [6] used a QZS structure consisting of two oblique springs 
and a vertical spring in vehicle seats, resulting in a wider isolation frequency range for the seats. 

The traditional QZS isolators are constructed by a parallel configuration of positive and negative 
stiffness structures [7–9]. Negative stiffness refers to the structural characteristic where the required 
force decreases as the displacement induced by a load increases. With advancements of quasi-zero 
stiffness theory, geometric nonlinear structures and novel nonlinear materials have been incorporated 
into quasi-zero stiffness isolators [10]. Geometric nonlinear structures leverage the unstable states and 
nonlinear dynamic responses of the structure to achieve negative stiffness [11–15]. Liu et al. [16] 
studied the nonlinear dynamic response of an origami systems and achieved quasi-zero stiffness 
vibration isolation. It was demonstrated that superior isolation performance of the designed isolator 
could be achieved, and the role of geometric nonlinearity effects has been illustrated by simulation 
studies. Yang et al. [17] established an analytical model for a 3D re-entrant honeycomb auxetic cellular 
structure, and the negative Poisson’s ratio characteristics of the 3D honeycomb model was investigated. 
Fully recoverable negative stiffness honeycombs were fabricated using thermoplastic and metallic 
parent materials. It offers nearly ideal shock isolation performance and provides a new direction for 
the development of quasi-zero stiffness vibration isolators. Figure 1 illustrates three types of QZS 
structure. The emergence of magnetic negative stiffness technology also provides a new direction for 
achieving QZS vibration isolation [18]. By utilizing magnetic negative stiffness materials or devices, 
it is possible to achieve very low stiffness, effectively isolating low-frequency vibrations, especially 
in cases where traditional elastic isolation systems cannot meet the requirements [19]. Yang et al. [20] 
improved the vibration isolation performance of a semi-active suspension by integrating the negative 
stiffness mechanism with a magnetorheological (MR) damper. Zhu et al. [21] designed a novel six-
degree-of-freedom vibration isolator using magnetic levitation as the payload support mechanism, which 
provides QZS in multiple directions and effectively enhances the vibration isolation performance. 
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Figure 1. (a) The traditional QZS isolator [8], (b) origami QZS isolator [16], and (c) 
honeycomb structure used in vibration isolator [17]. 

Smart materials such as the shape memory alloy (SMA) exhibit inherent nonlinear stiffness, 
making them suitable for direct application in the construction of isolators. Moghadam et al. [22] 
verified the feasibility of using SMA for vibration isolation in their research. Rustighi et al. [23] 
implemented a tuned vibration absorber (TVA) using SMA. Du et al. [24] applied SMA in a vibration 
isolation model and conducted theoretical analysis. Song et al. [25] applied SMA to a civil structure, 
while Santos and Nunes [26] used real-time temperature modulation of SMA to control the elastic modulus 
of the elements, enabling continuous adjustment of stiffness over a wide frequency range. 

SMA exhibits unique thermo-mechanical properties, enabling the conversion of mechanical 
energy into thermal energy and vice versa due to phase transformation. This distinctive, reversible 
change in physical properties could be induced under appropriate mechanical and thermal loads [27,28]. 

As illustrated in Figure 2, the stress-strain relationship of SMA reveals the phenomenon of a 
“stress plateau” [29]. Within this region, the dynamic stiffness of the SMA is exceptionally low, making 
it suitable for application in vibration isolation systems as a replacement for traditional linear elastic 
components. This characteristic, known as “super-elasticity” [30,31], is primarily caused by the phase 
transformation from austenite to martensite, which will induce significant strain to occur with minimal 
stress variation. However, this phenomenon is confined to a strain range. Outside of this range, SMA 
behaves similarly to conventional metals, undergoing elastic deformation in either the austenitic or 
martensitic phases [26,32,33]. For SMA-based vibration isolation systems, the high static stiffness 
ensures load-bearing capacity, while the low dynamic stiffness broadens the effective vibration-
isolating range. 



771 

Electronic Research Archive   Volume 33, Issue 2, 768–790. 

 

Figure 2. Stress plateau in SMA. 

Here, we propose a quasi-zero stiffness vibration isolation system that primarily utilizes an 
external SMA springs accumulator as the main nonlinear component. The system will be referred to 
as SMAS-QZS. The system leverages the “stress plateau” caused by the phase transformation within 
SMA springs. The constitutive equations for the SMA spring are introduced, and a dynamic model for 
the SMAS-QZS is developed. Harmonic balance method is employed to derive analytical solutions for 
the amplitude-frequency response of the SMAS-QZS, and the analytical results are compared with 
those of a linear vibration isolation system to demonstrate the effectiveness of the quasi-zero stiffness 
system in isolating low-frequency vibrations. Finally, a prototype of SMAS-QZS for experimental 
purposes is setup and tested, and the amplitude-frequency response of the SMAS-QZS system under low-
frequency sinusoidal displacement excitation is measured and compared with its theoretic counterparts. 
Both the accuracy of the simulation results and the effectiveness of the SMAS-QZS are verified. 

2. Dynamic differential modeling of SMA spring 

2.1. The constitutive function of SMA spring 

In this paper, the Landau theory of phase transitions is utilized to describe the phase 
transformation of SMA spring [34,35]. According to the Landau theory, a fundamental characteristic 
of phase transitions is the change in symmetry. Typically, high-temperature phases exhibit greater 
symmetry of lattice structure, while specific symmetrical lattice structures are absent in low-
temperature phases. Conversely, low-temperature phases display reduced symmetry, a phenomenon 
referred to as “symmetry loss”, which arises due to the absence of certain symmetry structure present 
in high-temperature phase. 

Changes in lattice structure symmetry reflect variations in the degree of order of the system, where 
a reduction in symmetry corresponds to an increase in order. The degree of order is quantified by a 
parameter known as order parameter, which is a fundamental parameter in characterizing the phase 
transition process. In high-symmetry phases, the order parameter is equal to zero, while in low-
symmetry phases, it takes on a non-zero value. 

Landau proposed that the free energy function of a system can be expressed as a power series 
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expansion in terms of the order parameter and temperature, retaining only the first few terms for 
practical applicability. The coefficients of the power series are determined based on the specific 
properties of the material. In this way, the phase transition process can be phenomenologically 
described through the free energy function. The essential part of modeling phase transition is to 
construct a free energy function where its minima represent the stable states of the material. 
Consequently, the phase transition process is characterized by the changes in the shape of the free 
energy function at different temperatures. 

In this study, the Landau theory is applied to the SMA springs model, in which the Landau free 
energy function is constructed to model the transformation between the martensitic and austenitic 
phases. In the models proposed by Wang and Melnik [36], the strain ε is used as the order parameter 
to describe the phase transformation. The Landau free energy function is expressed as a function of 
the selected order parameter 𝜀 and temperature 𝜃: 

 𝛹ሺఌ,ఏሻ ൌ ௞భሺఏିఏబሻ

ଶ
𝜀ଶ ൅ ௞మ

ସ
𝜀ସ ൅ ௞య

଺
𝜀଺, (1) 

where, 𝛹ሺఌ,ఏሻ is the Landau free energy, 𝑘ଵ, 𝑘ଶ, and 𝑘ଷ are basic material parameters, and θ଴ is the 

reference transformation temperature. 
For SMA springs, the helical structure undergoes deformation under tensile and compressive 

loading. The axial force generates torque and shear stress on the cross-section of the spring. As a result, 
it is essential to consider the phase transformation of the SMA under torsional stress. In this paper, the 
conventional strain is replaced by torsional strain as the order parameter in the Landau free energy 
function. Consequently, Eq (1) is modified as shown in the following equation: 

 𝛹ሺఊ,ఏሻ ൌ ௞భሺఏିఏబሻ

ଶ
𝛾ଶ ൅ ௞మ

ସ
𝛾ସ ൅ ௞మ

଺
𝛾଺, (2) 

where 𝛾 is torsional strain.  

 

Figure 3. Landau free energy under different temperatures. 
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By plotting the free energy function with different temperatures, it is illustrated in Figure 3 that 
the free energy is strongly influenced by the material temperature [37]. It is evidenced that changes in 
SMA temperature induce phase transformations within the material. This is because, within a specific 
temperature range, certain phases lose stability and is transformed into other phases. 

According to the constitutive relationship: 

 𝑇 ൌ డఅ

డఊ
. (3) 

Since the interest of the current investigation is about the hysteretic characteristics of the SMA 
spring as a whole, the distribution of torsional strain across the cross-section of the SMA spring is 
disregarded. In this context, the torsional strain is simplified to the torsional angle. The constitutive 
function can be expressed as follows: 

 𝑇 ൌ 𝑘ଵሺ𝜃 െ 𝜃଴ሻ𝛼 ൅ 𝑘ଶ𝛼ଷ ൅ 𝑘ଷ𝛼ହ, (4) 

where 𝑇  represents the torque, and 𝛼  is the torsional angle. For simplicity, 𝑘ଵ ,  𝑘ଶ , and  𝑘ଷ  are 
redefined parameters that incorporate basic material and geometric properties. To facilitate subsequent 
calculations of vibration isolation performance, it is necessary to convert the torsional angle into 
displacement, thereby establishing the force-displacement relationship for the SMA spring. When an 
external force 𝐹 is applied, the spring undergoes a deformation 𝑥. The relationship between 𝑥 and the 
torsional angle 𝛼, as well as the external force 𝐹 and the torque 𝑇 of the SMA wire, is expressed as: 

 𝑇 ൌ 𝐹𝑅, 𝑥 ൌ 𝛼𝑅, (5) 

where 𝑅 is spring mean radius; thus, the constitutive function of SMA spring could be expressed as: 

 𝐹 ൌ ௞భሺఏିఏబሻ

ோమ 𝑥 ൅ ௞మ

ோర 𝑥ଷ ൅ ௞య

ோల 𝑥ହ. (6) 

2.2. Dynamic differential model of SMA spring 

In Section 2.1, the static constitutive equation for the SMA spring was derived. However, for the 
dynamic analysis of the vibration isolation system, it is essential to establish the dynamic model of the 
spring to accurately capture the hysteretic characteristics of the SMA spring. To achieve this, the Euler-
Lagrange equation is employed to formulate the equation [38]. The general Euler-Lagrange equation 
is expressed as follows: 

 
ௗ

ௗ௧
ሺడ௅

డ௤ሶ
ሻ ൌ డ௅

డ௤
, (7) 

where 𝐿 is the Lagrangian, 𝑞 denotes the generalized coordinates, and 𝑞ሶ  is generalized velocity. For 
a general physical system, the Lagrangian is typically defined as the difference between the kinetic 
energy and the potential energy, expressed as: 

 𝐿 ൌ 𝑉 െ 𝛹, (8) 
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where 𝑉 is the kinetic energy, and 𝛹 is the potential energy. 
When the SMA spring is compressed, the system accumulates potential energy, which can be 

expressed as:  

 𝛹 ൌ ׬ െ𝐹ሺ𝑥ሻ𝑑𝑥
଴

௫ . (9) 

Considering the phase transformation characteristics of the SMA spring, it is crucial to account 
for dissipative potential energy of the system. Therefore, a Rayleigh dissipative term is introduced, 
which is expressed as: 

 ℝ ൌ െ ଵ

ଶ
𝜐ሺௗ௫

ௗ௧
ሻଶ, (10) 

where 𝜐 is the dissipation parameter of the material. 
Therefore, 𝐿 can be expressed as: 

 𝐿 ൌ ׬ ሺఘ

ଶ
ሺ𝑥ሶሻଶ െ 𝛹ሻ𝑑𝑥

௟
଴ , (11) 

where 𝜌 represents the mass density of the material, 𝑥 is the deformation of SMA spring, and 
ఘ

ଶ
ሺ𝑥ሶ ሻଶ 

is the kinetic energy density of the system. 
Substituting the potential energy 𝛹 and the dissipative term ℝ into the Lagrange equation, the 

dynamic equation of the SMA spring is expressed as: 

 
ௗమ௫

ௗ௧మ ൅ 𝜈 ௗ௫

ௗ௧
ൌ 𝐴ଵሺ𝜃 െ 𝜃଴ሻ𝑥 ൅ 𝐴ଶ𝑥ଷ ൅ 𝐴ଷ𝑥ହ ൅ 𝑓ሺ𝑡ሻ. (12) 

To facilitate subsequent expressions, 𝐴ଵ ,  𝐴ଶ , and  𝐴ଷ  are newly defined parameters that 
encompass material and geometric properties, and 𝑓ሺ𝑡ሻ is the external force. In this study, the inertial 
term has a negligible effect on the system compared to the dissipative term [39], so that Eq (12) can 
be simplified as: 

 𝜈𝑥ሶ െ ሺ𝐴ଵሺ𝜃 െ 𝜃଴ሻ𝑥 ൅ 𝐴ଶ𝑥ଷ ൅ 𝐴ଷ𝑥ହሻ ൌ 𝑓ሺ𝑡ሻ. (13) 

For further calculation, the parameters 𝐴ଵ , 𝐴ଶ , and 𝐴ଷ  need to be obtained by experimental 
measurement, and two types of SMA wires with different diameters were selected for the purpose. Due 
to experimental limitations, only SMA tension springs were fabricated. The SMA wire was wound 
around a screw rod and secured with clamps after winding. The assembly was then placed in a furnace 
and heated to 773.15 K for one hour. When it was cooled in air, the formed SMA spring was extracted 
from the screw rod. The SMA spring prepared for this study is shown in Figure 4. The parameters of 
SMA spring are shown in Table 1. 
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Table 1. Parameters of two types of SMA springs. 

The Parameter of SMA spring (NiTi alloy) 1.0 mm wire SMA spring 1.5 mm wire SMA spring 

Wire diameter (mm) 1 1.5 

Mean diameter (mm) 7.5 8.2 

Effective number of turns 30 30 

Austenite phase transformation completely 

temperature (K) 
258 258 

For newly formed SMA springs, it is crucial to perform multiple cycles of tensile training until 
the stimulation-response behavior of the spring reaches a stable state before proceeding with further 
analysis [29]. During each tensile cycle, it must be ensured that the SMA spring is transformed from 
the austenitic phase to the martensitic phase during the loading process and that it reverts back to the 
austenitic phase during the unloading process. As illustrated in Figure 5, one end of the spring is fixed 
to the frame, while the other end is attached to a force gauge. The force gauge is driven by a stepper 
motor to enforce cyclic tensile loading. A total of 25 loading cycles of training were performed. 

It is shown in Figure 6 that both types of SMA springs exhibit significant hysteresis behavior, and 
the temperature is 285 K. As the number of cycles increases, the residual strain of the SMA springs 
continues to grow. However, after a certain number of cyclic trainings, the residual strain stabilizes, 
and the hysteresis loop for each cycle becomes nearly identical. This indicates that the training process 
of the SMA spring is completed, and the measured stimulation-response curve is appropriate for 
parameter identification and further analysis. For clarification purposes, the experimental tension-
deformation curve with hysteresis loop of the final cycle is presented in Figure 6 by thick solid lines. 

 

Figure 4. Two types of SMA springs. 

 

Figure 5. Cyclic tension test. 
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Figure 6. Cyclic loading of SMA springs. (a) 1.0 mm SMA wire and (b) 1.5 mm SMA wire. 

2.3. Parameter identification 

In order to estimate the model parameters, the final cycle of the tensile training process for both 
sets of springs are taken for parameter identification purposes. Concerning the numerical stability of 
the hysteretic dynamics, the mentioned constitutive model is approximated by a lower piecewise 
polynomial instead of a high order polynomial. Moreover, the nonlinear least square approximation 
method is employed to estimate the parameters in the model, aiming to minimize the discrepancy 
between the simulated values and the experimental data. Consequently, the parameter identification 
problem is reformulated as a nonlinear optimization problem, expressed by the following equation: 

 min
௣,௤,௡,௩

𝐺 ൌ ∑ ሺ𝐶ప෩ െ 𝐶௜ሻଶெ
௜ୀଵ , (14) 

where 𝑝, 𝑞, and 𝑛 represent the values on the y-axis at the interpolation points, 𝑣 is the time constant, 
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𝑀  is the number of selected experimental data points, 𝐶ప෩   denotes the displacement value 
corresponding to the i-th data point from the experimental results, and 𝐶௜  is the simulated 
displacement. To achieve precise identification of the four parameters simultaneously, the Nelder-
Mead nonlinear optimization algorithm is employed and implemented using the MATLAB’s built-in 
fminsearch function [40].  

For the 1.0 mm wire SMA spring, the coordinates of the interpolation points are: (0,0), (12.03,𝑝), 
(13.91,𝑞), and (19.60,𝑛). For the 1.5 mm wire SMA spring, the coordinates of interpolation points are: 
(0,0), (7.92,𝑝), (11.74,𝑞), and (18.90,𝑛). 𝑝, 𝑞, and 𝑛 are the y-coordinates of these interpolation 
points. Those points are marked in Figure 7, where 𝑝 indicates the beginning of the transformation 
of austenite to martensite within the SMA spring, 𝑛 represents the end of the transformation, and 𝑞 
indicates the reverse process. 

 

Figure 7. The result of parameter identification: (a) 1.0 mm wire SMA spring and (b) 1.5 
mm wire SMA spring. 
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In Figure 7, the experimental values and simulated values are compared. It can be observed that 
the constitutive model, given as the differential equation, effectively captures the super-elasticity effect 
of the SMA spring and accurately predicts the forces at various states during the tensile cycles. The 
results of the parameter identification based on the experimental data are presented in Table 2 and 3. 
From Figure 7, it is evident that the hysteresis phenomenon in the 1.5 mm wire SMA spring is 
particularly pronounced. The upper plateau demonstrates a strong load-bearing capacity, while the 
lower plateau could support a smaller load, with a less distinct stress plateau effect. In contrast, the 1.0 
mm wire SMA spring exhibits a more distinct stress plateau phenomenon, and the distance between 
the upper and lower plateau of the hysteresis loop is smaller; this characteristic makes it more suitable 
for use in the SMAS-QZS vibration isolator system. Therefore, the 1.0 mm wire SMA spring is selected 
for vibration isolation. 

Table 2. Parameters identified of 1.0 mm wire SMA spring. 

 𝑣 p 𝑞 𝑛 

Initial value 0.01 23.60 19.72 30.65 
Optimized value 0.22 21.50 21.68 31.41 

Table 3. Parameters identified for the 1.5 mm wire SMA spring. 

 𝑣 p 𝑞 𝑛 

Initial value 0.01 29.1 16.16 59.8 
Optimized value 0.157 22.615 19.354 58.650 

3. Analysis of the vibration isolation characteristics of SMAS-QZS 

 

Figure 8. The model of the proposed SMAS-QZS vibration isolator. 

Due to fabrication constraints, only tension springs were fabricated, which differ from linear 
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compression springs commonly used in traditional passive vibration isolation systems. To integrate the 
tension springs into a quasi-zero stiffness system, the SMA springs are installed within an external 
accumulator, as shown in Figure 8. The function of the accumulator is to provide displacement 
compensation for the plunger and ensure adequate load-bearing capacity. It consists of a plunger 
cylinder and several SMA springs. The accumulator is connected via a tube to a plunger, and a mass 
block 𝑚 is mounted on top of the plunger. One end of each spring is fixed to the frame and the other 
end is attached to the plunger. These springs generate both static supporting force and dynamic force, 
and the force is transmitted to the mass block 𝑚 through hydraulic oil. A cam exciter is installed 
beneath the plunger to provide sinusoidal displacement excitation. To enhance the quasi-zero stiffness 
characteristics of the system, the springs are pre-stretched into the stress plateau range, as illustrated 
in the range marked in Figure 7(a). 

The dynamic equation for the mass block can be expressed as follows: 

 𝑚𝑥ሷ ൅ 𝐹஼ ൌ 𝐹ொ௓ௌ, (15) 

where 𝑥 is the displacement of the mass, 𝐹஼ denotes the system damping force, and 𝐹ொ௓ௌ is the force 

provided by the external SMA springs accumulator through the hydraulic oil. Due to the difference in 
cross-sectional areas of the plunger and the accumulator, the displacements of the mass block and the 
SMA springs are not identical, and the equation can be written as follows: 

 

ሺ𝑥଴ െ 𝑥ሻ𝑆ଵ ൌ 𝑥ଵ𝑆ଶ
ிೂೋೄ

ௌభ
ൌ ிೄಾಲ

ௌమ

𝐹ௌெ஺ ൌ 𝑛ሺ𝜈𝑥ଵሶ െ 𝐴ଵሺ𝜃 െ 𝜃଴ሻ𝑥ଵ െ 𝐴ଶ𝑥ଵ
ଷ െ 𝐴ଷ𝑥ଵ

ହሻ

𝐹஼ ൌ 𝑐ሺ𝑥 െ 𝑥଴ሻሶ

, (16) 

where 𝑥଴  is the sinusoidal displacement excitation, 𝜔  is the excitation frequency, 𝑥ଵ  denotes the 
displacement of the plunger in accumulator and also the displacement of the SMA springs, 𝐹ௌெ஺ is 
the force of SMA springs, 𝑆ଵ and 𝑆ଶ are the cross-sectional areas of the plunger and the accumulator 
separately, 𝑛 is the number of SMA springs, and 𝑐 is the system damping coefficient, which is taken 
from reference [36]. By substituting Eq (16) into Eq (15), the dynamic equation can be rewritten as: 

 
𝑚𝑥ሷ ൅ 𝑐ሺ𝑥 െ 𝑥଴ሻሶ ൌ

𝑛𝑆ൣ𝜐𝑆ሺ𝑥଴ െ 𝑥ሻሶ െ 𝐴ଵሺ𝜃 െ 𝜃଴ሻ𝑆ሺ𝑥଴ െ 𝑥ሻ െ 𝐴ଶ𝑆ଷሺ𝑥଴ െ 𝑥ሻଷ െ 𝐴ଷ𝑆ହሺ𝑥଴ െ 𝑥ሻହ൧
, (17) 

where 𝑆 ൌ 𝑆ଵ 𝑆ଶ⁄ . To simplify the process of calculation, the relative displacement 𝑦 ൌ 𝑥 െ 𝑥଴ is 
substituted into Eq (17): 

 𝑦ሷ ൅ 𝐶𝑦ሶ ൅ 𝑎ଵሺ𝜃 െ 𝜃଴ሻ𝑦 ൅ 𝑎ଶ𝑦ଷ ൅ 𝑎ଷ𝑦ହ ൌ 𝑥଴ሷ , (18) 

where 𝐶 ൌ ௡జௌమା௖

௠
, 𝑎ଵ ൌ െ ௡ௌమ஺భ

௠
, 𝑎ଶ ൌ െ ௡ௌర஺మ

௠
, and 𝑎ଷ ൌ െ ௡ௌల஺య

௠
.  

The excitation part of the model is an eccentric cam structure. The cam is designed as a cylinder 
with a radius of 𝑟ଶ ൌ 28 mm, featuring an eccentric hole with a distance of 𝑑 ൌ 10 mm. The top 
surface of the cam is in contact with a roller, which has a radius of 𝑟ଵ ൌ 6.5 mm. The motion trajectory 
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is illustrated in Figure 9. 

 

Figure 9. Geometric analysis of the cam: (a) Cam and driven part, (b) low position, (c) 
random position, and (d) high position. 

According to the sine theorem, the relationship between those geometrical parameters of the cam 
can be expressed as follows: 

 
௥మ

௦௜௡ሺగିఎభሻ
ൌ ௗ

௦௜௡ ఎమ
ൌ ௛

௦௜௡ሺఎభିఎమሻ
, 𝑠𝑖𝑛 𝜂ଶ ൌ ௗ

௥మ
𝑠𝑖𝑛 𝜂ଵ. (19) 

The displacement of the excitation can be expressed as follows (set the initial height as 0): 

 ℎ ൌ ඥ𝑟ଶ
ଶ െ ሺ𝑑 𝑠𝑖𝑛 𝜂ଵሻଶ െ 𝑑𝑐𝑜𝑠 𝜂ଵ െ ሺ𝑟ଶ െ dሻ. (20) 

As illustrated in Figure 10, the excitation curve fits the theoretical sinusoidal curve. 

 

Figure 10. Excitation curve. 
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Therefore, the sinusoidal displacement excitation can be represented as: 𝑥଴ ൌ 𝑥௠ cosሺ𝜔𝑡ሻ, and 
𝑥௠ is the amplitude of excitation. 

The HBM [41] is used to obtain analytical solution of Eq (18). The solution of the function is 
expanded into Fourier series as follows: 

 𝑦 ൌ 𝑦଴ ൅ ∑ ሾ𝛼௡ cosሺ𝑛𝜔଴𝑡ሻ ൅ 𝛽௡ sinሺ𝑛𝜔଴𝑡ሻሿே
௡ୀଵ . (21) 

The system starts from the static state, so 𝑦଴ ൌ 0 . The HBM considers only the first-order 
harmonic approximation and neglects the higher-order harmonic. It is assumed that the relative 
displacement 𝑦 shares the same frequency as the external excitation: 

 𝑦 ൌ 𝛼 cosሺ𝜔𝑡ሻ ൅ 𝛽 sinሺ𝜔𝑡ሻ. (22) 

Substitute Eq (22) into Eq (18) and make the coefficients of the sinሺ𝜔𝑡ሻ and cosሺ𝜔𝑡ሻ terms on 
either side of the equation equal: 

 
െ𝜔ଶ𝛼 ൅ 𝐶𝜔𝛽 ൅ 𝑎ଵሺ𝜃 െ 𝜃଴ሻ𝛼 ൅ ଷ

ସ
𝑎ଶሺ𝛼ଶ ൅ 𝛽ଶሻ𝛼 ൅ ହ

଼
𝑎ଷሺ𝛼ଶ ൅ 𝛽ଶሻଶ𝛼 ൌ െ𝜔ଶ𝑥௠

െ𝜔ଶ𝛽 െ 𝐶𝜔𝛼 ൅ 𝑎ଵሺ𝜃 െ 𝜃଴ሻ𝛽 ൅ ଷ

ସ
𝑎ଶሺ𝛼ଶ ൅ 𝛽ଶሻ𝛽 ൅ ହ

଼
𝑎ଷሺ𝛼ଶ ൅ 𝛽ଶሻଶ𝛽 ൌ 0

. (23) 

The value of response amplitude 𝑌 ൌ ඥ𝛼ଶ ൅ 𝛽ଶ is calculated by Eq (23): 

 𝑌 ൌ ඨ
ఠర௫೘

మ

ሺିఠమା௔భሺఏିఏబሻାయ
ర

௔మ௒మାఱ
ఴ

௔య௒రሻమା஼మఠమ
. (24) 

The response amplitude of the model is represented in a non-dimensional displacement form: 

 𝑋 ൌ ௫

௫೘
. (25) 

To better evaluate the performance of the SMAS-QZS in isolating low-frequency vibrations, a 
damped linear vibration isolation system is introduced for comparison. The linear system utilizes the 
same damping value and an appropriate stiffness. The calculation process of the linear system is not 
elaborated here, and the result is presented as follows: 

 𝑋௟௜௡௘௔௥ ൌ ௫೗೔೙೐ೌೝ

௫೘
ൌ ଵ

ටሺଵି௥ഘ
మ ሻమାሺଶక௥ഘሻమ

, (26) 

where 𝑟ఠ is the frequency ratio, and 𝜉 denotes the damping ratio. 
As illustrated in Figure 11, compared to the linear system, the response amplitude curve of SMAS-

QZS exhibits strong nonlinear characteristics. Due to the inherent stress plateau characteristics of the 
SMA spring, the natural frequency of the system is significantly reduced. A lower natural frequency 
of system could effectively broaden the vibration isolation frequency range, especially the low-
frequency. Therefore, the SMAS-QZS could effectively isolate the low-frequency vibration. 
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Additionally, the phase transition between austenite and martensite within SMA during the stretching 
process dissipates vibration energy and contributes to amplitude suppression. The reference 
temperature is 𝜃଴ ൌ 208𝐾,and the values of the parameters are: 𝑎ଵ ൌ 229.8, 𝑎ଶ ൌ െ1.8 ൈ 10ଷ, 𝑎ଷ ൌ
1.5 ൈ 10଺, and 𝐶 ൌ 70.  

In Figure 11(a), due to the nonlinear characteristics of the system, the response amplitude exhibits 
multiple solutions within a certain region; thus, the system is unstable within this region. The impact 
of different damping ratios on the response amplitude of the system is illustrated in Figure 11(b). As 
the damping ratio increases, the response amplitude decreases. 

In order to validate the influence of temperature on the isolation performance of SMAS-QZS, 
the response amplitude at different temperatures is compared. As illustrated in Figure 12, it can be 
observed that as the temperature increases, the degree of nonlinearity in the system decreases. When 
the temperature exceeds a certain threshold, the characteristics of response amplitude become nearly 
identical to those of a linear system. This is because the austenite in the material at high temperatures 
cannot transform into martensite under the stress, and the stress plateau characteristics disappear as a 
result [29]. Consequently, the quasi-zero stiffness characteristics of the SMAS-QZS nearly vanishes at 
high temperature. 

 

Figure 11. The response amplitude: (a) Comparison with the linear system, and (b) 
comparison with different damping ratios. 
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Figure 12. The response amplitude at different temperatures. 

4. Experiment verification 

4.1. SMAS-QZS experiment system 

To validate the accuracy of the simulation results, an experimental system is established. The 
theoretical structure of the experimental system is illustrated in Figure 13. 

The excitation component is illustrated in Figure 14 and consists of a stepper motor and a cam 
mechanism. The motor is controlled by the Arduino microcontroller and provides the rotational motion 
in different frequencies for the cam mechanism. The cam mechanism converts the rotational motion 
of the motor into a sinusoidal displacement excitation.  

 

Figure 13. Theoretical structure of the experimental system: (a) Excitation component, 
and (b) hydraulic component. 
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Figure 14. Excitation component. 

The SMA springs accumulator proposed in this study is illustrated in Figure 15(a). It leverages 
the stress plateau characteristics of SMA to achieve quasi-zero stiffness characteristics. Due to the 
limitation of using only tension SMA springs, an experimental design is developed. The SMA springs 
accumulator mostly consists of a plunger and several SMA springs. The plunger within the 
accumulator is connected to the load-bearing plunger cylinder via a pipe to enable force transmission.  

The force comes from a certain number of SMA springs arranged circumferentially around the 
plunger cylinder. The number of SMA springs can be adjusted to 2, 4, 6, or 8 depending on the load 
weight. To ensure the piston moves only vertically, an external guiding mechanism is incorporated 
consisting of sliders and shafts. As shown in Figure 15(b), sliders and shafts are utilized to ensure the 
load-bearing platform moves only in the vertical direction. 

 

Figure 15. (a) SMA springs accumulator, and (b) SMAS-QZS experimental model. 
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A retractable displacement sensor is mounted with one end fixed to the frame and the other end 
attached to the load-bearing platform, measuring the response displacement of the platform during the 
experimental process. All sensor signals are processed through an amplifier before being transmitted 
to a data acquisition card, ensuring the accuracy and reliability of the data. The experiment setup and 
prototype of SMAS-QZS is shown in Figure 16. 

 

Figure 16. SMAS-QZS experiment system. 

4.2. Experiment results 

 

Figure 17. Response displacement at different frequencies. 
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The response displacement and simulation results of SMAS-QZS at 0.5, 1.0, 1.5, and 2.0 Hz are 
illustrated in Figure 17; the data is processed using filters to remove noise signals. Due to the output 
error of the motor, there is a certain phase difference between the experimental data and the simulation 
results. From Figure 17, it can be observed that experimental response displacement aligns well with 
the simulation results across excitation frequencies. 

As illustrated in Figure 17, the response displacement exceeds the amplitude of the excitation at 
an input frequency of 0.5 Hz. This is because 0.5 Hz is within the resonance region, and the system is 
unable to isolate vibrations at this frequency. At frequencies above 1.0 Hz, the vibration isolation 
capability of the system is significantly enhanced, and the vibration suppression effect for the 
excitation displacement reaches over 50%. This phenomenon verifies the accuracy of the displacement 
response simulation results. When the excitation frequency exceeds 0.5 Hz, it surpasses the natural 
frequency of the system. Therefore, the resonance phenomenon disappears, and the vibration isolation 
capability of the system becomes apparent. Consequently, the system effectively isolates vibrations 
with the frequency above 0.5 Hz, and the effectiveness of the system in isolating low-frequency 
vibrations also demonstrates the quasi-zero stiffness characteristic. 

5. Conclusions 

In this paper, a novel quasi-zero stiffness vibration isolation model using SMA springs is proposed. 
First, the Landau theory is utilized to construct the static constitutive equation of the SMA spring. The static 
constitutive equation can describe the characteristics of the phase transformation from austenite to 
martensite. Subsequently, the Euler-Lagrange equation is utilized to develop the dynamic model. 

To obtain the parameters of the dynamic model, tensile tests are conducted on SMA springs with 
different wire diameters to obtain the force-displacement characteristics, and the parameters are 
identified using the nonlinear least square optimization method. To effectively leverage the stress 
plateau characteristics of the SMA spring, an external SMA springs accumulator is employed to 
develop a theoretical quasi-zero stiffness vibration isolation model (SMAS-QZS), and the SMA 
springs are pre-stretched to a specific length. The HBM is used to derive an analytical solution for 
the amplitude-frequency response. The analytical results are compared with those of a linear 
vibration isolation system to demonstrate the effectiveness of the quasi-zero stiffness system in 
isolating low-frequency vibrations. Furthermore, we examine the effects of different parameters on 
the vibration isolation performance of SMAS-QZS, such as damping ratio and temperature. 

Finally, a prototype of SMAS-QZS for the experimental purpose is set up and tested, and the 
amplitude frequency response of the experimental system under low-frequency sinusoidal 
displacement excitation is measured and compared with its theoretic counterparts. By applying 
external excitations within the frequency range of 0.5–2.0 Hz, the experimental data aligns well with 
the simulation results. The system is proven to effectively isolate vibrations at frequencies above 0.5 Hz. 
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