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Abstract: In natural ecosystems, the external environment is constantly changing, and is affected by
various factors, thus presenting a certain degree of randomness and uncertainty. Therefore, having a
suitable habitat is essential for the reproductive success of many species. Understanding the impact
of habitat selection provides valuable insights into how species locate and adapt to suitable living
environments based on their specific needs. For this purpose, a prey-predator system model with prey
habitat selection in an environment subject to stochastic disturbances is formulated. The properties of
the proposed model without and with stochastic disturbances are investigated, including the existence
of a unique ergodic stationary distribution, the stochastically ultimate bounded-ness of the solutions,
and the extinction and persistence of the populations. The study demonstrates that prey can persist
at a low intensity noise, whereas stronger stochastic disturbances may lead to the extinction of both
the prey and predator species. To illustrate the theoretical results, numerical simulations are presented
step by step. This work provides a theoretical reference for further studies on populations with habitat
selection in an environment subject to stochastic disturbances.

Keywords: stochastic prey-predator model; habitat selection; stationary distribution; stochastically
ultimate bounded-ness; persistence

1. Introduction

The study of population dynamics is an important branch of ecosystem models and has attracted
the special interest of ecologists and applied mathematics at historical and contemporary stages [1, 2].
Mathematical models play a key role in understanding changes in biological systems [3, 4] and the
effect of control measures [5]. In ecosystems, predation is an important way for species to interact
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and depend on each other. The pioneer work in mathematics that describes the interplay or dynamics
between predator and prey belongs to the Lotka [6] and Volterra [7], which is well known as the
Lotka-Voterra model. Subsequently, scholars have refined and enhanced the model in the application
of different scenarios and proposed different kinds of uptake functions to characterize the predator’s
hunting ability [8–11]. The uptake function with a Holling type is representative and applicable to
predation phenomena of different species, ranging from lower organisms such as algae and unicellular
organisms to invertebrates and vertebrates, such as Holling-I [12], Holling-II [13], Holling-III [14],
Holling-(n+1) [15] and so on. The Holling-III functional response showed that the predator’s predation
reached saturation when the number of prey reached a certain level [14], which is consistent with most
of the actual situations. Therefore, it is of a great significance to study the dynamics of a predator-prey
model with a Holling-III functional response function.

Over the long period of evolution, prey have evolved with a series of anti-predator behaviors. The
anti-predator behaviors of prey can be classified into two categories: (i) defensive counterattacks [16]
and (ii) morphological or behavioral changes, including camouflage [17], seeking refuge [18, 19], and
so on. The benefit of anti-predator behaviors is that they reduce the risk of predation. Red colobus
monkeys show siege when they are threatened by chimpanzees [16], cuttlefish choose to camouflage by
matching background features [17], northern pigtailed macaques select trees with abundant branches
and elevated sleeping locations in order to minimize the threat of predation [18], and white-headed
langurs opt for cliff edges or caves as their nocturnal habitats, thus seeking refuge from predators such
as leopard cats [19]. Anti-predator behaviors are widespread in nature and are essential to consider in
the modeling process. Tang and Xiao [20] proposed a model of the first type of anti-predation behaviors
by adding anti-predation terms to reduce the rate of predator growth. It was demonstrated that anti-
predator behaviors inhibit predator-prey oscillations and decreased the likelihood of the coexistence
between prey and predator [21]. However, many animals lack strong defenses against attacks and they
often exhibit the second type anti-predation behavior. An anti-predator model for habitat selection or
vigilance was proposed by Ives and Dobson [22], which takes the form:

dx
dt
= x

[
r
(
1 −

x
K

)
− v − e−εv qy

1 + ax

]
,

dy
dt
=

ce−εvqxy
1 + ax

− my.
(1.1)

The existence of the anti-predator effect modulates the reproductive capacity of prey through the
factor vx. For example, yellow-eyed juncos exhibit a heightened vigilance by dedicating more time to
scanning for predators upon the release of a trained Harris hawk in their vicinity, thus resulting in a
reduced time spent foraging for food [23]. It is hypothesized that the diminished feeding rates will
ultimately either heighten the likelihood of starvation or hinder the ability to successfully rear
offspring. Werner et al. discovered that when bass are present, bluegills will select not rich in
resources but more hidden habitats, moreover, bluegills reared in the presence of bass attain only
approximately 80% of the mass compared to those raised without the bass present [24]. Additionally,
predators pay a price for the anti-predator effect, which is defined by the term e−εv on the predator’s
hunting ability. Based on this consideration, a prey-predator model with a prey habitat selection is
considered in this study.

In reality, population systems are typically subjected to a wide range of random disturbances. May
has pointed out that the rate of growth, environmental carrying capacity, coefficient of competition,
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and other pertinent system parameters are all impacted by environmental noise to differing
degrees [25]. The deterministic model has certain limitations, in some situations, frequently yields
disappointing results. To more accurately characterize and predict the population ecosystems, it is
necessary to investigate population models with stochastic disturbances. In natural system, the
stochastic disturbances can be described by white noise [26], colored noise [27], Levy jumps [28],
Markov switching [29], and others. Population systems are often subject to environmental
fluctuations. Generally speaking, such fluctuations could be modeled by a colored noise. Moreover, if
the colored noise is not strongly correlated, then it can be approximately modeled by a white noise,
and the approximation works quite well [30]. Mao et al. observed that even the smallest white noise
can suppress the population explosion and provided a classical method for the uniqueness of the
solution [31]. Ji and Jiang [32] explored a stochastic predatory system that incorporated
Beddington-DeAngelis uptake function and discussed the asymptotic property of the system model.
Liu et al. [33] put forward a prey-predator system model which followed the Holling type-II uptake
function in an environment that involved stochastic disturbances. Zhang et al. [34] analyzed a
prey-predator system model by considering the Holling type-II uptake function and hyperbolic
mortality in an environment subject to stochastic disturbances. Liu [35] analyzed the dynamics of a
stochastic regime-switching predator-prey model with modified Leslie-Gower Holling-type II
schemes and prey harvesting. Li et al. [36] proposed a Melnikov-type method for chaos in a class of
hybrid piecewise-smooth systems with impact and noise excitation under unilateral rigid constraint.
In the present investigation, it is assumed that the environment is influenced by white noise in the
modeling process.

The structure of this paper is organized as follows: in Section 2, a prey-predator system model with
prey habitat selection and stochastic disturbances is formulated, which is followed by a presentation
of some basic notations, definitions, and crucial lemmas used in this study; in Sections 3 and 4, the
basic properties and dynamic behavior of the system model with or without stochastic disturbances are
investigated; in Section 5, numerical simulations with discussions are presented to illustrate the main
results; and finally, the work is summarized and further research directions are put forward.

2. Mathematical model and basic knowledge

2.1. Mathematical model

When prey habitat selection is considered, the prey-predator model can be described as follows:
dx(t)

dt
= x(t)

[
r
(
1 −

x(t)
K

)
− v − e−(vm+m0) x(t)y(t)

1 + ax(t)2

]
:= xF1(x, y),

dy(t)
dt
= y(t)

[
ce−(vm+m0) x(t)2

1 + ax(t)2 − by(t) − d
]

:= yF2(x, y),
(2.1)

where

• x — prey’s densities;
• y — predator’s densities;
• r — prey’s intrinsic growth rate;
• K — prey’s environmental carrying capacity;
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• v — intensity of anti-predator effect;
• c — conversion efficiency;
• b — interspecific competition coefficient;
• d — natural mortality rate;
• m — efficiency of anti-predator behavior;
• e−m0 — maximum predation rate.

Considering the changes in the natural environment and the universality of random disturbances,
we introduce white noise into the Model (2.1) in order to analyze the effect of random disturbances on
the Model (2.1). Let

r → r + σ1Ḃ1(t), − d → −d + σ2Ḃ2(t),

where σi represents the white noise intensity, which describes the strength of random disturbance in
the environment. Bi(t) stands for a Brownian motion, i = 1, 2. Then, the model subject to stochastic
disturbances is represented as follows:

dx(t) = x(t)
[
r
(
1 −

x(t)
K

)
− v − e−(vm+m0) x(t)y(t)

1 + ax(t)2

]
dt + σ1x(t)dB1(t),

dy(t) = y(t)
[
ce−(vm+m0) x(t)2

1 + ax(t)2 − by(t) − d
]

dt + σ2y(t)dB2(t).
(2.2)

All the parameters in Model (2.1) and Model (2.2) are positive. In addition, it is assumed that v ≤ r
and c ≥ c ≜ adevm+m0 in Model (2.1) for biological restriction.

2.2. Basic knowledge

Let us denote the following:

⟨u(t)⟩ ≜ lim
t→+∞

∫ t

0
t−1u(s)ds, ⟨u(t)⟩∗ ≜ lim

t→+∞
sup

∫ t

0
t−1u(s)ds, ⟨u(t)⟩∗ ≜ lim

t→+∞
inf

∫ t

0
t−1u(s)ds.

Consider the following:
dU(t) = F(U(t), t)dt +G(U(t), t)dB(t), (2.3)

where B(t) is a standard Brownian motion defined on (Ω,F , {Ft}t≥0, P) equipped with {Ft}t≥0, where
F(U(t), t) ∈ Rl × [0,+∞), G(U(t), t)l×q is a matrix. Define L as follows:

L =
∂

∂t
+

l∑
i=1

Fi(U(t), t)
∂

∂U i
+

1
2

l∑
i, j=1

[GT (U(t), t)G(U(t), t)]i, j
∂2

∂Ui∂U j
.

For V(U(t), t) ∈ C2,1(Rl × [0,+∞),R+), there is

LV(U(t), t) =
1
2
trace[GT (U(t), t)VUU(U(t), t)G(U(t), t)] + Vt(U(t), t) + VU(U(t), t)F(U(t), t),

where Vt =
∂V
∂t

, VU =

(
∂V
∂U1

,
∂V
∂U2

, · · · ,
∂V
∂Ul

)
, VUU =

(
∂2V

∂Ui∂U j

)
l×l

. Then,

dV(U(t), t) = VU(U(t), t)G(U(t), t)dB(t) +LV(U(t), t)dt.
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Definition 1 (Stochastically ultimate boundedness [31]). The solution (u(t), v(t)) is defined as having
the property of stochastically ultimate boundedness if for any ε ∈ (0, 1), there exists a constant χ > 0
such that

lim sup
t→+∞

P{||(u(t), v(t))||2 > χ} < ε, ∀(u0, v0) ∈ R2
+.

Definition 2 (Extinction and persistence [26]). The species u is defined as extinction when lim
t→+∞

u(t) =
0, weakly persistence (in the mean) when ⟨u(t)⟩∗ > 0, strong persistence (in the mean) when ⟨u(t)⟩∗ > 0,
persistence (in the mean) when ⟨u(t)⟩ > 0, and weak persistence when lim

t→+∞
sup u(t) > 0.

Assume that U(t) ∈ El is a regular time-homogeneous Markov process characterized by the
following stochastic differential equation:

dU(t) = b(U)dt +
q∑

k=1

gr(U)dBr(t).

The diffusion matrix of the process U(t) is denoted as follows:

Λ(U) =
(
λi j(U)

)
l×l
, λi j(U) =

q∑
k=1

gi
r(U)g j

r(U).

Lemma 1 (Ergodic stationary distribution [37]). For a given Markov process U(t) ∈ El, it is called
possessing a unique ergodic stationary distribution µ(·) if ∃I ⊂ El with boundary Γ such that i)
min(eig(Λ(U))) is bounded in I and some neighborhood of I; ii) For u ∈ El\I, if a path originating
from u can reach I in a finite average time τ and supu∈S Euτ < ∞, ∀S ⊂ El, where S is a compact
subset.

Remark 1. To establish the condition i), it is sufficient to demonstrate that ∃θ > 0 such that

l∑
i, j=1

ai j(u)ξiξ j ≥ θ||ξ||
2, u ∈ I, ξ ∈ Rl;

To establish the condition ii), it is crucial to demonstrate the existence of a neighborhood I along with
V ∈ C2 such that LV(u) < 0, ∀u ∈ El\I.

Lemma 2 ( [26]). For a given u(t) ∈ C[Ω × [0,+∞),R+]:

(1) If ∃ρ0 ,T > 0 with

u(t) ≤ exp

ρt − ρ0

∫ t

0
u(s)ds +

n∑
i=1

αiBi(t)


for t ≥ T, then  ⟨u⟩

∗ ≤
ρ

ρ0
, ρ ≥ 0

lim
t→+∞

u(t) = 0, ρ < 0
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(2) If ∃ρ0 , T and ρ with

ln u(t) ≥ ρt − ρ0

∫ t

0
u(s)ds +

n∑
i=1

αiBi(t)

for t ≥ T, then ⟨u⟩∗ ≥
ρ

ρ0
.

Lemma 3 ( [37]). For T0 > 0, α1 > 0 and α2 > 0, it has

P
{

sup
0≤t≤T0

[∫ t

0
g(s)dB(s) −

α1

2

∫ t

0
|g(s)|2ds

]
> α2

}
≤ e−α1α2 .

3. Dynamic properties of Model (2.1)

As the population densities are non-negative, the discussion on Model (2.1) is restricted in the region
R2/R2

−. The equilibrium of Model (2.1) satisfies the following:
x
[
r
(
1 −

x
K

)
− v − e−(vm+m0) xy

1 + ax2

]
= 0,

y
[
ce−(vm+m0) x2

1 + ax2 − by − d
]
= 0.

Obviously, Model (2.1) always has two equilibria: O(0, 0) and EB(K, 0), where K ≜ (1−v/r)K. O(0, 0)
is a saddle and constantly unstable.

Define the following:

ψ(x) ≜ (r − v)evm+m0(1 + ax2)
(
1
x
−

1

K

)
, ϕ(x) ≜

1
b

(
ce−vm−m0

x2

1 + ax2 − d
)
.

Then, x = 0 and y = ψ(x) are two x-isolines, y = 0 and y = ϕ(x) are two y-isolines.
Since

ψ′(x) =
(r − v)evm+m0

x2

(
−

2a

K
x3 + ax2 − 1

)
,

then it has ψ′(x) → −∞ as x → 0. Denote v ≜ r(1 − 3
√

3/aK
−2

). For v ≥ v, there is ψ′(x) ≤ 0 for
x ∈ (0,K]; for 0 ≤ v < v, it has ψ′(K/3) > 0. Then, there exists x1 ∈ (0,K/3) and x2 ∈ (K/3,K) such
that ψ(x1) = ψ(x2) = 0.

Similarly, it has ϕ(0) = −d/b, ϕ′(x) > 0 for x ∈ [0,K] and ϕ(x) = 0 if and only if x = x ≜√
devm+m0

c−adevm+m0 . Obviously, x < K if and only if c > c ≜ devm+m0(a + K
−2

).

Theorem 1. The boundary equilibrium EB(K, 0) is globally asymptotically stable for c ≤ c ≤ c.

Proof. At EB(K, 0), the Jacobian matrix is as follows:

JEB(K,0) =


v − r −e−(vm+m0) K

2

1 + aK
2

0 ce−(vm+m0) K
2

1 + aK
2 − d

,
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and its characteristic roots are as follows:

λ1 = v − r < 0, λ2 = d
(c
c
− 1

)
.

If c < c, then there is λ2 < 0, then EB(K, 0) is a node and locally asymptotically stable. If c = c, there is
λ2 = 0, then EB(K, 0) is a saddle-node. Since for c ≤ c, there is ϕ(x) < 0, i.e., dy/dt < 0 for x ∈ [0,K),
then y(t) → 0 as t → ∞. While dx/dt > 0 for x ∈ [0,K) and y = 0, then x(t) → K, i.e., EB(K, 0) is
globally asymptotically stable. □

For c > c, there is x < K. In such case, EB(K, 0) is unstable.

Theorem 2. For c > c, Model (2.1) has at least one and no more than three interior equilibria.
Moreover, if v ≤ v < r, then the interior equilibrium is unique. In addition, the interior equilibrium
Ê(x̂, ŷ) is locally asymptotically stable if and only if ϕ(x̂) < ψ′(x̂) < bcŷ/(bŷ + d).

Proof. Since there are ψ(x) > 0 and ψ(K) = 0 for c > c, ϕ(x) = 0, ϕ(K) > 0, according to the
mediocrity theorem, there exists at least one x∗ ∈ (x,K) such that ψ(x∗) = ϕ(x∗), i.e., Model (2.1) has
at least one interior equilibrium E∗(x∗, y∗), where y∗ = ψ(x∗), as illustrated in Figure 1.

0 2 4 6
 x(t)

-1

0

1

2

3

4

 y
(t

)

 y= (x)

 y= (x)

  v=0.34(b)

0 1 2 3 4 5
 x(t)

-1

0

1

2

3

4

 y
(t

)

 y= (x)  y= (x)

  v=0.35
(c)

Figure 1. Illustration for y = ψ(x) and y = ϕ(x) for the following given model parameters:
r = 0.4, K = 40, m = 0.5, m0 = 0.1, a = 15, c = 0.8, b = 0.02, d = 0.01.

For v ≤ v < r, y = ψ(x) is monotonically decreasing on (x,K) and y = ϕ(x) is monotonically
increasing on (x,K); therefore, y = ψ(x) and y = ϕ(x) have a unique intersection point, i.e., the interior
equilibrium E(x∗, ψ(x∗)) is unique (Figure 1(d)).
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For 0 < v < v, y = ϕ(x) is monotonically increasing and tends to saturation y = ysup ≜
ce−vm−m0−ad

ab .
Alternatively, y = ψ(x) is monotonically decreasing on (0, x1), monotonically increasing on (x1, x2),
and monotonically decreasing on (x2,K), which forms a S-type on (0,K). Thus, y = ψ(x) and y = ϕ(x)
have no more than three intersections, i.e., Model (2.1) has no more than three interior
equilibria (Figure 1(b)).

For the given interior equilibrium Ê(x̂, ŷ), the Jacobian matrix is as follows:

JÊ(x̂,ŷ) =


x̂
∂F1

∂x
(x̂, ŷ) x̂

∂F1

∂y
(x̂, ŷ)

ŷ
∂F2

∂x
(x̂, ŷ) ŷ

∂F2

∂y
(x̂, ŷ)

 =
e−vm−m0 x̂

1 + ax̂2 ψ
′(x̂) −

e−vm−m0 x̂
1 + ax̂2

bŷϕ′(x̂) −bŷ

.
Since

Trace(JÊ(x̂,ŷ)) =
x̂

evm+m0(1 + ax̂2)
ψ′(x̂) − bŷ = ŷ

[
bŷ + d

cŷ
ψ′(x̂) − b

]
,

Det(JÊ(x̂,ŷ)) =
bx̂ŷ

evm+m0(1 + ax̂2)
[
ϕ′(x̂) − ψ′(x̂)

]
,

if ϕ(x̂) < ψ′(x̂) < bcŷ/(bŷ + d), then there are Trace(JÊ(x̂,ŷ)) < 0 and Det(JÊ(x̂,ŷ)) (i.e., the interior
equilibrium Ê(x̂, ŷ) is locally asymptotically stable). □

4. Dynamical properties of Model (2.2)

In this segment, we will examine various characteristics of the stochastic prey-predator model.

4.1. Global positivity

Theorem 3. For ∀(x0, y0) ∈ R2
+, Model (2.2) possesses a unique, global solution (x(t), y(t)) for t > 0,

which keeps positive with a probability with one.

Proof. Denote x(t) = ep(t), y(t) = eq(t). Consider the following:
dp(t) =

[
r
(
1 −

ep(t)

K

)
− v − e−(vm+m0) ep(t)+q(t)

1 + ae2p(t)

]
dt + σ1dB1(t),

dq(t) =
[
ce−(vm+m0) e2p(t)

1 + ae2p(t) − beq(t) − d
]

dt + σ2dB2(t).
(4.1)

It can be verified that Model (4.1) fulfills the Local Lipschitz Condition; then, for given p0 = ln x0, q0 =

ln y0, it guarantees the existence of a unique, locally positive solution (p(t), q(t)) on the interval [0, τe),
where τe is the time of explosion. The Itô formula implies that (x(t), y(t)) = (ep(t), eq(t)) is exactly the
solution of Model (2.2).

Next, it is sufficient to demonstrate that τe = ∞. Let n0 be an integer satisfy (x0, y0) ⊂
[

1
n0
, n0

]
. For

n ≥ n0, define the following:

τn = inf
{

t ∈ [0, τe) : min{x(t), y(t)} ≤
1
n

or max{x(t), y(t)} ≥ n
}
.

Electronic Research Archive Volume 33, Issue 2, 744–767.



752

For an empty set ϕ, define inf ϕ = ∞. It is evident that τn increases with n → ∞. Define τ∞ = lim
n→∞

τn.
Then, τ∞ ≤ τe. It is only necessary to prove that τ∞ = ∞.

By contradiction, it is assumed that τ∞ < ∞. Then, there exist ε∞ ∈ (0, 1) and T∞ > 0 satisfying
P{τ∞ ≤ T∞} > ε∞. Thus, ∃n∞ ≥ n0 such that

P{τn ≤ T∞} > ε∞, n ≥ n∞. (4.2)

Define the following:

V(x, y) ≜ (x − 1 − ln x) +
1
c

(y − 1 − ln y).

Clearly, V(x, y) is nonnegative because s − 1 − ln s ≥ 0 when s > 0. Then,

dV(x, y) = LVdt + (x − 1)σ1dB1(t) +
1
c

(y − 1)σ2dB2(t),

where

LV =(x − 1)
[
r
(
1 −

x
K

)
− v − e−(vm+m0) xy

1 + ax2

]
+
σ2

1

2

+
1
c

(y − 1)
[
ce−(vm+m0) x2

1 + ax2 − by − d
]
+
σ2

2

2c

=rx −
rx2

K
− vx +

rx
K
+ e−(vm+m0) xy

1 + ax2 −
dy
c
−

by2

c

+
by
c
− e−(vm+m0) x2

1 + ax2 +

(
v +

d
c
− r

)
+
σ2

1

2
+
σ2

2

2c

≤rx − vx −
rx2

K
+

rx
K
+ e−(vm+m0) y

ax
+ y

(
b
c
−

d
c
−

by
c

)
+ v +

d
c
− r +

σ2
1

2
+
σ2

2

2c
≤Θ.

Thus, it can be concluded that

dV ≤ Θdt + (x − 1)σ1dB1(t) +
1
c

(y − 1)σ2dB2(t).

By taking expectations after integrating over the interval (0, τn ∧ T∞), we have the following:

EV(x(τn ∧ T∞), y(τn ∧ T∞)) ≤ V(x0, y0) + ΘE(τn ∧ T∞) ≤ V(x0, y0) + ΘT∞. (4.3)

Denote Ωn = {w ∈ Ω|τn = τn(w) ≤ T∞}. Then, P(Ωn) > ε by Eq (4.2). It can be obtained that x(τn,w)

and y(τn,w) equal to either
1
n

or n for all w ∈ Ωn. From Eq (4.3), we obtain the following:

V(x0, y0) + ΘT∞ ≥ E(1ΩnV(x(τn), y(τn))) ≥ ε∞min
{

1
n
− 1 − ln

1
n
, n − 1 − ln n

}
,

which implies
∞ > V(x0, y0) + ΘT∞ = ∞ as n→ ∞.

Therefore, we can obtain the following:

P{τ∞ = ∞} = 1.

□
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4.2. Stationary distribution

Define the following:

λ ≜ r − v − d −
σ2

1

2
−
σ2

2

2
− δe−(vm+m0) −

( r
K + r − v − 2e−(vm+m0)

√
δc)2

4( r
K − δae−(vm+m0))

−
(b − d)2

4b
,

where δ ∈ (0, r
Ka ).

Theorem 4. For ∀(x0, y0) ∈ R2
+, Model (2.2) possesses a unique, ergodic stationary distribution for

t ≥ 0 if λ > 0.

Proof. Since

d
(
x
y

)
=


x
[
r
(
1 −

x
K

)
− v − e−(vm+m0) xy

1 + ax2

]
y
[
ce−(vm+m0) x2

1 + ax2 − by − d
] dt +

(
σ1x

0

)
dB1(t) +

(
0
σ2y

)
dB2(t),

its diffusion matrix is given by the following

Λ(x, y) =
(
σ2

1x2 0
0 σ2

2y2

)
.

Let θ ≜ min{σ2
1x2, σ2

2y2}. Then, it has

2∑
i, j=1

λi j(xy)ξiξ j = σ
2
1x2ξ2

1 + σ
2
2y2ξ2

2 ≥ θ|ξ|
2,

so Lemma 1 condition (i) holds.
To show Lemma 1 condition (ii) holds, set the following:

H(x, y) = −M1(ln x + ln y − x − y) +
1
2

(cx + y)2 = H1(x, y) + H2(x, y),

where H1(x) = −M1(ln x+ ln y− x− y), H2(y) = 1
2 (cx+ y)2, M1 =

2
λ

max{2, sup
(x,y)∈R2

+

{−
b1
2 x3 +b2x2 −

b3
2 y3 +

b4y2}} > 0, and bi > 0 (for i = 1, 2, 3, 4), will be specified lately. H(x, y) tends to infinity when (x, y)
tends to the boundary of R2

+, so H(x, y) has a lower bound at (x′, y′) ∈ R2
+. Define

W(x, y) = H(x, y) − H(x′, y′).

For ∀δ ∈ (0, r
ka ), there are xy

1+ax2 ≤ xy, −cx2

1+ax2 ≤ −2
√
δcx + δ(1 + ax2) and cx2y

1+ax2 ≤
cxy
2
√

a .
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By the Itô formula, it has the following:

LH1 = − M1

[
(1 − x)

(
r −

rx
K
− v − e−(vm+m0) xy

1 + ax2

)
−
σ2

1

2

+(1 − y)(ce−(vm+m0) x2

1 + ax2 − by − d) −
σ2

2

2

]
= − M1

[
r −

rx
K
− v − e−(vm+m0) xy

1 + ax2 − rx +
rx2

K
+ vx + e−(vm+m0) x2y

1 + ax2

+ce−(vm+m0) x2

1 + ax2 − by − d − ce−(vm+m0) x2y
1 + ax2 + by2 + dy −

σ2
1

2
−
σ2

2

2

]
≤M1

(
e−(vm+m0) +

ce−(vm+m0)

2
√

a

)
xy − M1

(
r − v − d −

σ2
1

2
−
σ2

2

2
− δe−(vm+m0)

)
− M1

(
−

rx
K
− rx + vx +

rx2

K
+ 2e−(vm+m0)

√
δcx − δae−(vm+m0)x2 − by + by2 + dy

)
≤M1

(
e−(vm+m0) +

ce−(vm+m0)

2
√

a

)
xy − M1

(
r − v − d −

σ2
1

2
−
σ2

2

2
− δe−(vm+m0)

−
( r

K + r − v − 2e−(vm+m0)
√
δc)2

4( r
K − δae−(vm+m0))

−
(b − d)2

4b


=M1

(
e−(vm+m0) +

ce−(vm+m0)

2
√

a

)
xy − M1λ,

(4.4)

where λ = r − v − d − σ2
1

2 −
σ2

2
2 − δe

−(vm+m0) −
[ r

K +r−v−2e−(vm+m0)
√
δc]2

4[ r
K −δae−(vm+m0)] −

(b−d)2

4b .
Similarly,

LH2 =(cx + y)
[
cx

(
r −

rx
K
− v − e−(vm+m0) xy

1 + ax2

)
+y

(
ce−(vm+m0) x2

1 + ax2 − by − d
)]
+
σ2

1

2
c2x2 +

σ2
2

2
y2

=(cx + y)
(
rcx −

rcx2

K
− vcx − by2 − dy

)
+
σ2

1

2
c2x2 +

σ2
2

2
y2

≤rc2x2 −
rc2

K
x3 + rcxy − by3 +

σ2
1

2
c2x2 +

σ2
2

2
y2

= −
rc2

K
x3 + c2

(
r +

σ2
1

2

)
x2 − by3 +

σ2
2

2
y2 + crxy.

(4.5)

Combining (4.4) and (4.5), we have the following:

LW ≤ −M1λ −
rc2

K
x3 + c2

(
r +

σ2
1

2

)
x2 − by3 +

σ2
2

2
y2 +

[
cr + M1

(
e−(vm+m0) +

ce−(vm+m0)

2
√

a

)]
xy

= −M1λ − b1x3 + b2x2 − b3y3 + b4y2 + b5xy,
(4.6)

where b1 =
rc2

K , b2 = c2
(
r + σ2

1
2

)
, b3 = b, b4 =

σ2
2

2 , and b5 = cr + M1

[
e−(vm+m0) + ce−(vm+m0)

2
√

a

]
.
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Denote U = [ε, 1/ε] × [ε, 1/ε] for the given

0 < ε < min
{

M1λ

4b5
,

b3

2b5
,

b1

2b5

}
, (4.7)

1 − M1λ + M2 ≤ min
{

b1

2ε3 ,
b3

2ε3

}
, (4.8)

where M2 = sup
(x,y)∈R2

+

{
−

b1
2 x3 + b2x2 −

b3
2 y3 + b4y2 +

b5
2

(
x2 + y2

)}
. Then, R2

+ \ U can be divided into four

regions, R2
+ \ U = Ω1

⋃
Ω2

⋃
Ω3

⋃
Ω4, in which

Ω1 = {(x, y) ∈ R2
+|0 < x < ε},Ω2 = {(x, y) ∈ R2

+|0 < y < ε},

Ω3 =

{
(x, y) ∈ R2

+|x >
1
ε

}
,Ω4 =

{
(x, y) ∈ R2

+|y >
1
ε

}
.

Next, we will prove that LW ≤ −1 on each Ωi (i = 1, 2, 3, 4), respectively.
1) For ∀(x, y) ∈ Ω1, there is xy ≤ εy ≤ ε(1 + y3). By (4.6) and (4.7), we obtain the following:

LW ≤ −M1λ − b1x3 + b2x2 − b3y3 + b4y2 + εb5 + εb5y3

≤ −
M1λ

4
−

(M1λ

4
− εb5

)
−

(
b3

2
− εb5

)
y3 −

M1λ

2
−

b1

2
x3 + b2x2 −

b3

2
y3 + b4y2

≤ −
M1λ

4
≤ −1.

2) For ∀(x, y) ∈ Ω2, there is xy ≤ εx ≤ ε(1 + x3). By (4.6) and (4.7), we obtain the following:

LW ≤ −M1λ − b1x3 + b2x2 − b3y3 + b4y2 + εb5 + εb5x3

≤ −
M1λ

4
−

(M1λ

4
− εb5

)
−

(
b1

2
− εb5

)
x3 −

M1λ

2
−

b1

2
x3 + b2x2 −

b3

2
y3 + b4y2

≤ −
M1λ

4
≤ −1.

3) For ∀(x, y) ∈ Ω3, by (4.6)–(4.8), we obtain the following:

LW ≤ −M1λ − b1x3 + b2x2 − b3y3 + b4y2 +
b5

2

(
x2 + y2

)
≤ −M1λ −

b1

2
x3 −

b1

2
x3 + b2x2 −

b3

2
y3 + b4y2 +

b5

2

(
x2 + y2

)
≤ −M1λ −

b1

2ε3 + M2

≤ −1.

Electronic Research Archive Volume 33, Issue 2, 744–767.



756

4) For ∀(x, y) ∈ Ω4, by (4.6)–(4.8), we obtain the following:

LW ≤ −M1λ − b1x3 + b2x2 − b3y3 + b4y2 +
b5

2

(
x2 + y2

)
≤ −M1λ −

b3

2
y3 −

b3

2
y3 + b2x2 −

b1

2
x3 + b4y2 +

b5

2

(
x2 + y2

)
≤ −M1λ −

b3

2ε3 + M2

≤ −1.

To sum up, condition (ii) in Lemma 1 holds. Thus the Model (2.2) possesses a unique, ergodic
stationary distribution. □

4.3. Stochastically ultimate boundedness

In this section, we will go into more detail on whether the solution is always bounded.

Theorem 5. Model (2.2)’s solutions are stochastically ultimate bounded.

Proof. Let V1(x, y) = x
1
2 + y

1
2 . Then,

dV1(x, y) = LV1dt +
σ1

2
x

1
2 dB1(t) +

σ2

2
y

1
2 dB2(t),

where

LV1 =
1
2

x
1
2

[
r(1 −

x
K

) − v − e−(vm+m0) xy
1 + ax2

]
−
σ2

1

8
x

1
2

+
1
2

y
1
2

[
ce−(vm+m0) x2

1 + ax2 − by − d
]
−
σ2

2

8
y

1
2

≤
1
2

(
r −

rx
K
−
σ2

1

4

)
x

1
2 +

1
2

(
c
a

e−(vm+m0) − by − d −
σ2

2

4

)
y

1
2

=
1
2

(
2 + r −

rx
K
−
σ2

1

4

)
x

1
2 +

1
2

(
2 +

c
a

e−(vm+m0) − by − d −
σ2

2

4

)
y

1
2 − V1(x, y)

≤P0 − V1(x, y),

where P0 represents a positive constant, expressed as

P0 = sup
(x,y)∈R2

+

{
1
2

(
2 + r −

rx
K
−
σ2

1

4

)
x

1
2 +

1
2

(
2 +

c
a

e−(vm+m0) − by − d −
σ2

2

4

)
y

1
2

}
.

Then,
dV1(x, y) ≤ (P0 − V1(x, y))dt +

σ1

2
x

1
2 dB1(t) +

σ2

2
y

1
2 dB2(t),

so
d(etV1(x, y)) = et[V1(x, y)dt + dV1(x, y)] ≤ etP0dt +

σ1

2
x

1
2 etdB1(t) +

σ2

2
y

1
2 etdB2(t).

Thus,
E(etV1(x, y)) = etE(V1(x, y)) ≤ V1(x0, y0) + P0(et − 1)
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and
lim sup

t→+∞
E(V1(x, y)) ≤ P0 ⇒ lim sup

t→+∞
E|(x, y)|

1
2 ≤ P0.

Therefore, for any normal number ε, set χ =
P2

0

ε2 . Utilizing Chebyshev’s inequality [31,37], there is the
following:

P{|(x, y)| > χ} ≤
E|(x, y)|

1
2

√
χ

⇒ sup P{|(x(t), y(t))| > χ} ≤ ε as t → +∞.

□

4.4. Extinction and persistence

The objective of this section is to explore the extinction and persistence for the populations.

Lemma 4. For Model (2.2), there are lim
t→+∞

sup{t−1 ln x(t)} ≤ 0 and lim
t→+∞

sup{t−1 ln y(t)} ≤ 0.

Proof. Since

d(et ln x(t)) = et

(
ln x + r −

rx
K
− v − e−(vm+m0) xy

1 + ax2 −
σ2

1

2

)
dt + etσ1dB1(t), (4.9)

then

et ln x(t) =
∫ t

0
es

(
ln x(s) + r −

rx(s)
k
− v − e−(vm+m0) x(s)y(s)

1 + ax2(s)
−
σ2

1

2

)
ds +

∫ t

0
esσ1dB1(s) + ln x0.

Let M(t) = σ1

∫ t

0
esdB1(s). M(t) can be regarded as a localized harness that exhibits the following

quadratic variance function:

⟨M(t),M(t)⟩ = σ2
1

∫ t

0
e2sds.

Take µ > 1 and γ > 1. For k ∈ N, denote α = e−γk, β = µeγk ln k, T = γk. Then, according to the
Exponential Martingale Inequality, it has the following:

P
(

sup
0≤t≤T
{[M −

α

2
⟨M(t),M(t)⟩] > β}

)
≤

1
kµ
.

Since
∑ 1

kµ < ∞, then by the Borel-Cantelli lemma [31, 37], there exists Ω ∈ F with P(Ω) = 1 and the
integer-valued random variable k0(w) such that for any ω ∈ Ω and k ≥ k0(ω), there is the following:

M(t) ≤ µeγk ln k +
1
2

e−γk⟨M(t),M(t)⟩, 0 ≤ t ≤ γk.

Hence,

et ln x(t) ≤
∫ t

0
es

(
ln x(s) + r −

rx(s)
K
− v − e−(vm+m0) x(s)y(s)

1 + ax2(s)
−
σ2

1

2

)
ds

+
1
2

e−γk⟨M(t),M(t)⟩ + µeγk ln k + ln x0

≤

∫ t

0
esQ(x(s))ds + µeγk ln k + ln x0,
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where Q(x(s)) = r − rx(s)
K − v − σ2

1
2 +

σ2
1

2 es−γk + ln x(s). For any s that satisfies 0 ≤ s ≤ γk, x(s) > 0,
a k-independent positive constant Φ0 can be found such that Q(x(s)) ≤ Φ0, then, et ln x(t) − ln x0 ≤

Φ0(et − 1) + µeγk ln k and ln x(t) ≤ Φ0(1 − e−t) + µeγk−t ln k + e−t ln x0. Then,

ln x(t)
t
≤
Φ0(1 − e−t)

t
+
µeγk−γ(k−1)

t
ln k +

e−t ln x0

t
.

Let t → ∞; we obtain lim
t→∞

sup ln x(t)
t ≤ 0. In a similar way, one can establish lim

t→∞
sup ln y(t)

t ≤ 0. □

Denote η ≜ lim
t→+∞

sup x(t) and define the following:

∆1 ≜
K
r

(
r − v −

σ2
1

2

)
,∆2 ≜

ce−(vm+m0)

a
− d −

σ2
2

2
,∆3 ≜

ce−(vm+m0)

a
η2

1 + aη2 − d −
σ2

2

2
.

Theorem 6. For Model (2.2)’s solution with a given (x0, y0) ∈ R2
+, when ∆1 < 0, both species x and

y will eventually go extinct; when ∆1 > 0, species x can keep weakly persistent; when ∆1 > 0 and
∆2 < 0, species x can keep persistent ⟨x(t)⟩ = ∆1 and species y will eventually go extinct; and when
∆1 > 0 and ∆3 > 0, both species x and y can keep weakly persistent.

Proof. 1) Since

d ln x =
[
r
(
1 −

x
K

)
− v − e−(vm+m0) xy

1 + ax2 −
σ2

1

2

]
dt + σ1dB1(t),

then

ln x(t) =
∫ t

0

(
r −

rx
K
− v − e−(vm+m0) xy

1 + ax2 −
σ2

1

2

)
ds + σ1B1(t) + ln x0.

Subsequently, it has
ln x(t)

t
≤ r − v −

σ2
1

2
+

ln x0

t
+
σ1B1(t)

t
,

then

lim sup
t→+∞

ln x(t)
t
≤ r − v −

σ2
1

2
=

r
K
∆1 < 0.

Therefore, lim
t→+∞

x(t) = 0.
When ∆2 < 0, it has the following:

d ln y =
(
ce−(vm+m0) x2

1 + ax2 − by − d −
σ2

2

2

)
dt + σ2dB2(t).

Then,

ln y(t) − ln y0 =

∫ t

0

(
ce−(vm+m0) x2

1 + ax2 − by − d −
σ2

2

2

)
ds + σ2B2(t).

Thus,
ln y(t)

t
≤

ln y0

t
+

c
a

e−(vm+m0) − d −
σ2

2

2
+
σ2B2(t)

t
,
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i.e.,

lim sup
t→+∞

ln y(t)
t
≤

c
a

e−(vm+m0) − d −
σ2

2

2
< 0.

Therefore, lim
t→∞

y(t) = 0.
When ∆2 > 0, then for ∀ε1 and ε2 > 0, ∃T1 such that

ce−(vm+m0) x2

1 + ax2 ≤ ε1,
ln y0

t
≤ ε2

hold for t ≥ T1. Thus,

ln y(t) ≤
∫ t

0

(
ε1 − by − d −

σ2
2

2

)
ds + ε2t + σ2B2(t) =

(
ε1 + ε2 − d −

σ2
2

2

)
t − b

∫ t

0
y(s)ds + σ2B2(t).

By the arbitrariness of ε1 and ε2 and Lemma 2, there is lim
t→∞

y(t) = 0.
2) By contradiction. Assume Σ = {lim

t→∞
sup x(t) = 0} with P(Σ) > 0. Thus,

ln x(t)
t
=

ln x0

t
+

1
t

∫ t

0

(
r −

rx
K
− v − e−(vm+m0) xy

1 + ax2 −
σ2

1

2

)
ds +

σ1B1(t)
t

.

Therefore, lim
t→∞

sup t−1 ln x(t) = r − v − σ2
1

2 =
r
K∆1 > 0. That means that lim

t→∞
sup t−1ln x(t) > 0 holds for

any w ∈ Σ. There is an inclusion relation Σ ⊆ {w : lim
t→∞

sup t−1ln x(t) > 0}, then P{w : lim
t→∞

sup t−1ln x(t) >

0} ≥ P(Σ) > 0, which contradicts to lim
t→∞

sup t−1ln x(t) ≤ 0. Therefore, species x is weakly persistent.

3) It is known that y(t) is extinct as lim
t→∞

y(t) = 0 when ∆2 < 0. From lim
t→+∞

ln x0
t = 0, it is known

that for ∀ε3, ε4 > 0, ∃T2 such that −ε3 ≤ −e−(vm+m0) xy
1+ax2 ≤ ε3 and −ε4 ≤

ln x0
t ≤ ε4 hold for t ≥ T2.

Obviously,

ln x(t) ≤ tε4 +

∫ t

0

(
r −

rx
K
− v + ε3 −

σ2
1

2

)
ds + σ1B1(t)

=

(
r − v + ε3 + ε4 −

σ2
1

2

)
t −

r
K

∫ t

0
x(s)ds + σ1B1(t),

ln x(t) ≥ −tε4 +

∫ t

0

(
r −

rx
K
− v − ε3 −

σ2
1

2

)
ds + σ1B1(t)

=

(
r − v − ε3 − ε4 −

σ2
1

2

)
t −

r
K

∫ t

0
x(s)ds + σ1B1(t).

Based on Lemma 2, it can be deduced that ⟨x(t)⟩∗ ≤ K
r

(
r − v + ε3 + ε4 −

σ2
1

2

)
and

⟨x(t)⟩∗ ≥ K
r

(
r − v − ε3 − ε4 −

σ2
1

2

)
. Therefore, ⟨x(t)⟩ = K

r

(
r − v − σ2

1
2

)
= ∆1 > 0 (i.e., species x keeps in

persistence (in the mean)).
4) Similarly, by using the converse method, one can show that y is also weakly persistent. □

5. Numerical simulations

This section presents numerical simulations to illustrate the theoretical consequences presented in
the study.
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5.1. Verification of the main results

For Model (2.1) with the model parameters r = 0.4, K = 100, v = 0.36, m = 0.5, m0 = 0.1, a = 15,
c = 0.8, b = 0.02 and d = 0.01, there exist three interior equilibria: E∗1(0.26, 0.46), E∗2(2.5, 1.5) and
E∗3(7.5, 1.5), where E∗1 is a locally asymptotically stable focus, E∗2 is a saddle and unstable, and E∗3 is a
locally asymptotically stable nodel, as illustrated in Figure 2.

Figure 2. Verification of Theorem 2. The tendency of the solution of Model (2.1) with
different initial value for v = 0.36 and a = 15.

For Model (2.2), let consider the following discrete form [38]:


x j+1 = x j + x j

(
r −

rx j

K
− e−(vm+m0) x jy j

1 + a(x j)2

)
∆t + σ1x j

√
∆tε1 j +

1
2σ

2
1x j(ε2

1 j − 1)∆t,

y j+1 = y j + y j

(
ce−(vm+m0) (x j)2

1 + a(x j)2 − by j − d
)
∆t + σ2y j

√
∆tε2 j +

1
2σ

2
2y j(ε2

2 j − 1)∆t,

where ε1 j, ε2 j follow N(0, 1), j = 1, 2, · · · , n. Take σ1 = 0.02, σ2 = 0.01, δ = 0.0001. For the above
model parameters, there is λ = −0.00286 < 0, and the condition in Theorem 4 does not hold. When
v increases (e.g. v = 0.38), Model (2.1) has a unique interior equilibrium E∗(0.193, 0.213), which
is a globally asymptotically stable focus, as presented in Figure 3(a). In such case, the condition in
Theorem 4 does not hold due to λ = −0.00136. For a = 8, Model (2.1) has a globally asymptotically
stable focus E∗(0.155, 0.2), as presented in Figure 3(b). In such case, there is λ = 0.000144 > 0, and
the condition in Theorem 4 holds. As depicted in Figure 4, for Model (2.2), there exists an ergodic
stationary distribution. It is observed that (x(t), y(t)) is stable at (0.155, 0.2) without white noise. x(t)
varies around 0.155 and y(t) fluctuates around 0.2 when the white noise is presented.
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Figure 3. Verification of Theorem 2. The tendency of the solution of Model (2.1) with
different initial value for given v = 0.38 and (a) a = 15, (b) a = 8.

Figure 4. The distribution of x(t) and y(t) in Model (2.2) ((a) and (c)) and the densities of
x(t) and y(t) in stochastic Model (2.2) and deterministic Model (2.1) with (x0, y0) = (1, 1)
((b) and (d)).

5.2. Impact of the noise level and parameters

For Model (2.1) with the model parameters r = 0.6, K = 100, a = 2, v = 0.3, m = 0.5, m0 = 0.01,
c = 0.8, b = 0.01 and d = 0.05, there is a unique interior equilibrium E∗(0.1914, 0.208), which is
locally asymptotically stable.
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Different levels of white noise are set to illustrate how white noise affects Model (2.2)’s dynamics.
Taking σ1 = 0.2, σ2 = 0.1, it has ∆1 > 0, ∆3 > 0. Then, species x and species y can keep in a weak
persistence, as shown in Figure 5(a),(b). This means that the white noise will have little impact on the
populations. Let σ2 → 0.8; it has ∆1 > 0, ∆2 < 0. Therefore, species x can keep in persistence (in the
mean), while species y will eventually go extinct, as shown in Figure 5(c),(d). It is evident that a larger
white noise induces the predator to be eventually extinct. Let σ1 → 0.8; it has ∆1 < 0. Then, species x
and species y will eventually go to extinction, as shown in Figure 5(e),(f). Make it clear that the higher
the noise level, the more significant the impact on the species of prey.
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Figure 5. The densities of species x and y for σ1 = 0.2, σ2 = 0.1 (a,b), σ1 = 0.2, σ2 = 0.8
(c,d) and σ1 = 0.8, σ2 = 0.1 (e,f).

The predator’s hunting ability is affected by a term e−vm, which decreases when m or v increases.
For the parameter m, we select a range of diverse values and take σ1 = 0.2, σ2 = 0.1. The solution is
presented in Figure 6. It is evident that x(t) greatly increases while y(t) increases to be a lesser extent
when m rises from 0.5 to 5. There is little change in x(t) when m increases from 5 to 10, while y(t) will
change from weakly persistent to eventually extinct. As a result, a modest increase in m benefits y, a
large increase in m leads to the extinction of y, and an increase in m promotes the growth of x.

By varying the parameter v, the solutions are presented in Figure 7. Obviously, for a smaller v,
species x and species y are both persistent; species y becomes extinct when v increases, and when the
anti-predator level becomes excessively strong, species x and species y will eventually go extinct.
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Figure 6. Time series of the stochastic Model (2.2) with different m.
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Figure 7. Time series of the stochastic Model (2.2) with different level v.

Electronic Research Archive Volume 33, Issue 2, 744–767.



764

6. Conclusions

The current work explored a Holling-III prey-predator model by incorporating prey habitat selection
in an environment with stochastic disturbances. For the model without stochastic disturbances, it was
shown that O(0, 0) is constantly unstable, while E(K, 0) is stable when c ≤ c ≜ devm+m0(a + K

−2
).

Additionally, it was shown that Model (2.1) possesses not more than three interior equilibria, and the
interior equilibrium Ê(x̂, ŷ) is locally asymptotically stable if and only if ϕ(x̂) < ψ′(x̂) < bcŷ/(bŷ + d).

Additionally, we investigated the dynamics of Model (2.2). By devising an appropriate Lyapunov
function, it obtained the conditions for an ergodic stationary distribution. Furthermore, it was
demonstrated that Model (2.2)’s solutions are stochastically, eventually bounded. The results suggest
that white noise will eventually cause the extinction of prey and predators when it has a large impact
on the prey x(t) (∆1 < 0). When the white noise has more impact on the predators and less disturbance
to the prey, the prey can persist (in the mean), and the predators become extinct (∆1 > 0, ∆2 < 0). The
prey and the predator are weakly persistent when white noise has a small effect on them.

Compared to deterministic models, it is well known that sometimes less intense white noise
contributes to the survival of prey; however, white noise with a high intensity is unfavorable to the
survival of the population. When the hunting ability of the predator is affected by the e−vm term, an
increase in m favors the growth of x, a small increase in m would benefit y, while a large increase in m
would lead to the demise of y. The population survival is significantly impacted by anti-predatory
behavior. It indicated that x(t) and y(t) can persistently survive when the anti-predator level is small.
The population y(t) becomes extinct with an increase of the anti-predator level. The prey and predator
eventually go extinct when the anti-predator level becomes excessively strong. Incorporating habitat
selection and white noise interference into predator-prey models allows for more accurate estimates of
changes in natural populations and a deeper understanding of the mechanisms of species interactions
and ecological balance. The results suggest that populations may tend to go extinct when the white
noise is high or the habitat selection behavior is strong. Therefore, we can carry out an early warning
and take effective intervention and protection measures, such as establishing protected areas,
improving the habitat environment, controlling the intensity of the white noise interference, and so on.
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