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Abstract: Diabetic retinopathy (DR) is a major cause of vision loss. Accurate grading of DR is critical 

to ensure timely and appropriate intervention. DR progression is primarily characterized by the 

presence of biomarkers including microaneurysms, hemorrhages, and exudates. These markers are 

small, scattered, and challenging to detect. To improve DR grading accuracy, we propose FF-ResNet-

DR, a deep learning model that leverages frequency domain attention. Traditional attention 

mechanisms excel at capturing spatial-domain features but neglect valuable frequency domain 

information. Our model incorporates frequency channel attention modules (FCAM) and frequency 

spatial attention modules (FSAM). FCAM refines feature representation by fusing frequency and 

channel information. FSAM enhances the model’s sensitivity to fine-grained texture details. Extensive 

experiments on multiple public datasets demonstrate the superior performance of FF-ResNet-DR 

compared to state-of-the-art models. It achieves an AUC of 98.1% on the Messidor binary 

classification task and a joint accuracy of 64.1% on the IDRiD grading task. These results highlight 

the potential of FF-ResNet-DR as a valuable tool for the clinical diagnosis and management of DR. 
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1. Introduction  

Diabetic retinopathy (DR) is a leading cause of irreversible vision loss worldwide and a severe 

complication of diabetes. DR is classified into two primary stages: non-proliferative diabetic 

retinopathy (NPDR) and proliferative diabetic retinopathy (PDR) [1]. NPDR can further be 

subdivided into mild, moderate, and severe stages, characterized by features such as microaneurysms, 

hard exudates, and cotton wool spots [2]. PDR, the more advanced stage, involves the growth of 

abnormal blood vessels, which can lead to severe vision loss. Accurate DR grading is crucial for 

clinical diagnosis, as it helps doctors assess the type, quantity, and distribution of DR lesions, determine 

disease severity, and develop suitable treatment strategies. Figure 1 illustrates a schematic diagram of 

DR grading.  

 

Figure 1. Schematic diagram of DR grading. 

With the rapid development of artificial intelligence, deep learning and related technologies have 

been widely applied in DR image analysis, providing new approaches for early diagnosis and precise 

treatment of DR. For instance, Pratt et al. [3] combined image enhancement techniques with classic 

convolutional neural network (CNN) models to grade DR on color fundus images; Wang et al. [4] 

proposed a dual-stream CNN for multi-model age-related macular degeneration grading, effectively 

fusing information from color fundus photographs (CFP) and optical coherence tomography (OCT). 

Although CNNs have achieved excellent performance in DR grading tasks, they still face limitations 

in handling subtle features such as microaneurysms. The severity of DR is mainly assessed through 

analyzing CFP. Although these images can clearly show the microstructures of the retina, subtle and 

diverse DR lesion features, such as microaneurysms and hemorrhages, pose significant challenges for 

automated grading. 

Recent advancements in deep learning, particularly convolutional neural networks (CNNs) [5–9], 

have significantly improved the performance of automated DR grading systems. Models like 

Inceptionv3 [10] have shown impressive performance in DR detection. To further improve the model’s 

ability to extract relevant features, researchers have incorporated attention mechanisms. For example, 

Li et al. applied the attention mechanism to video object segmentation, distance metric learning, video 

description, and feature selection [11–14]. Attention mechanisms assign different weights to different 

features, enabling the model to focus on critical information. Attention mechanisms have been widely 

applied in image classification, object detection, and other fields. In DR grading tasks, He et al. [15] 
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introduced a category attention block to focus on small, critical lesions. Zhou et al. [16] combined 

lesion segmentation with DR grading, leveraging pixel-level annotations to provide more detailed 

information for improved accuracy. Yang et al. [17] designed a two-stage network that can not only 

locate lesion positions but also perform DR grading. Li et al. [18] employed a joint grading approach 

to simultaneously evaluate DR and diabetic macular edema (DME), utilizing disease-specific attention 

modules to learn disease-specific features. Although spatial domain attention mechanisms have 

improved model performance by enhancing feature focus, they still have limitations in capturing the 

global context. To address this, frequency domain attention mechanisms have emerged. These 

transform spatial domain features into frequency domain features, allowing the model to capture richer 

feature information from a global perspective. For example, Qin et al. [19] proved the equivalence 

between discrete cosine transform (DCT) and global average pooling (GAP) and integrated this insight 

into the channel attention mechanism. Zhou et al. [20] embedded fast Fourier transform (FFT) into the 

transformer, constructing a frequency domain enhancement module to replace self-attention and cross-

attention modules. By transforming data into the frequency domain, these models can better capture 

global correlations, further enhancing performance in DR grading tasks. 

Despite significant advancements in deep learning, challenges remain in DR grading, including 

the limited availability of high-quality annotated data, the diversity and subtlety of DR lesions, and the 

need for models robust enough for complex clinical environments. To address these challenges, this 

study proposes FF-ResNet-DR, a deep learning–based model that incorporates frequency domain 

attention mechanisms. By incorporating both FCAM and FSAM, the model captures both frequency 

and spatial domain features, allowing it to effectively extract and emphasize subtle lesion features. 

This approach improves the model’s ability to accurately classify DR, even in face of challenging 

imaging conditions. 

2. Materials and experimental setup 

2.1. Datasets 

2.1.1. EAM dataset 

To comprehensively evaluate the performance of the proposed model and improve its generalization 

ability, we integrated three datasets, EyePacs, Messidor, and Aptos, to construct the EAM dataset. The EAM 

dataset contains a total of 92,501 images. Among them, EyePacs, as the largest DR grading dataset, contains 

35,126 images with significant variations in image quality, which can effectively test the model’s robustness 

to different image qualities [21]. The Messidor dataset contains 1200 high-quality color fundus images, which 

can be used to verify the model’s performance on small-scale datasets [22]. The Aptos dataset provides 3662 

high-quality fundus images, which can serve as supplementary training data for the model [23]. 

2.1.2. IDRiD and DDR datasets 

The IDRiD and DDR datasets are competition datasets. The IDRiD dataset provides 516 high-

quality fundus images with both DR and DME labels, which can be used to evaluate the model’s multi-

task learning ability [24]. The DDR dataset contains 13,673 images covering multiple DR grades, 

which can be used to evaluate the model’s performance on fine-grained classification [25]. 
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To enhance the model’s generalization ability, data augmentation techniques were applied to the 

aforementioned datasets, including horizontal flipping, vertical flipping, rotation, cropping, and 

random adjustment of image brightness and contrast. 

2.2. Experimental setup  

Table 1 presents the experimental parameters of the proposed model. In this study, ResNet50 [26] 

is used as the backbone network, and the ImageNet pre-trained model is loaded. The input image size 

is uniformly set to 512 × 512 pixels. The initial learning rate is set to 0.001, the batch size is 32, and 

the cosine annealing strategy is used to adjust the learning rate. All models are trained for 20 epochs 

using the stochastic gradient descent (SGD) optimizer and cross-entropy loss as the objective function. 

All experimental models are implemented using Python and built on the PyTorch deep learning 

framework. Experiments are conducted on the Kaggle platform, and GPU P100 (16 GB) is used to 

accelerate the training process. 

Table 1. Experimental parameters of DR grading model. 

Experimental parameter Value 

Input resolution 512 × 512 

Optimizer SGD 

Scheduler CosineAnnealingLR 

Loss function CrossEntropyLoss 

Batch size 32 

Initial learning rate 10–3 

Minimum learning rate 10–5 

2.3. Evaluation metrics 

The performance of different DR grading models was analyzed and compared using accuracy 

(Acc), quadratic weighted kappa coefficient (Kappa) [27], area under the receiver operating 

characteristic (ROC) curve (AUC), recall, precision, F1-score [28], and joint accuracy as evaluation 

metrics. 

Acc is a performance metric that quantifies the proportion of correct predictions among the total 

predictions, defined as: 

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                (1) 

where TP, TN, FP, and FN denote the counts of true positives (correctly predicted positive instances), 

true negatives (correctly predicted negative instances), false positives (incorrectly predicted positive 

instances), and false negatives (incorrectly predicted negative instances), respectively.  

Kappa further assesses the degree of agreement between the model’s predicted labels and the true 

labels, defined as: 

𝑘𝑎𝑝𝑝𝑎 = 1 −
∑ 𝑊𝑖 .𝑗𝑂𝑖.𝑗𝑖,𝑗

∑ 𝑊𝑖.𝑗𝐸𝑖.𝑗𝑖,𝑗
                              (2) 
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𝑊𝑖.𝑗 =
(𝑖−𝑗)2

(𝑁−1)2                                    (3) 

𝐸𝑖.𝑗 =
𝑛𝑖∙𝑛𝑗

𝑁
                                      (4) 

where 𝑊 is the weight matrix, and 𝑊𝑖.𝑗 represents the penalty between the predicted class 𝑖 and 

the true class 𝑗. 𝑂 is the observed matrix, i.e., the confusion matrix, 𝑂𝑖.𝑗  represents the number of 

samples in the predicted class 𝑖 and the true class 𝑗. 𝐸 is the expected matrix, and 𝐸𝑖.𝑗 represents the 

probability of a certain class 𝑖 predicted as class 𝑗 under random prediction. A Kappa value greater 
than 0.8 generally indicates a good level of agreement. 

AUC represents the area under the ROC curve, which is a graphical representation of a classifier’s 

performance by plotting the true positive rate (recall) against the false positive rate at various threshold 

settings, ranging from 0 to 1. An AUC of 0.5 indicates random performance, while an AUC of 1 

represents the best possible performance. 

Recall, also known as sensitivity, is the proportion of actual positives that are correctly identified, 

defined as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                  (5) 

Recall measures a model’s ability to find all positive instances. The higher the recall, the greater 

the likelihood that samples with a true positive label will be predicted as positive.  

Precision, also known as positive predictive value, is the proportion of predicted positives that 

are actual positives, defined as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                (6) 

Precision measures a model’s ability to correctly identify only the relevant positive instances. The 

higher the precision, the fewer false positives the model produces. 

F1 balances both precision and recall, defined as: 

𝐹1 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                           (7) 

F1 ranges from 0 to 1, with higher values indicating better model performance. 

Joint accuracy, in this context, refers to the proportion of samples where the model correctly 

predicts both DR and DME grades. Specifically, a sample is considered correct only if its predicted 

DR and DME grades match exactly the ground truth labels. 

3. Diabetic retinopathy grading model 

Figure 2 illustrates the architecture of our proposed diabetic retinopathy grading model, FF-

ResNet-DR. The model leverages ResNet50 as its backbone to extract deep features from color fundus 

photographs (CFPs). To enhance the model’s ability to identify and localize lesions, we introduce two 

attention modules: the FCAM and the FSAM. 

FCAM refines feature representation by fusing frequency and spatial domain information. It 
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employs a modified multi-spectral attention layer (MSA) to extract frequency domain features, which 

are then combined with spatial domain features from a channel attention module (CAM) [29]. This 

approach assigns higher weights to key channels, improving the model’s sensitivity to lesion areas. 

FSAM enhances the model’s ability to capture fine-grained texture details. By simultaneously 

extracting and multiplying spatial and frequency domain attention maps, FSAM highlights key pixels 

and emphasizes subtle lesion features. 

The FCAM and FSAM modules enhance the FF-ResNet-DR model’s ability to capture subtle 

lesion features by introducing frequency domain information at both channel and spatial levels. The 

refined features, obtained by applying these attention modules, are then fused with the original features. 

A fully connected layer classifies the fused features, enabling accurate DR grading. 

In Figure 2, the first column presents an overview of the entire network, showcasing the 

connections between different modules. The second column delves into the internal workings of 

FCAM and FSAM, providing a detailed explanation of their mechanisms. 

 

Figure 2. Architecture of DR grading model (FF-ResNet-DR). 

3.1. FCAM 

Channel attention mechanism (CAM), as an effective feature calibration method, has been widely 

used in convolutional neural networks. The classic CAM generates channel weights through global 

pooling and a multi-layer perceptron (MLP) to emphasize key features. However, CAM only focuses 

on spatial domain information and ignores the rich information that may be contained in the frequency 

domain of images. To address the limitations of CAM, this paper introduces an FCAM. 

FCAM extracts frequency domain features of images through an improved MSA. The MSA 
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layer [19] first transforms the image from the spatial domain to the frequency domain using DCT 

and then captures the correlation between frequency domain features through a self-attention 

mechanism. Finally, the obtained frequency domain features are fused with the spatial domain 

features extracted by CAM to generate a more comprehensive channel attention. This design enables 

FCAM to simultaneously focus on both spatial and frequency domain feature information, thereby 

assigning higher weights to key channels and improving the model’s sensitivity to lesion areas. 

3.1.1. DCT 

DCT is an orthogonal transform that converts signals from the time or spatial domain to the 

frequency domain [30]. DCT has a good energy compaction property, meaning that most of the signal 

energy is concentrated in the low-frequency part. In the field of image compression, DCT is widely 

used in the JPEG image compression standard. In this paper, we utilize this property of DCT to 

transform images from the spatial domain to the frequency domain in order to extract frequency 

domain features of images. 

Given a 2D image 𝑥2𝑑 ∈ 𝑅𝐻×𝑊 , the corresponding 2D DCT image 𝑓2𝑑 ∈ 𝑅𝐻×𝑊   can be 
obtained by: 

𝑓ℎ,𝑤
2𝑑 = ∑ ∑ 𝑥𝑖,𝑗

2𝑑𝐵ℎ,𝑤
𝑖,𝑗𝑊−1

𝑤=0
𝐻−1
ℎ=0 ,                                    

𝑠. 𝑡.  ℎ ∈ {0,1, … , 𝐻 − 1}, 𝑤 ∈ {0,1, … , 𝑊 − 1}.                        (7) 

where H and W denote the height and width of the image 𝑥2𝑑, respectively. 𝐵ℎ,𝑤 ∈ 𝑅𝐻×𝑊represents 

the basic functions of the discrete cosine transform (DCT), which is crucial for extracting frequency 

information from the image 𝑥 2𝑑. 𝑥𝑖,𝑗
2𝑑,  𝐵ℎ,𝑤

𝑖,𝑗
denotes the pixel value at location (𝑖, 𝑗) in the original 

image, and 𝑓ℎ,𝑤
2𝑑  denotes the pixel value at location (ℎ, 𝑤) in the transformed DCT image. 𝐵ℎ,𝑤

𝑖,𝑗
 can 

be expressed as: 

𝐵ℎ,𝑤
𝑖,𝑗 = cos (

𝜋ℎ

𝐻
(𝑖 +

1

2
)) cos (

𝜋𝑤

𝑊
(𝑗 +

1

2
))                    (8) 

When h = w = 0, the DCT transform is equivalent to global average pooling (GAP) as follows: 

𝑓0,0
2𝑑 = ∑ ∑ 𝑥𝑖,𝑗

2𝑑𝑊−1
𝑗=0

𝐻−1
𝑖=0 𝐵0,0

𝑖,𝑗

= ∑ ∑ 𝑥𝑖,𝑗
2𝑑𝑊−1

𝑗=0
𝐻−1
𝑖=0

= 𝑔𝑎𝑝(𝑥 2𝑑)𝐻𝑊

                          (9) 

Using DCT basis functions to transform an image is equivalent to performing a pooling operation 

on the image. 

3.1.2. MSA 

MSA decomposes an image into multiple frequency bands by employing DCT basis functions 

with different frequencies, thus enabling the extraction of multi-scale features [19]. DCT basis 

functions exhibit excellent energy compaction properties, where low-frequency components typically 

capture global image information, while high-frequency components contain detailed image 

information. By leveraging this property, MSA can capture rich image features from the frequency 
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domain, thereby enhancing the model’s representational capacity. Different combinations of DCT basis 

functions can exert varying influences on channel attention. FcaNet  [19] proposes a basis function 

selection scheme based on classification performance. However, this scheme is not suitable for DR 

grading tasks. 

To better adapt to DR grading tasks, this paper improves the basis function selection scheme of 

MSA, including (1) increasing the number of basic functions—to capture high-frequency detail 

information more comprehensively, the number of DCT basis functions is increased from the original 

49 to 64, as shown in Figure 3(a); and (2) basis function selection based on DR datasets—by 

conducting comparative experiments on public DR datasets, the optimal combination of basic 

functions for DR grading tasks is selected. 

The improved MSA module is termed drMSA. The basis function structure of drMSA will be 

dynamically adjusted based on the classification accuracy of each basis function on the DR dataset. 

Figure 3(b) shows the classification accuracy of the 64 basis functions using the Messidor dataset as 

an example. Subsequent studies can select different DR datasets based on various task scenarios and 

refer to the results in Figure 3(b) to flexibly choose the optimal combination of basic functions. 

 

Figure 3. Basis function selection scheme of the MSA. (a) 64 basis functions generated by 

discrete cosine transform (DCT) on an 8 × 8 image; (b) Classification accuracy of the 64 

basis functions on the Messidor dataset. 

After determining the drMSA basis functions, the input feature channels are grouped. Each group 

of channels is assigned a specific basis function to extract corresponding frequency domain features. 

In this way, a set of channel vectors containing different frequency features is obtained. Subsequently, 

an MLP is used to process these channel vectors, generating a weight vector that represents the 

importance of each channel in the frequency domain. 

Given an input feature map 𝐹 ∈ 𝑅𝐶×𝐻×𝑊, drMSA produces a DCT frequency domain channel 

attention map 𝐹𝑑𝑐𝑡_𝑎𝑡𝑡 ∈ 𝑅𝐶×𝐻×𝑊, defined as: 

 a  b 
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𝐹𝑑𝑐𝑡_𝑎𝑡𝑡 = 𝜎(𝑊0𝑊1𝐹𝑀𝑆𝐴)⨂𝐹                             (10) 

where 𝐹 represents the input feature map, 𝐹𝑀𝑆𝐴 ∈ 𝑅𝐶×1×1  denotes the attention weight vector 

obtained through the DCT basis function transformation, and 𝑊0 and 𝑊1 represent the weights of 

the MLP. The final output of drMSA is 𝐹𝑑𝑐𝑡_𝑎𝑡𝑡. 

For the CAM part, given an input feature map 𝐹 ∈ 𝑅𝐻×𝑊×𝐶, the channel attention map of this 

part is 𝐹𝑎𝑡𝑡 ∈ 𝑅𝐶×𝐻×𝑊, defined as: 

𝐹𝑚𝑙𝑝_𝑜𝑢𝑡 = 𝑊0𝑊1𝐹𝑔𝑎𝑝 ⊕ 𝑊0𝑊1𝐹𝑔𝑚𝑝                       (11) 

𝐹𝑎𝑡𝑡 = 𝜎(𝐹𝑚𝑙𝑝_𝑜𝑢𝑡)⨂𝐹                              (12) 

where 𝐹𝑔𝑎𝑝 ∈ 𝑅𝐶×1×1  and 𝐹𝑔𝑚𝑝 ∈ 𝑅𝐶×1×1  are the results by the weight vectors obtained through 

GAP and GMP multiplied the input feature map 𝐹. 
Finally, the output of drMSA 𝐹𝑑𝑐𝑡_𝑎𝑡𝑡is element-wisely added to the output of CAM 𝐹𝑎𝑡𝑡  to allow 

the model to simultaneously capture features from both the spatial domain and the frequency domain, 

improving the model’s complexity and data diversity and enhancing generalization ability. The output 

of FCAM 𝐹𝐷𝐹𝐶𝐴𝑀 ∈ 𝑅𝐶×𝐻×𝑊is obtained as:  

𝐹𝐹𝐶𝐴𝑀 = 𝐹𝑑𝑐𝑡_𝑎𝑡𝑡 ⊕ 𝐹𝑎𝑡𝑡                           (13) 

3.2. FCAM 

The spatial attention module (SAM) in CBAM can effectively capture spatial information of 

images, helping the model better understand the global structure and semantic information of images. 

However, SAM only focuses on spatial domain features and ignores the rich information contained in 

the frequency domain of images. 

To fully utilize frequency domain information, this paper proposes a FSAM. FSAM introduces a 

DCT frequency domain spatial attention mechanism based on SAM. By using the DCT transform, the 

image is transformed from the spatial domain to the frequency domain to extract the frequency domain 

features of the image. These frequency domain features contain detailed texture information of the 

image, and when combined with spatial domain features, they can improve the feature extraction 

ability and classification accuracy of the model. In addition, the fusion of frequency domain spatial 

features also makes the model more robust to noise. 

Given an input feature map 𝐹 ∈ 𝑅𝐶×𝐻×𝑊, its corresponding frequency domain image is 𝐹𝑑𝑐𝑡 ∈
𝑅𝐶×𝐻×𝑊. Both are first stacked and concatenated through GAP and GMP operations to obtain two 

intermediate feature maps 𝐹𝑐𝑜𝑛𝑐𝑎𝑡 ∈ 𝑅2×𝐻×𝑊.  

After concatenation, the spatial domain and frequency domain intermediate feature maps are 

fused by element-wise multiplication to obtain 𝐹𝑚𝑖𝑥 ∈ 𝑅2×𝐻×𝑊, which enriches and highlights the 

most noteworthy details in the image.  

Finally, 𝐹𝑚𝑖𝑥   is fed into a convolutional layer and an activation function 𝐹𝑎𝑡𝑡 ∈ 𝑅1×𝐻×𝑊  to 

obtain the attention map 𝐹𝐹𝑆𝐴𝑀 ∈ 𝑅𝐶×𝐻×𝑊 , which can be expressed as: 

𝐹𝑐𝑜𝑛𝑐𝑎𝑡 = [𝐺𝐴𝑃(𝐹), 𝐺𝑀𝑃(𝐹)]                            (14) 

𝐹𝑑𝑐𝑡_𝑐𝑜𝑛𝑐𝑎𝑡 = [𝐺𝐴𝑃(𝐹𝑑𝑐𝑡), 𝐺𝑀𝑃(𝐹𝑑𝑐𝑡)]                       (15) 

𝐹𝑚𝑖𝑥 = 𝐹𝑐𝑜𝑛𝑐𝑎𝑡⨂𝐹𝑑𝑐𝑡_𝑐𝑜𝑛𝑐𝑎𝑡                             (16) 
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𝐹𝐹𝑆𝐴𝑀 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝐹𝑚𝑖𝑥)⨂𝐹                           (17) 

where GAP and GMP represent global average pooling and global maximum pooling, respectively, 𝑊 

is the weight of the convolutional filter, and the softmax operation is used to obtain the spatial attention 

map, which is finally multiplied by the original image to obtain the result 𝐹𝐹𝑆𝐴𝑀 . 

4. Experimental analysis and results comparison 

To evaluate the performance of FF-ResNet-DR, our proposed diabetic retinopathy grading model, 

two sets of experiments were designed. Experiment 1 is an ablation study. This study aimed to 

determine the individual impact of each improved module within FF-ResNet-DR by comparing its 

performance with variations using different attention mechanisms. Experiment 2 is a comparative 

experiment. This study compared FF-ResNet-DR with other state-of-the-art models to evaluate its 

grading accuracy and identify any performance advantages. 

4.1. Ablation study 

This chapter conducts an ablation study to assess the impact of each module within the proposed 

FF-ResNet-DR grading model. This analysis quantifies the specific contributions of individual 

components to the model’s grading accuracy and robustness. The study encompasses: (1) verification 

and analysis of the improved multi-spectral attention layer (drMSA), which evaluates the effectiveness 

of the enhanced attention mechanism in capturing relevant features for DR grading; and (2) comparison 

and analysis of different attention modules, which compares the performance of the drMSA with other 

attention mechanisms, highlighting its advantages in the context of DR grading. 

4.1.1. drMSA 

To evaluate the contribution of drMSA to the FF-ResNet-DR grading model, this section 

integrates both drMSA and MSA modules into the model’s FCAM. Comparative experiments are 

conducted on the EAM, IDRiD, and DDR datasets 

To investigate the impact of the number of basis functions, four different configurations are 

evaluated for both drMSA and MSA: {4, 8, 16, 32} basis functions. These configurations are denoted 

as drMSA-4, drMSA-8, drMSA-16, drMSA-32, and MSA-4, MSA-8, MSA-16, and MSA-32 

respectively. 

Table 2 presents the grading performance of drMSA with varying numbers of basis functions. 

Table 3 compares the performance of drMSA with MSA for each basis function configuration, where 

“-” represents no promotion. Experimental results demonstrate the following: (1) On the IDRiD dataset, 

drMSA-8 achieves the best performance, with a 2.22% increase in Kappa index and a 1.55% increase 

in accuracy compared to the baseline. (2) On the DDR dataset, MSA-16 exhibits the best performance, 

with a 2.57% increase in Kappa index and a 2.24% increase in accuracy. (3) On the EAM dataset, 

drMSA-32 yields the best performance, with a 3.12% increase in Kappa index and a 0.9% increase in 

accuracy. Furthermore, drMSA consistently outperforms MSA across multiple datasets, with the most 

significant performance improvement observed on the IDRiD dataset. These findings unequivocally 

demonstrate the effectiveness of drMSA in enhancing DR grading performance. 
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Table 2. Grading performance of drMSA with varying numbers of basis functions. 

Different 

configurations 

IDRiD DDR EAM 

Kappa% Acc/% Kappa/% Acc/% Kappa/% Acc/% 

ResNet50 [26] 77.28 66.09 73.22 77.58 78.12 86.23 

CBAM [29] 80.06 66.86 74.13 78.01 77.80 86.40 

drMSA-4 78.60 68.80 69.80 76.70 77.80 86.40 

drMSA-8 82.28 68.41 75.47 79.00 79.69 86.99 

drMSA-16 78.10 66.30 74.20 77.80 79.70 86.30 

drMSA-32 78.47 64.15 75.96 79.17 80.92 87.30 

MSA-4 73.71 62.79 71.80 77.83 79.42 86.44 

MSA-8 71.20 61.80 76.70 69.90 78.00 86.40 

MSA-16 79.63 66.67 76.49 80.25 79.87 86.76 

MSA-32 78.24 65.50 72.20 77.22 78.03 86.69 

Table 3. Comparison of the performance of drMSA with MSA for each basis function configuration. 

Different 

configurations 

IDRiD DDR EAM 

Kappa/% Acc/% Kappa/% Acc/% Kappa/% Acc/% 

drMSA-4 - 1.94 - - - - 

drMSA-8 2.22 1.55 1.34 0.99 1.89 0.59 

drMSA-16 - - 0.07 - 1.90 - 

drMSA-32 - - 1.83 1.16 3.12 0.90 

MSA-4 - - - - 1.62 0.04 

MSA-8 - - 2.57 - 0.20 - 

MSA-16 - - 2.36 2.24 2.07 0.36 

MSA-32 - - - - 0.23 0.29 

4.1.2. Comparison and analysis of different attention modules 

To thoroughly evaluate the role of frequency domain attention mechanisms, this paper compares 

and analyzes the performance of different attention module combinations in the FF-ResNet-DR 

grading model. 

Table 4 presents the performance of various attention module combinations. Figure 4 provides an 

in-depth analysis of how the proposed frequency domain attention module refines feature extraction, 

enhancing DR grading performance. This analysis utilizes the gradient-weighted class activation 

mapping (Grad-CAM) visualization technique. 

Results demonstrate that the combination of FCAM and FSAM achieved the highest performance, 

with a Kappa coefficient of 82.28% and an accuracy of 68.41% on IDRiD, 75.47% and 79.00% on 

DDR, and 84.21% and 88.36% on EAM. These results indicate that incorporating frequency domain 

information into both channel and spatial attention mechanisms effectively enhances the model’s 

feature extraction capabilities and generalization ability. 
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Table 4. Comparison of different attention modules. 

Different 

configurations 

IDRiD DDR EAM 

Kappa/% Acc/% Kappa/% Acc/% Kappa/% Acc/% 

ResNet50 [26] 77.28  66.09  73.22  77.58  83.57 88.32 

CBAM [29] 80.06  66.86  74.13  78.01  82.25 87.56 

drMSA+SAM 80.09  66.67  68.42  75.07  83.25 88.10 

FCAM+SAM 79.40  67.83  69.60  75.50  83.64 88.37 

CAM+FSAM 74.60  63.80  70.30  77.10  83.50 88.46 

drMSA+FSAM 77.27  66.47  68.70  77.09  82.47 88.16 

FCAM+FSAM 82.28  68.41  75.47  79.00  84.21 88.36 

 

Figure 4. Visualization results of different models on DDR dataset. 

As shown in Figure 4, the first row displays the original image, with the red circle highlighting 

the lesion region. Subsequent rows present heat maps generated by the no-attention model, the CBAM 

model, and our proposed FF-ResNet-DR model. Based on Figure 4, we can observe the following: (1) 

Heat maps from the no-attention model appear coarse and fail to effectively focus on the lesion regions. 

(2) In contrast, our proposed FF-ResNet-DR model effectively emphasizes the lesion locations, as 

evident by comparing the second and fourth columns. (3) While the CBAM model produces heat maps 

with more diffuse attention, highlighting numerous irrelevant features, our proposed FF-ResNet-DR 

model consistently provides more focused attention on the lesion regions, particularly evident in the 
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third and fourth columns. 

4.2. A comparative study and application of the FF-ResNet-DR model 

This chapter conducts three comparative experiments to evaluate the performance of the proposed 

FF-ResNet-DR grading model, including (1) binary classification of diabetic retinopathy, classifying 

images as either normal or abnormal for diabetic retinopathy; (2) DR and DME classification, 

distinguishing between DR and DME; and (3) five-stage classification of DR, classifying images into 

five different stages of diabetic retinopathy severity. 

4.2.1. Binary classification of diabetic retinopathy 

This experiment utilized the Messidor dataset, a widely used benchmark for diabetic retinopathy 

(DR) binary classification. Images with grades 0–1 were classified as normal, while those with grades 

2–3 were considered abnormal. The dataset comprises 540 normal images and 660 abnormal images. 

To facilitate a comprehensive comparison, the proposed model was evaluated alongside CANet and 

CABNet. Figure 5 illustrates the ROC curves of our model, CANet, and CABNet on the Messidor 

validation set. Table 5 presents a comparison of experimental results for different models on the 

Messidor dataset. 

As depicted in Figure 5 and Table 5, the ROC curve of our proposed model significantly surpasses 

those of the other models. Our model achieved an AUC of 98.1%, demonstrating a 1.5% improvement 

over both CABNet and CANet. Our proposed model achieved the highest AUC on the Messidor binary 

classification task. Compared to the state-of-the-art CABNet model, our model demonstrated 

improvements of 1.2% in AUC, 0.7% in accuracy, 2.2% in recall, and 1.9% in F1-score. These results 

indicate that our proposed model can more accurately distinguish between normal and abnormal DR 

fundus images, highlighting its significant advantage in DR grading tasks. 

 

Figure 5. ROC curves of our model, CANet, and CABNet on the Messidor validation set. 

(a) Full ROC curve; (b) zoomed-in region of interest. 

 a  b 
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Table 5. Comparison of experimental results for different models on the Messidor dataset. 

Models AUC/% Acc/% Reall/% F1/% 

CANet [18] 96.3 92.6 92.0 91.2 

CABNet [15] 96.9 93.1 90.2 91.5 

Ours 98.1 93.8 92.4 93.4 

4.2.2. DR and DME classification 

This experiment utilized the IDRiD dataset to perform joint classification of DR and DME. Table 

6 presents the experimental results, while Figure 6 provides a visual representation of the classification 

performance through a confusion matrix. Our model achieved a joint classification accuracy of 64.1%, 

surpassing the Lzyuncc model by 1%. Furthermore, our model exhibited promising performance in 

DME classification. 

 

Figure 6. Confusion matrices of DR and DME classification. (a) DR confusion Matrix; (b) 

DME confusion matrix. 

Table 6. Joint classification results on IDRiD dataset. 

Models DR Acc DME Acc Joint Acc 

Lzyuncc [18] 74.8 80.6 63.1 

VRT [18] 59.2 81.6 55.3 

Mammoth [18] 54.4 83.5 51.5 

Ours 68.9 83.5 64.1 

4.2.3. Five-stage classification of diabetic retinopathy 

This experiment employs the IDRiD and DDR datasets for multi-class DR classification, 

categorizing DR into five stages: No DR, Mild NPDR, Moderate NPDR, Severe NPDR, and PDR. 

 a  b 
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Table 7 presents experimental results from the different models. On the IDRiD dataset, our model 

achieved a Kappa of 82.28% and an accuracy of 68.41%, demonstrating an advantage in terms of the 

Kappa coefficient compared to other methods. On the DDR dataset, although our model’s performance 

on the Kappa coefficient lagged behind CLANet, its accuracy remained relatively close. 

Table 7. Comparison of experimental results for different models across different datasets. 

Models 
IDRiD DDR 

Kappa/% Acc/% Kappa/% Acc/% 

CABNet [15] 66.21  67.96 78.57  77.73  

CLANet [31] 80.12  71.84 80.84  79.12 

Ours 82.28  68.41 75.47 79.00 

Figure 7 shows the visualization results of our proposed models on the IDRiD dataset. As shown 

in Figure 7, the first row displays the original image, with the red circle highlighting the lesion region. 

Subsequent rows present heat maps generated by the no-attention model and our proposed FF-ResNet-

DR model. We can observe that the heatmaps from the no-attention model fail to effectively focus on 

the lesion regions, while our proposed FF-ResNet-DR model consistently provides more focused 

attention on these regions, particularly evident in the third, fourth, and last columns. 

 

Figure 7. Multi-class DR Classification on IDRiD. 

5. Discussion and conclusions 

DR is a serious eye condition that necessitates accurate grading for effective treatment planning. 

While deep learning offers promising solutions for automated DR grading, challenges remain in 

achieving high classification accuracy and reliably detecting subtle features. To address these 

challenges, we propose FF-ResNet-DR, a novel deep learning model that leverages a frequency 

domain attention mechanism. 

FF-ResNet-DR integrates spatial and frequency domain information, enabling it to capture both 

global and local patterns within retinal images. By analyzing images in the frequency domain, the 

model can identify subtle patterns and textures that may be missed by spatial-based approaches. This 

enhanced feature representation significantly improves the model’s ability to differentiate between DR 

stages, leading to more accurate and reliable grading. 
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The proposed model has the potential to significantly impact clinical practice. By providing 

clinicians with more accurate and reliable grading results, FF-ResNet-DR can support more informed 

treatment. 

To further advance DR grading, we will explore the following directions: 

Enhanced frequency domain feature extraction and fusion: While the current model employs 

discrete cosine transform (DCT) for frequency domain feature extraction, we will investigate 

alternative methods such as Fourier transform for potentially superior performance. Additionally, we 

will experiment with different fusion strategies to optimally combine frequency and spatial domain 

features, leading to more robust and informative representations. 

Multi-modal learning: To exploit complementary information from multiple modalities, we will 

explore the integration of color fundus images with other medical imaging modalities, such as optical 

coherence tomography (OCT). By leveraging multi-modal learning, we aim to further improve feature 

extraction and classification accuracy. Furthermore, incorporating temporal sequence information can 

capture the dynamic progression of DR lesions, which is crucial for early detection and accurate 

staging. 

Clinical application: The proposed model significantly enhances the diagnostic capabilities of 

computer-aided diagnosis (CAD) systems. By saving the trained model weights, it can be seamlessly 

integrated into existing medical systems. We envision a CAD system comprising the following 

components: (1) Data preprocessing: Fundus imaging devices in medical institutions capture color 

fundus photographs. These images are then preprocessed to match the input requirements of the model. 

(2) Model inference: The preprocessed images are fed into the trained model, which generates 

diagnostic results. (3) Result generation: The model provides diagnostic results, which may include 

attention-based heatmaps highlighting areas of interest. (4) Physician assistance: The generated results 

assist physicians in identifying pathological regions, improving diagnostic accuracy and efficiency. 
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