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Abstract: Tidal time series are affected by a combination of astronomical, geological, meteorological, 
and anthropogenic factors, revealing non-stationary and multi-period features. The statistical features 
of non-stationary data vary over time, making it challenging for typical time series forecasting models 
to capture their dynamism. To solve this challenge, we designed memory factors, leveraging the fusion 
of statistical data at the channel dimension to enhance the model’s prediction capacity for non-
stationary data. On the other hand, traditional approaches have limitations in trend and cycle 
decomposition, making it difficult to detect complicated multi-period patterns and accurately separate 
the components. We combined integrated frequency domain optimization and multi-level, multi-scale 
convolutional kernel technologies. By employing Fourier-based methods and iterative recursive 
decomposition strategies, we effectively separated periodic and trend components. Then, the periodic 
multi-level wavelet block was applied to extract the periodic interaction features, aiming to deeply 
mine the latent information of periodic components and enhance the model’s long-term prediction 
capabilities. In this paper, we used the Informer model as the foundational framework for further 
research and development. In comparative experiments, our proposed model outperformed LSTM, 
Informer, and MICN by 61.4%, 51.7%, and 23.8%, respectively. In multi-time-span prediction, the 
model’s error remained stable as the prediction span increased from 48 to 96 steps (from 0.059 to 
0.067). Under multi-site conditions, the model achieved varying degrees of improvement over the 
baseline in three key evaluation metrics, with average increases of 35.2%, 35.6%, and 61.2%, 
respectively. In this study, we focused on the extraction of short-period features from tidal data, 
providing an innovative and reliable solution for tidal height prediction. The results are significant for 
tidal assessments and protective engineering construction. 
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1. Introduction 

Tides are periodic seawater fluctuations formed under the gravitational influences of the Moon 
and the Sun. Related tidal risks emerge from changes in tidal and marine meteorological conditions, 
commonly including storm surges, tsunamis, and sea level rise [1]. These hazards can lead to coastal 
erosion, land subsidence, and saltwater incursion, posing serious threats to life and property in coastal 
areas [2]. Monitoring and anticipating tide level fluctuations at tidal stations, as well as timely 
transmitting the data to relevant authorities and citizens, can enable early preparation for prevention 
and evacuation. In addition, real-time and accurate tide level forecasts have practical implications for 
coastal engineering operations, ecological preservation, and renewable energy development. 

Physical-based methods, such as the tidal dynamics theory proposed by P. S. Laplace, and the 
systematic study of tidal phenomena through harmonic analysis by G. H. Darwin, provide a high 
degree of interpretability for tidal prediction by establishing mathematical models directly related to 
tidal changes. However, these methods often require extensive physical data inputs and complex model 
constructions, resulting in poor adaptability to environmental changes. In addition, physical 
approaches demonstrate considerable limitations when dealing with nonlinear and high-dimensional 
data. Statistical methods, such as the least squares method [3] and the Kalman filtering approach [4], 
optimize physical models by analyzing historical tidal data to enhance the accuracy of model 
parameters. Sequential data assimilation techniques based on the Monte Carlo method [5] can flexibly 
adapt to nonlinear ocean data. However, statistical methods frequently rely on past patterns and 
struggle to capture deep nonlinear relationships within the data. 

Signal processing techniques effectively remove noise from tidal data through the application of 
filtering, transformation, and denoising methods. The multi-scale decomposition method is widely 
recognized for analyzing the frequency characteristics of signals, effectively extracting the irregular 
oscillatory components of signals, including time-varying amplitude and phase. For instance, Yang et 
al. [6] proposed a short-term load forecasting method based on multi-scale deep neural networks, 
which validated the effectiveness of multi-scale decomposition in processing complex signals by 
decomposing load sequences into high-frequency and low-frequency components. Zhang et al. [7] 
combined variational mode decomposition (VMD) with long short-term memory networks (LSTM) to 
address the issue of prediction delay in the LSTM model for wave height forecasting. Furthermore, 
Yin et al. [8] coupled the discrete wavelet transform (DWT) with variable structure neural network 
techniques to accomplish real-time predictions at selected US tidal stations. Such methods not only 
effectively handle the decomposition of time series data from high to low frequencies, but also greatly 
reduce the data complexity. 

Traditional artificial neural networks [9] often struggle to model complex problems due to their 
shallow structure, and their usefulness, especially in long-term prediction, has yet to be thoroughly 
explored [10]. With the development of artificial neural networks, deep learning models, such as 
RNN [11], LSTM [12], and Bi-LSTM [13], utilize multi-layered structures to extract more abstract 
and high-level features. These models can capture complex patterns and relationships in massive data. 
However, the training and optimization processes of deep learning models are more complex and prone 
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to overfitting difficulties. 
Fusion models, which utilize the complementarity of different models to enhance predictive 

performance, are favored by researchers. Luo et al. [14] found that using a single neural network model 
to forecast wave heights has limitations. They combined bi-directional LSTM with attentional 
mechanisms, achieving stable forecasting performance and accurately forecasting wave heights in the 
Atlantic storm areas within 12 hours. Oh and Suh [15] combined EOF analysis, DWT, and neural 
networks, which exhibited stronger nonlinear capabilities than the ANN model. Aly [16] experimented 
with various combinations and sequencing of wavelet networks (WNN), artificial neural networks 
(ANN), least squares-based Fourier series (FS), and recursive Kalman filters (RKF), determining the 
optimal model for forecasting tidal components. The challenge of fusion models lies in achieving 
proper integration and optimization among different algorithms. Currently, in the field of artificial 
intelligence, large-scale deep learning models based on the Transformer [17] have become the focus 
of research and application. These models excel in capturing long-term dependencies, handling high-
dimensional data, and combating noise. When integrated with other techniques, such models [18–20] 
can be applied to forecasting in various scenarios. Traditional Transformer-based models have 
limitations in capturing complex periodic patterns, especially when multiple periodic components 
overlap in the data. Moreover, the non-stationary characteristics of tidal data may make it difficult for 
the model to learn stable patterns, which affects the prediction accuracy. Furthermore, models may 
experience a significant decline in performance when making long-term predictions, which fails to 
meet the requirements of practical applications. Therefore, we propose a Transformer architecture 
model that can effectively model the multi-periodicity and non-stationarity characteristics of tidal data, 
addressing the research gap. 

We aim to utilize an Informer-based architecture, integrating intrinsic statistical features, and 
combining multi-scale and multi-period feature extraction and fusion methods to improve tidal data 
prediction and analysis. The main contributions are as follows: 

• By utilizing Informer—which retains the excellent adaptability of the Transformer in dealing 
with large-scale, multi-scale, and nonlinear data—and leveraging its unique advantage of reducing 
high memory usage, we efficiently forecast tidal height sequences in one step. 

• Given the non-stationary properties of tidal data, a statistical feature fusion mechanism based 
on 2D convolution and channel self-attention is proposed. This design integrates the stability of data 
normalization and the flexibility of integrated modelling with multiple statistical features, enabling the 
model to sensitively capture key events in time series through the attention mechanism. 

• Employing statistical methods in time series analysis, we have integrated the multi-periodic 
characteristics triggered by astronomical tides and multi-scale analysis. Successfully combining the 
integrated frequency domain optimization technique with the multi-scale multi-level convolution 
kernel technique through cascade processes, we enhance the decomposition precision of each 
component under multi-factorial influences. 

• A periodic-based dynamic adaptive architecture is proposed, employing segmentation, 
combination, multi-level wavelet decomposition, interaction, and reconstruction to mine fine-grained 
features within periodic components, addressing the issue of significant declines in long-term 
prediction performance. 

The paper follows this structure: In Section 2, we discuss the related work. In Section 3, we 
describe the model architecture and components of the modules. In Section 4, we cover the data sources 
and experimental setup. In Section 5, we present the model evaluation and experimental analysis. In 
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Section 6, we summarize the paper and outline the scope and potential avenues for further exploration. 

2. Related work 

In this section, we list other content related to our work on tidal prediction. This includes recent 
developments in Transformers, Informer’s core prediction algorithm, strategies for recovering non-
stationary characteristics of sequences, and wavelet decomposition. 

2.1. Recent progress of Transformers 

Transformer-based networks have become a dominant force in natural language processing. 
Vaswani et al. [17] introduced Transformer, which is based on a self-attention mechanism structure, 
replacing the traditional recurrent neural networks (RNNs) and convolutional neural networks 
(CNNs), displaying a high potential in expressing long-distance dependencies. Zhou et al. [21] 
invented Informer, which tackles the high memory usage and inherent limitations of the encoder-
decoder architecture in Transformer. Autoformer [22] introduced an auto-correlation mechanism based 
on the progressive decomposition architecture to replace the self-attention mechanism. This 
mechanism identifies the similarity of subsequences based on the sequence’s periodicity, reducing 
time complexity while breaking the information usage bottleneck. FEDformer [23], based on 
Autoformer, proposed a frequency-enhanced Transformer architecture, which employs Fourier 
enhanced blocks and wavelet enhanced blocks. This allows for the capture of important information 
through frequency-domain mapping, achieving linear computational complexity and memory 
overhead by randomly selecting a fixed number of Fourier components. The same year, Nie et al. [24] 
proposed PatchTST, which segments the time series into various time periods and uses the self-
attention mechanism to model them, maintaining the locality of the time series. A general framework 
named Non-stationary Transformers [25] was introduced to solve the issue of feature loss while 
maintaining data stationarity. iTransformer [26] alters the roles of the attention mechanism and 
feedforward network while preserving the architecture of Transformer for better temporal 
representation. In summary, the development of Transformer and its variants in the field of time series 
forecasting has demonstrated powerful predictive performance and broad application prospects. 

2.2. Informer 

Informer [21] is a high-performance prediction algorithm based on Transformer [17] and follows 
an encoder-decoder structure. This algorithm feeds sequences into the encoder for processing, then 
reduces the temporal complexity through a ProbSparse self-attention mechanism. Subsequently, a self-
attention distilling operation effectively reduces the temporal dimension of the input sequence. Finally, 
the output is generated by the decoder. Informer’s design provides high scalability in handling large-
scale and complex time series data, making it a reasonable choice as the base model. 

2.2.1. ProbSparse self-attention 

Traditional self-attention requires O൫𝐿ொ𝐿௄൯  memory and the cost of quadratic dot product 
computation, which are the main drawbacks limiting its prediction ability. Research has revealed the 
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long tail distribution in the self-attention feature map, where only a few dot product pairs contribute to 
primary attention, whereas others can be ignored. To measure the importance of each key under the 
given query, an attention probability distribution p൫𝑘௝|𝑞௜൯ [27] and a uniform distribution q൫𝑘௝|𝑞௜൯ 
have been introduced: 

 p൫𝑘௝|𝑞௜൯ ൌ
௞ሺ௤೔,௞ೕሻ

∑ ௞೗ ሺ௤೔,௞೗ሻ
 (1) 

 q൫𝑘௝|𝑞௜൯ ൌ
ଵ

௅಼
 (2) 

where 𝑞௜ represents the query vector, 𝑘௝ represents the key vector, and 𝐿௄ is the total number of 

keys. 𝑘൫𝑞௜, 𝑘௝൯ is an asymmetric exponential kernel function expሺ
௤೔௞ೕ

౐

√ௗ
ሻ. 

Furthermore, the direct correlation between two distributions is assessed using the discrete 
Kullback-Leibler divergence formula: 

 D୏୐ሺP||Qሻ ൌ ∑ P௜∈௑ ሺ𝑖ሻ ∗ ቂlog ቀ୔ሺ௜ሻ

୕ሺ௜ሻ
ቁቃ (3) 

where Qሺ𝑖ሻ and Pሺ𝑖ሻ represent the probabilities of the probability distributions Q and P at the i-th 
event, respectively. This formula is used to measure the expected information loss when one 
probability distribution approximates another. Each query needs to assess its sparsity; thus, it is 
evaluated by calculating the Kullback-Leibler divergence between the two distributions as mentioned 
above, substituting Eqs (1) and (2) into Eq (3):  
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∑
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౐
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After discarding the constant terms, the sparsity measure of the i-th query vector is defined as: 
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Based on the sparsity measure results, a random selection of 𝐿ொln𝐿௄  queries is made to 
participate in the dot product calculation of the attention mechanism. This reduces the complexity from 
𝑂ሺ𝐿ଶሻ  to 𝑂ሺ𝐿ln𝐿ሻ . The selected queries are considered to be relatively far from the uniform 
distribution.  

2.2.2. Encoders 

Due to the presence of numerous redundant vectors in sequences processed by ProbSparse self-
attention mechanisms, it is necessary to employ the self-attention distilling operation to selectively 
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refine the most informative parts of the input data. This effectively overcomes the drawbacks of the 
Transformer, such as the bottlenecks of memory usage and stacked layers, while reducing network 
parameters without losing crucial information. A series of operations based on one-dimensional 
convolution and max pooling is called the distilling operation. The process from j-th layer to j+1-th 
layer can be summarized as follows: 

 𝑋௝ାଵ
௧ ൌ MaxPool ൬ELU ቀConv1d൫ൣ𝑋௝

௧൧൯ቁ൰ (6) 

where [∙] represents the ProbSparse self-attention block, Conv1d(∙) uses ELU(∙) as the activation 
function to execute regular convolution operations in the time dimension. After each convolution layer, 
a max pooling layer is added to downsample to half of its length, reducing memory utilization to 
𝑂൫ሺ2 െ 𝜆ሻ𝐿log𝐿൯.  

2.2.3. Decoders 

Unlike the traditional Transformer, which predicts outputs step-by-step, the generative decoder 
of the Informer can predict long sequence outputs in a single forward propagation rather than a step-
by-step way, drastically boosting the prediction speed and lowering the cumulative error. The input to 
the decoder at time t is a concatenation of the following two parts: 

 𝑋୤ୣୣୢౚ౛
௧ ൌ Concat൫𝑋୲୭୩ୣ୬

௧ , 𝑋଴
௧൯ ∈ ℝ൫௅౪౥ౡ౛౤ା௅೤൯ൈௗౣ౥ౚ౛ౢ  (7) 

where 𝑋୤ୣୣୢౚ౛
௧   represents the input to the decoder, 𝑋୲୭୩ୣ୬

௧   is the start token of the sequence. 𝑋଴
௧ 

denotes the placeholder for the target sequence, and zero padding is used to maintain the consistency 
of the input dimensions. Then, the masked multi-head self-attention is employed to focus each position 
solely on the information preceding it, thus preserving autoregressive features, preventing future 
information leakage, and enhancing generalization capabilities. 

2.3. Recovering the non-stationary properties of the sequence 

To address the critical information related to the original data dimensions that may be removed 
by over-standardization, it is necessary to reintroduce important statistical information from the 
original sequence at key parts of the model. In this way, the model can effectively utilize and restore 
the inherent temporal dependencies of the original sequence [25]. It is noted that the normalization 
process handles 𝑄, 𝐾 as follows:  

 𝑄ᇱ ൌ
൫ொିଵఓೂ

఻൯

ఙೣ
, 𝐾ᇱ ൌ

൫௄ିଵఓ಼
఻൯

ఙೣ
 (8) 

where 𝜇ொ, 𝜇௄ ∈ ℝௗೖൈଵ respectively correspond to the means of 𝑄, 𝐾 ∈ ℝௌൈௗೖ, and 𝜎௫ ∈ ℝଵൈௗೖ is the 
standard deviation of the original sequence. The normalized 𝑄ᇱ, 𝐾ᇱ  are then incorporated into the 
attention mechanism: 

 Softmaxሺ
ொ௄఻

ඥௗೖ
ሻ ൌ Softmax ൬

ఙೣ
మொᇲ௄ᇲ఻ାଵ൫ఓೂ

఻௄఻൯ାሺொఓ಼ሻଵ఻ିଵ൫ఓೂ
఻ఓ಼൯ଵ఻

ඥௗೖ
൰ (9) 

where 1 ∈ ℝௌൈଵ is an all-ones vector, based on the translational invariance of the Softmax operator, 
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Eq (9) simplifies to: 

 Softmaxሺ
ொ௄఻

ඥௗೖ
ሻ ൌ Softmax ൬

ఙೣ
మொᇲ௄ᇲ఻ାଵఓೂ

఻௄఻

ඥௗೖ
൰ (10) 

Computational results confirm that after the attention-based Softmax normalization, there are 
discrepancies between the original sequence and the normalized sequence. Therefore, subsequent 
efforts will need to focus on reconstructive modeling of these discrepancies at corresponding positions. 

2.4. Wavelet decomposition 

Wavelet decomposition [28] is a mathematical method for decomposing signals into multiple 
frequency components, enabling analysis in both time and frequency domains. In selecting wavelet 
bases, Legendre polynomials [29] and Chebyshev polynomials [30] are widely used in various signal 
and image processing scenarios. The common advantages of these two polynomials include their 
orthogonality, stable numerical properties, and high analytical efficiency. Generalized filter matrices 
H and G can be constructed and are defined as follows: 

 ቐ
𝐻൫𝑘௜, 𝑘௝, 𝑛൯ ൌ

ଵ

√ଶ
∑ 𝑤௠௠ 𝜙௞೔

ቀ௫೘ା௡

ଶ
ቁ 𝜙௞ೕ

ሺ𝑥௠ሻ

𝐺൫𝑘௜, 𝑘௝, psi1, psi2, 𝑛൯ ൌ
ଵ

√ଶ
∑ 𝑤௠௠ 𝜓 ቀpsi1,psi2,𝑘௜,

௫೘ା௡

ଶ
ቁ 𝜙௞ೕ

ሺ𝑥௠ሻ
 (11) 

Here, n represents the time offset, taking values of 0 or 1, used to extract information from odd 
and even positions in the signal. Two sets of filters are defined based on the values: Low-pass filters 
(𝐻଴, 𝐻ଵ) and high-pass filters (𝐺଴, 𝐺ଵ). The indices 𝑘௜ and 𝑘௝ in the filter matrix represent different 
frequency components involved in the wavelet transform. The scale function 𝜙  captures the low-
frequency part of the signal. The wavelet function 𝜓 derives two auxiliary base functions, psi1 and 
psi2, which capture the high-frequency part of the signal in odd and even segments, respectively. By 
transforming and translating basis functions across different scales and combining weight factors 𝑤௠ 
and polynomial roots 𝑥௠ to construct the filter matrix, the multi-scale decomposition of the signal [23] 
is achieved by matrix multiplication with signals at different frequency levels, accurately capturing the 
signal’s low-frequency trends and high-frequency fluctuations. 

3. Modeling 

We propose a multi-scale Informer framework that fuses memory factors and wavelet denoising, 
as shown in Figure 1. First, memory factors α and β, which fully consider the statistical characteristics 
of the data, are introduced. They are strategically placed in the attention mechanisms of the encoder 
and decoder to restore the model’s ability to capture dynamic changes in time series. Details will be 
discussed in Section 3.1. Second, the encoder employs a cascade structure, alternating between multi-
head ProbSparse self-attention mechanisms and distilling operations. The multi-level processed 
encoder output and the embedded decoder input are each passed through a cascading process using 
Fourier-based frequency domain optimization and the multi-scale, multi-level convolutional technique 
(as shown in the dashed box in Figure 1). This approach successfully decomposes periodic and trend 
components, overcoming the limitations of traditional methods for decomposing various tidal dataset 
components. Detailed discussions on this part will be provided in Section 3.2.  
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Building on the precise decomposition of the original time series, we extend our methodology to 
the extraction of detailed periodic interaction features, applying the periodic multi-level wavelet block 
to process the periodic components. Section 3.3 will elaborate on this content. Moreover, multi-head 
ProbSparse cross-attention is applied to the decomposed trend components to extract trend interaction 
features, enhancing the prediction accuracy of tidal level change trends. Finally, the interacted periodic 
and trend components are summed and normalized, and a multi-step forecast result is mapped through 
a fully connected layer. 

 

Figure 1. Overall framework diagram of the model. 

3.1. Memory factors 

In addition to astronomical tides, tidal heights may be influenced by multiple factors, resulting in 
non-stationary characteristics. During data training, differences in statistical characteristics (such as 
mean and variance) among different batches of data may make it difficult to capture dynamic changes. 
Although models based on differencing [31] and standardization [32] operations can partially address 
these issues and enhance the predictability of sequences, these methods often fail to consider 
breakpoints, leading to the over-stationarization problem [25]. 

In this section, we provide a detailed description of the framework of the memory factors (see 
Figure 2). The framework is centered on data normalization and the feature cross-fusion mechanism 
(see dashed box in Figure 2) based on dynamic channel self-attention [33] and 2D convolution. We 
will focus on two main aspects: (1) feature fusion; (2) construction of memory factors and restoration 
of non-stationary characteristics. 

3.1.1. Feature fusion 

When deep learning models process time series data, one of the primary challenges is how to 
effectively integrate statistical information from different dimensions to enhance the accuracy of 
predictions. For instance, models need not only to understand the current values of data points, but 
also to grasp the statistical properties of surrounding points. These properties often contain key 
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information about data volatility and stability. Traditional processing methods tend to handle the 
statistical properties separately [34] or ignore data volatility [35], thus failing to fully utilize the 
potential correlations among them. 

To address this issue, we have designed an improved feature fusion mechanism (see dashed box 
in Figure 2). First, Z-score normalization is applied to each input sequence 𝑋 ൌ ሾ𝑥ଵ, 𝑥ଶ, … , 𝑥ௌሿୃ ∈ ℝௌൈ஼, 
performing translation and scaling transformations to obtain 𝑋 ൌ ሾ𝑥‾ଵ, 𝑥‾ଶ, … , 𝑥‾ௌሿୃ ∈ ℝௌൈ஼, where S and 
C respectively represent the sequence length and the number of variables. The Z-score normalization 
process involves calculating the mean and variance of the data: 

 𝜇௫ ൌ
ଵ

ௌ
∑ 𝑥௜

ௌ
௜ୀଵ , 𝜎௫

ଶ ൌ
ଵ

ௌ
∑ ሺ𝑥௜ െ 𝜇௫ሻଶௌ

௜ୀଵ , 𝑥‾௜ ൌ
ଵ

ఙೣ
⊙ ሺ𝑥௜ െ 𝜇௫ሻ (12) 

Here, 𝜇௫, 𝜎௫
ଶ ∈ ℝ஼ൈଵ  represent the mean and standard deviation, respectively, and ⊙  denotes 

element-wise multiplication. By subtracting 𝜇௫ and then dividing by 𝜎௫ for each data point in the 
original sequence, the processed data conforms to a standard normal distribution with mean 0 and 
variance 1. This standardization eliminates differences in data magnitudes, ensuring numerical stability 
and comparability between datasets. 

 

Figure 2. Construction of memory factors. 

𝑋 represents the standardized raw data, 𝜇௫ describes the central tendency of the data, and 𝜎௫ 
measures the dispersion of data around the mean. After individually applying layer normalization to 
these three variables, they are concatenated along the channel dimension to obtain the variable 𝑋ᇱᇱ. 
This procedure can be expressed with the following mathematical formula: 

 𝑋ᇱᇱൌStackሺLayerNormሺ𝑋ሻ,LayerNormሺ𝜇௫ሻ,LayerNormሺ𝜎௫ሻ,dimൌ1ሻ  (13) 

Next, we use a multi-layer 2D convolutional network to process the concatenated three-channel 
feature data. By progressively increasing or decreasing dimensions, we effectively integrate 
relationships between channel features at different levels. Applying 2D convolution to increase the 
number of channels enables the network to capture more detailed and local features, whereas reducing 
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the number of channels encourages the network to learn more abstract and global feature 
representations. 

To further enhance the ability to distinguish feature representations at different channels, we 
introduce a channel-wise self-attention layer following each 2D convolutional layer. Specifically, we 
employ global average pooling (GAP) to capture the global contextual information of each channel. 
Subsequently, a gating network composed of fully connected layers, ReLU and Sigmoid activations 
dynamically adjusts the weights of each channel, thereby enhancing the model’s sensitivity to features 
at crucial channels. The implementation of the dynamic channel attention layer can be described by 
Eqs (14) and (15): 

 GAPሺ𝑋௖
ᇱᇱሻ ൌ

ଵ

ுൈௐ
∑ ∑ 𝑋௖௜௝

ᇱᇱௐ
௝ୀଵ

ு
௜ୀଵ  (14) 

Here, H and W represent the height and width of the feature data, respectively, 𝑋௖௜௝ is the element 
at position (i, j) on channel c, and GAP(𝑋௖

ᇱᇱ) denotes the average value of channel c. 

 Channel Self-Attentionሺ𝑋ᇱᇱሻ ൌ 𝜎ሺ𝑊ଶReLUሺ𝑊ଵGAPሺ𝑋ᇱᇱሻ ൅ 𝑏ଵሻ ൅ 𝑏ଶሻ ⊙ 𝑋ᇱᇱ (15) 

where 𝑊ଵ, 𝑊ଶ, 𝑏ଵ, 𝑏ଶ denote learnable parameter matrices, respectively, and � represents element-wise 
multiplication, i.e., attention weighting. 

3.1.2. Constructing memory factors and recovering non-stationary characteristics 

Sequence normalization improves the statistical stability of data by adjusting its mean and 
variance. However, this may limit the model’s ability to capture the inherent temporal dependencies 
of the raw sequence. 

Therefore, we denote the fused features obtained after alternating processing through multiple 2D 
convolutional layers and channel self-attention layers in Section 3.1.1 as fused_feature, which are then 
concatenated (cat) with the main mutated statistical measures, namely mean and standard deviation, 
respectively, along the channel dimension. Subsequently, the concatenated features undergo further 
processing through a dimension reduction convolution layer (conv), flattening operation (flatten), and 
fully connected layer (fc). The aim is to specifically address the intrinsic variability and overall trends 
of the data, with the processed results marked as memory factors α and β: 

 ൝
𝛼 ൌ fc൫conv൫catሺ𝑓𝑢𝑠𝑒𝑑_𝑓𝑒𝑎𝑡𝑢𝑟𝑒, 𝑚𝑒𝑎𝑛_𝑒𝑥𝑝𝑒𝑛𝑑𝑒𝑑ሻ൯. flattenሺሻ൯

𝛽 ൌ exp ቀfc൫conv൫catሺ𝑓𝑢𝑠𝑒𝑑_𝑓𝑒𝑎𝑡𝑢𝑟𝑒, 𝑠𝑡𝑑_𝑒𝑥𝑝𝑒𝑛𝑑𝑒𝑑ሻ൯. flattenሺሻ൯ቁ
 (16) 

Here, mean_expended and std_expended refer to the extended mean tensor and standard deviation 
tensor, respectively. α is closely associated with the concept of mean, emphasizing the capture of data’s 
stable characteristics and long-term trends, while β integrates the concept of standard deviation, 
focusing on capturing the dynamic changes and instantaneous fluctuations in data. Below is the method 
of applying memory factors in the attention mechanism based on Section 2.3 theory: 

 Attnሺ𝑄ᇱ, 𝐾ᇱ, 𝑉ᇱ, 𝛼, 𝛽ሻ ൌ Softmax ൬ఉொᇲ௄ᇲ఻ାఈ఻

ඥௗೖ
൰ 𝑉ᇱ (17) 

While retaining the advantages of data normalization, the model utilizes the attention mechanism 
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to reintroduce the original magnitude information carried by the memory factors, thus enhancing the 
prediction accuracy of complex, non-stationary sequences. 

3.2. Multi-scale and multi-level convolutional decomposition blocks 

In practical situations, influenced by astronomical tides, the multi-periodic properties of tides 
frequently emerge. However, tidal models struggle to effectively handle multiple periods and 
comprehensively analyze the various periodic components within tidal datasets. Furthermore, 
influenced by other natural environmental factors and human activities, there are various trend changes 
in tidal heights, exhibiting non-stationary characteristics of trends beyond periodic fluctuations. 

In the context of periodic decomposition and multi-scale trend extraction, traditional methods 
such as classical time series decomposition techniques (e.g., additive models [36] and multiplicative 
models [37]) are widely used for periodic decomposition, while moving averages and exponential 
smoothing are commonly employed to extract multi-scale trends. However, these methods have 
numerous limitations when dealing with complex patterns in time series. Specifically, when the data 
contains multiple periodic components, the aforementioned traditional models for periodic 
decomposition typically employ a singular approach. The accuracy and efficiency of this approach 
often depend on the nature of the data being decomposed and the compatibility of the chosen method 
with the dataset. Similarly, the separation of trend components faces similar challenges, and the 
residuals from decomposition are often directly discarded [38]. 

To address this issue, we propose a novel time series analysis framework, as shown in Figure 3, 
which contains a cascading process using Fourier-based frequency domain optimization to identify 
periodic components (see Section 3.2.1). Subsequently, an iterative recursive decomposition strategy 
is employed to extract trend components. During the recursive process, multi-scale convolutional 
kernels are sequentially arranged, which will be elaborated in Section 3.2.2. It should be noted that the 
size of the single-cycle/multi-cycle pattern convolutional kernels selected during the recursive process 
corresponds to the periods identified in Section 3.2.1. 

 

Figure 3. Framework of multi-scale multi-level convolutional decomposition block. 
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3.2.1. Frequency domain optimization to enhance periodic signals 

In implementing frequency domain optimization, the framework initially performs a fast Fourier 
Transform (FFT) on the input data to extract frequency domain information. Subsequently, non-core 
high frequencies and extremely low frequencies are filtered out in the frequency domain, and a set of 
the top k frequencies with significant amplitudes are selected, denoted as 𝐹୲୭୮-ୟ୫୮: 

 𝐴 ൌ Amp ቀFFT൫𝑋୧୬୮୳୲൯ቁ (18) 

 𝐹୲୭୮-ୟ୫୮ ൌ arg  top -𝑘ሺ𝐴ሻ (19) 

Here, Amp denote the calculation of amplitudes in the frequency domain. Unlike Wu et al. [39], 
the frequencies we select are not only concentrated at high amplitudes but also related to specific 
periods. The specific periods are sequentially defined using the periodogram P(f) [40], with the results 
cascading into the autocorrelation coefficient 𝜌௧  for further analysis. P(f) defines a method for 
estimating the power spectral density at frequency f: 

 Pሺ𝑓ሻ ൌ ቚଵ

ே
∑ 𝑥ேିଵ

௡ୀ଴ ሺ𝑛ሻ𝑒ି௜ଶగ௙௡ቚ
ଶ
 (20) 

where x(n) is the sample value of a sequence signal of length N at time point n, and 𝑒ି௜ଶగ௙௡ is the 
complex exponential function used in the Fourier transform. By setting a threshold, significant peaks 
in the power spectral density are selected from P(f), preliminarily defining the set of specific 
frequencies. Further, the reciprocal of the frequencies with significant peak power is taken to determine 
their autocorrelation coefficients: 

 𝜌௧ ൌ
∑ ሾ௑೔ି୫ୣୟ୬ሺ௑ሻሿಿ

೔సభ ሾ௑೔ష೟ି୫ୣୟ୬ሺ௑ሻሿ

∑ ሾ௑೔ି୫ୣୟ୬ሺ௑ሻሿమಿ
೔సభ

 (21) 

where 𝜌௧  denotes the autocorrelation coefficient at lag t, which measures the linear correlation 
between a point in the sequence and another at time t delayed. Calculating the autocorrelation 
coefficient aims to more deeply focus on the periodic values with high self-similarity. The combination 
of Eqs (20) and (21) significantly enhances the credibility of the detection method for specific periods, 
ensuring that only the frequencies significant in both time and frequency domains are recognized and 
added to the frequency list, thus guaranteeing the integrity and accuracy of the periodic analysis. We 
summarize the frequency selection and determination of the periodic component as follows: 

 𝐹ୱ୮ୣୡ୧୤୧ୡ ൌ ቄ ଵ

௉భ
, … ,

ଵ

௉೙
ቅ , ሼ𝑓ଵ, ⋯ , 𝑓௠ሽ ൌ 𝐹୲୭୮-ୟ୫୮ ∪ 𝐹ୱ୮ୣୡ୧୤୧ୡ , 𝑓∗ ∈ ቄ1, ⋯ , ቂ௧

ଶ
ቃቅ (22) 

 𝑋୮ୣ୰୧୭ୢ୧ୡ ൌ IFFTሺ𝐴|ிtop-amp∪ி౩౦౛ౙ౟౜౟ౙ
ሻ (23) 

Here, ሼ𝑃ଵ, … , 𝑃௡ሽ represents specific periods selected using the periodogram and autocorrelation 
coefficients, with 𝐹ୱ୮ୣୡ୧୤୧ୡ being the corresponding set of specific frequencies. Due to the conjugate 
symmetry in the frequency domain, 𝑓∗ only focuses on the former ቂ

௧

ଶ
ቃ frequencies. The final set of m 

frequencies, composed of 𝐹ୱ୮ୣୡ୧୤୧ୡ and 𝐹୲୭୮-ୟ୫୮, not only enhances the principal periodic structure of 
the signal, but also facilitates the comprehensive understanding of the dynamic characteristics of 
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periodic signals by the model. Ultimately, these frequencies are transformed through the inverse 
Fourier transform to constitute the periodic component 𝑋୮ୣ୰୧୭ୢ୧ୡ. 

3.2.2. Iterative multi-scale convolution to extract trend signals 

During multi-scale trend extraction, the framework employs an iterative multi-scale multi-level 
convolution algorithm to extract trend signals. To reveal the trend changes in the data from 
macroscopic to microscopic levels, each iteration begins by smoothing and removing the more 
prominent trend parts of the data, followed by a focus on more detailed local fluctuations. 

Specifically, depending on the periodic pattern of the sequence data (multi-period or single-period 
modes), the size of the convolution kernels is adaptively determined. In the multi-period mode, the 
array of convolution kernels is arranged in descending order of period values, i.e., [T1, T2, T3], where 
T1 > T2 > T3; in the single-period mode, the array of convolution kernels is formatted as [T, T/2, 
T/4, ...]. This strategy begins with larger convolution kernels and gradually transitions to smaller ones, 
sequentially extracting trends from the data to achieve trend capture from coarse to fine. Algorithm 1 
details the common algorithm for both multi-period and single-period modes. 

Algorithm 1. Iterative Multi-scale Multi-level Convolution Algorithm 

Input: original signal 𝑋 ∈ ℝ௅ൈௗౣ౥ౚ౛ౢ , periodic signal 𝑋୮ୣ୰୧୭ୢ୧ୡ ∈ ℝ௅ൈௗౣ౥ౚ౛ౢ  

Parameter: convolution kernel at level i 𝐾𝒊 

Output: 𝑋୲୰ୣ୬ୢ_ୱ୳୫ ∈ ℝ௅ൈௗౣ౥ౚ౛ౢ  

1: for each iteration 𝑖𝑡𝑒𝑟 ∈ ሼ1, … , 𝑛𝑢𝑚_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠} do 

2:   if iter = 1, initialize 𝑋ୢୣ_୲୰ୣ୬ୢ
௜௧௘௥  with the periodic signal removed: 

3:   𝑋ୢୣ_୲୰ୣ୬ୢ
௜௧௘௥ ൌ 𝑋 െ 𝑋୮ୣ୰୧୭ୢ୧ୡ 

4:   if iter > 1, initialize 𝑋ୢୣ_୲୰ୣ୬ୢ
௜௧௘௥  with the residual after the last iteration:  

5:   𝑋ୢୣ_୲୰ୣ୬ୢ
௜௧௘௥ ൌ 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙௜௧௘௥ିଵ 

6:   for each convolution kernel 𝑖 ∈ ሼ1, … , sumሺ𝐾ሻሽ do 

7:     if iter > 1, re-add trend term based on the last convolution kernel’s position:  

8:     𝑋ୢୣ_୲୰ୣ୬ୢ
௜௧௘௥ ൌ 𝑋ୢୣ_୲୰ୣ୬ୢ

௜௧௘௥ ൅ 𝑇𝑟𝑒𝑛𝑑௜
௜௧௘௥ିଵ 

9:     Extract trend terms using average pooling at kernel level i: 

10:    𝑇𝑟𝑒𝑛𝑑௜
௜௧௘௥ ൌ AvgPool൫Padding൫𝑋ୢୣ_୲୰ୣ୬ୢ

௜௧௘௥ ൯, kernel_size ൌ 𝐾௜൯ 

11:    Update detrended data: 

12:    𝑋ୢୣ_୲୰ୣ୬ୢ
௜௧௘௥ ൌ 𝑋ୢୣ_୲୰ୣ୬ୢ

௜௧௘௥ െ 𝑇𝑟𝑒𝑛𝑑௜
௜௧௘௥ 

13:  End for 

14:  Update the residuals after removing all level trend terms: 

15:  𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙௜௧௘௥ ൌ 𝑋ୢୣ_୲୰ୣ୬ୢ
௜௧௘௥  

16:End for 

Return the final trend component 𝑋୲୰ୣ୬ୢ_ୱ୳୫ ൌ ∑ 𝑇𝑟𝑒𝑛𝑑௜
௡௨௠_௜௧௘௥௔௧௜௢௡௦ୱ୳୫ሺ௄ሻ

௜ୀଵ  

In each iteration, the trend extracted by the convolution kernels from the corresponding positions 
in the previous iteration is combined with the residual data, continuously adjusting and optimizing the 
precision of the extracted trend to approximate the true dynamics of the data. Finally, the trend 
component is obtained by summing up the 𝑇𝑟𝑒𝑛𝑑௜

௡௨௠_௜௧௘௥௔௧௜௢௡௦ extracted by all convolution kernels. 
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Additionally, to simplify data processing, subsequent analyses will no longer consider the residual 
terms after multiple iterations. 

To enhance the interpretability of the chosen convolution kernel sizes and maintain the coherence 
of the 𝐹ୱ୮ୣୡ୧୤୧ୡ  determined in Section 3.2.1 for subsequent use, we adapt the periodic values 
corresponding to 𝐹ୱ୮ୣୡ୧୤୧ୡ  into the selection of convolution kernel sizes. This approach ensures 
consistency of the entire data analysis process, from cycle identification to trend analysis, all based on 
the same theoretical foundation. 

3.3. Periodic multi-level wavelet block (PMW-Block) 

Inspired by several models, such as Autoformer [22] and FedFormer [23], we believe that further 
exploring the implicit internal information of periodic components through interactive means can 
significantly enhance the experimental results of long-term forecasting. 

Based on an in-depth study of time-frequency analysis methods, we introduce a new perspective, 
namely the PMW-Block, specifically designed for analyzing time series data with distinct periodic 
characteristics. The complete architecture of the PMW-Block is shown in Figure 4. This architecture 
incorporates a periodic-based dynamic adaptive mechanism, emphasizing fine-tuning within the same 
positional set, with the fine-tuning process displayed in the right half of Figure 4. 

 

Figure 4. Periodic multi-level wavelet block (PMW-Block). 

In the study of the periodic-based dynamic adaptive mechanism, initially, the least common 
multiple 𝑃୐େ୑ of the potentially significant multiple periods (corresponding to the specific periodic 
components ሼ𝑃ଵ, … , 𝑃௡ሽ obtained in Section 3.2.1) is calculated. Based on this least common multiple, 
consecutive data blocks are divided: 

 𝐾 ൌ ቔ ே

௉ైి౉
ቕ , 𝐵௞ ൌ ൛𝑥ሺ௞ିଵሻ∗௉ైి౉ାଵ, 𝑥ሺ௞ିଵሻ∗௉ైి౉ାଶ, … , 𝑥௞∗௉ైి౉

ൟ (24) 

Here, N denotes the length of the sequence, ⌊·⌋ denotes the floor function. 𝐵௞ represents the k-th 
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data block, where the range of k is [1, K], including data points from (k-1)*𝑃୐େ୑+1 to k*𝑃୐େ୑. Next, 
data points in the same position across all blocks are aggregated into a group: 

 𝐺𝑟𝑜𝑢𝑝௜ ൌ ሼ 𝐵௞ሺ𝑖ሻ ∣∣  𝑘 ൌ 1,2, … , 𝐾 ሽ (25) 

where 𝐺𝑟𝑜𝑢𝑝௜ is the group of data points at position i∈{1,2,…,𝑃୐େ୑} after aggregation. Each dataset 

will focus on common features within periodic structures, enhancing the accuracy of analyses when 
following the same or similar periodic patterns. However, if the dataset cannot guarantee sufficient 
length for subsequent refinement, it is necessary to appropriately adjust the lookback length or discard 
the divisional structure to ensure the effectiveness of the model’s processing. After respective 
refinements (right half of Figure 4) of all groups, the complete signal is reconstructed based on the 
inverse of decomposition, followed by residual connections, and ultimately normalization. 

During the refinement, we apply a multi-level wavelet fusion with a cross-attention mechanism. 
In the forward propagation, the multilayer perceptrons (MLPs) first preprocess the input queries (Q), 
keys (K), and values (V), respectively, to modify the data to the proper processing dimensions, allowing 
for multi-level decomposition at different frequency levels. As shown in Algorithm 2, the multi-level 
decomposition strategy [41] employs an even-odd interleaving sampling method, concatenating even 
and odd segments of data in the feature dimension. It then multiplies with the pre-calculated filter 
matrices from Section 2.4, progressively extracting the high-frequency (𝐻ୱ୧୥

௜ ) and low-frequency (𝐿ୱ୧୥
௜ ) 

components of the signal. The process is carried out recursively, with the low-frequency part further 
decomposed into 𝐻ୱ୧୥

௜ାଵ and 𝐿ୱ୧୥
௜ାଵ in the next layer using the same method. Alternating sampling and 

matrix multiplication operations reduce the sequence length by half while maintaining the feature 
dimension, thereby effectively overcoming the limitations of high computational demands and 
memory usage. 

Algorithm 2. Multi-level Decomposition Strategy 

Input: fragment 𝑥 ∈ ℝ𝑁ൈ𝑑model to be decomposed 
Parameter: pre-computed filter matrices 𝐻଴、𝐻ଵ、𝐺଴ and 𝐺ଵ (see Section 2.4) 

Output: low- and high-frequency component lists 𝐿୪୧ୱ୲ and 𝐻୪୧ୱ୲ after multi-level decomposition 

1: initialize 𝑥ො଴, 𝑖: 𝑥ො଴ ൌ 𝑥, 𝑖 ൌ 1 

2: while decomposition level i not reached and signal meets continue condition: 

3:   split input sequence length by even and odd indices into two sub-sequences: 

4:    𝑥ୣ୴ୣ୬ ൌ ሼ𝑥ො௜ିଵሾ2𝑗ሿሽ, 𝑥୭ୢୢ ൌ ሼ𝑥ො௜ିଵሾ2𝑗 ൅ 1ሿሽ for  𝑗 ൌ 0,1, . . . , උlenሺ𝑥ො௜ିଵሻ 2⁄ ඏ െ 1  

5:   concatenate even and odd segments along the feature dimension: 

6:    𝑥ො௜ିଵ ൌ catሺ𝑥ୣ୴ୣ୬, 𝑥୭ୢୢ, dim ൌ െ1ሻ 

7:   calculate high-frequency signal 𝐻ୱ୧୥
௜  and low-frequency signal 𝐿ୱ୧୥

௜ : 

8:    𝐻ୱ୧୥
௜ ൌ 𝑥ො௜ିଵ ൈ cat൫𝐺଴

୘, 𝐺ଵ
୘൯ 

9:    𝐿ୱ୧୥
௜ ൌ 𝑥ො௜ିଵ ൈ cat൫𝐻଴

୘, 𝐻ଵ
୘൯  

10:  append 𝐻ୱ୧୥
௜  and 𝐿ୱ୧୥

௜  to their respective lists: 

11:   𝐿୪୧ୱ୲.append(𝐿ୱ୧୥
௜ ) 

12:   𝐻୪୧ୱ୲.append(𝐻ୱ୧୥
௜ ) 

13:  update for the next decomposition level: 

14:   𝑥ො௜ ൌ 𝐿ୱ୧୥
௜ , 𝑖 ൌ 𝑖 ൅ 1 

15:End while 

Return 𝐿୪୧ୱ୲, 𝐻୪୧ୱ୲ 
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After converting the time-domain signals of 𝑄ᇱ, 𝐾ᇱ, 𝑉ᇱ  at the same frequency level into the 
frequency domain via Fourier transform respectively, the cross-attention mechanism is applied to 
further adjust the weight distribution in the frequency domain. 

After processing the attention mechanism in the frequency domain, we perform an inverse Fourier 
transform on the frequency domain data to convert it back to the time domain. Subsequently, the multi-
level wavelet module reconstructs the data across various frequency levels through inverse wavelet 
transformation. Specifically, we use an inverse transformation filter matrix (obtained by multiplying 
the wavelet decomposition filters and the corresponding inverse transformation matrices of the wavelet 
bases) to progressively reconstruct the details and approximations of each decomposition level from 
bottom to top. In each layer of reconstruction, we use an even-odd rearrangement method to recombine 
the high and low frequency components, restoring them to the representation of the previous layer: 

 𝑉௜ ൌ evenOdd൫catሺ𝑉௜ାଵ, 𝑈௜ሻ൯ (26) 

Here, 𝑉௜ାଵ  represents the reconstruction result of the previous layer, 𝑈௜  denotes the high-
frequency component of the current layer, and the evenOdd  function indicates the even-odd 
rearrangement operation. By recursively performing inverse wavelet transformations, we ultimately 
reconstruct the representation of the original signal. 

4. Data sources and experimental set-up 

4.1. Data sources 

The dataset used in this paper is sourced from https://mds.nmdis.org.cn/, with the primary tidal 
dataset selected from the Dandong area (coordinates: 40°7′N, 124°24′E). Dandong, located east of 
Dandong City in Liaoning Province, China, has significant tidal height variations, making it an ideal 
location for marine activities and ecological research. The experimental details described in Section 
4.2 and the parameter analysis in Section 5.2 are introduced using this area as an example.  

We use tidal data spanning one year (2023), with the sampling interval measured in hours. The 
dataset includes tidal height data (unit: cm) referenced to the tidal datum, which we primarily use for 
experiments. 

To enhance the breadth and diversity of data sources for this study, multiple tidal monitoring 
stations were selected, including Wusong (31°24′N, 121°30′E), Xiamen (24°27′N, 118°4′E), and 
Fangchenggang (21°36′N, 108°20′E) in China, along with Busan (35°6′N, 129°2′E) in South Korea, 
Kamaishi (39°16′N, 141°53′E) in Japan, San Francisco (37°48′N, 122°28′W) in the United States, and 
Sydney (33°51′S, 151°13′E) in Australia. These monitoring stations are distributed across different 
marine areas, spanning both hemispheres, and covering locations with unique geographical conditions 
and tidal characteristics. Due to variations in natural conditions, there are significant differences in the 
tidal characteristics among these monitoring stations, including daily tidal times and tidal ranges. By 
conducting a multi-regional comparative study of these representative monitoring stations, the analysis 
results are given practical significance. 

4.2. Experimental details 

Based on the description of astronomical tides in physical oceanography, we calculate the power 
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spectral density maps based on Eq (20) during the experiments, limiting the frequency in the 
periodograms to the range of 0.001Hz to 0.1 Hz. Furthermore, 0.1% of the maximum value of the 
power spectral density is set as the threshold for peak detection to exclude peaks caused by noise or 
unrepresentative fluctuations.  

According to the periodogram analysis results, we found that most results have slight deviations 
from the defined values of astronomical tides. This discrepancy may be caused by various actual tidal 
influencing factors, including meteorological conditions, seabed topography, coastline shape, and 
human interventions. To simplify and more clearly display the main energy concentration points in the 
periodogram, we use an approximation merging approach. Concretely, the obtained periodic values are 
grouped based on their proximity; for each group of close periodic values, the one with the highest 
energy is chosen as representative. It should be noted that, considering our dataset is sampled hourly, 
the model’s embedding layer does not account for minutes; the convolution kernels used for extracting 
multi-level trends are integers; when using Eq (21), the lag periods also need to be rounded, thus the 
representative periodic values containing decimals should be rounded to the nearest whole number. 
Subsequently, this paper defines periodic values with an autocorrelation coefficient greater than 0.7 as 
specific periods. For the Dandong area in China, based on the serial calculations of Eqs (20) and (21), 
the experimental results selected convolution kernel array [24, 12] as the periods in Section 3.2.1 and 
as the sizes of the convolution kernels in Section 3.2.2. 

During the PMW-Block processing, to ensure that the length of each segmented data fragment 
meets the conditions for effective multi-level wavelet decomposition, the following condition must be 
satisfied: ௌ

௉ైి౉
൒ 𝐿୫୧୬, where 𝐿୫୧୬ represents the minimum fragment length (set to 8 in this study). If 

the length of the data fragments does not meet this condition (i.e., in cases where the predicted step 
sizes in our experiment are 12 or 24), a multi-level wavelet decomposition method is applied directly 
to analyze the periodic components, and the initial dynamic adaptive segmentation and grouping 
strategy is discarded. 

After experimenting with a large number of stations, we have found that short-period variations 
are more important and apparent in tidal predictions and daily observations, whereas the long-period 
effects of astronomical tides on the tidal dataset have not been found to be significant according to the 
above-mentioned procedures. Therefore, the design of our model focuses more on extracting short-
period features. 

4.3. Training settings 

To ensure the effectiveness of the model training, we have divided the dataset into training, 
validation, and test sets with ratios of 7 : 2 : 1, respectively. The division is as follows: 

Training set: Comprises 70% of the total dataset, used for the training process of the model. 
Validation set: Comprises 20% of the total dataset, used for hyperparameter adjustment and 

performance evaluation of the model. 
Test set: Comprises 10% of the total dataset, used for performance testing of the model. 
The model was implemented and trained using Python 3.9 and PyTorch 2.1.2. The experimental 

platform is Ubuntu 20.04.6 LTS, the CPU is AMD Ryzen 9 5950X @ 3.4 GHz, and the graphics card 
is GPU: NVIDIA GeForce RTX 3090 24 GB. 
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5. Model evaluation and experimental analysis 

5.1. Indicators for model evaluation 

Prediction performance can be assessed by the following performance metrics: MAE (mean 
absolute error), RMSE (root mean square error) and MSE (mean square error): 

 MAE൫𝑦୲୰୳ୣ, 𝑦୮୰ୣୢ୧ୡ୲൯ ൌ
ଵ

ே
∑ ห𝑦୲୰୳ୣ െ 𝑦୮୰ୣୢ୧ୡ୲หே

௜ୀଵ  (27) 

 RMSE൫𝑦୲୰୳ୣ, 𝑦୮୰ୣୢ୧ୡ୲൯ ൌ ටଵ

ே
∑ ൫𝑦୲୰୳ୣ െ 𝑦୮୰ୣୢ୧ୡ୲൯

ଶே
௜ୀଵ  (28) 

 MSE൫𝑦୲୰୳ୣ, 𝑦୮୰ୣୢ୧ୡ୲൯ ൌ
ଵ

ே
∑ ൫𝑦୲୰୳ୣ െ 𝑦୮୰ୣୢ୧ୡ୲൯

ଶே
௜ୀଵ  (29) 

5.2. Parameter resolution 

The network structural parameters and training hyperparameters of the model in this paper are 
shown in Table 1: 

Table 1. Network structure parameters and training hyperparameters. 

Encoder Number of layer 2 
 Number of distilling layer 1 
 Memory factors’ channel dimension [8,16,8] 
 Number of multi-scale multi-level convolutional iterations 2 
Decoder Number of layer 1 
 Number of multi-level wavelet block decompositions 3 

 
Minimum sequence length required for multi-level wavelet 
decomposition 

8 

 Top-k frequency components selected by amplitude 1 
 Number of multi-scale multi-level convolutional iterations 1 
Training hyperparameters Seq_len 48 
 Label_len 12 
 Pred_len 12 
 Batch_size 32 
 Learning_rate 1×10-3 
 Hidden dimension 512 
 Optimizer Adam 
 Dropout rate 0.05 
 Sampling factor for Informer’s ProbSparse self-attention 5 
 Loss function MSE 
 Wavelet basis Legendre

  



715 

Electronic Research Archive  Volume 33, Issue 2, 697–724. 

5.3. Ablation experiments 

To study the impact of different configurations on the performance of Informer, this experiment 
is designed with various configuration schemes. These configurations include the memory factors (A), 
periodic multi-level wavelet block (B), multi-scale multi-level convolution (C), as well as combined 
configurations A + B, A + C, B + C, and finally, the integrated model (A + B + C) is tested. The results 
of the ablation experiments are shown in Table 2. 

Table 2. Comparison of ablation experiments. 

 A B C A + B A + C B + C A + B + C
MAE 0.1265 0.1207 0.1200 0.1101 0.1084 0.1036 0.0877 
RMSE 0.1637 0.1563 0.1532 0.1424 0.1389 0.1320 0.1134 
MSE 0.0268 0.0244 0.0234 0.0202 0.0193 0.0174 0.0128 

From the indicators MAE, RMSE, and MSE, it is observed that as the model structure becomes 
increasingly complex, there is an improvement in predictive performance. In terms of the single 
configuration, the increase of each configuration on the model performance is generally similar. The 
performance of paired configurations is superior to that of individual configurations, with the greatest 
enhancement seen when the multi-scale multi-level convolution is used in combination with the 
periodic multi-level wavelet block. We believe this enhancement is due to a higher degree of 
correlation between these two configurations. Under the integrated model configuration (A + B + C), 
MAE decreases to 0.0877, RMSE to 0.1134, and MSE to 0.0128, demonstrating the effectiveness of 
the ensemble configurations. 

5.4. Comparative experiments 

To demonstrate the exceptional performance of our prediction model, we designed two rounds of 
testing comparisons to evaluate the model’s predictive capability over the same time span (set to 12). 
Initially, to test the adaptability of the base model on a tidal dataset, we selected a series of Transformer-
based model variants for the first round of comparison. This round of comparison includes the 
Transformer and three classic Transformer variants: Informer, Autoformer, and Prayformer [42], with 
the results shown in Figure 5. 

The analysis indicates that, in predicting 12 steps ahead, Informer performed best on the metrics 
MSE (0.0394), MAE (0.1586), and RMSE (0.1987). Transformer and Prayformer showed similar 
performance, while Autoformer had the highest loss values on these three metrics, indicating the 
poorest performance. This demonstrates that the Informer surpasses the Transformer in terms of 
prediction accuracy, computational efficiency, and memory usage, as well as excels in balancing these 
three aspects better than other Transformer-based models. Additionally, this validates the effectiveness 
of selecting this base model for the tidal dataset. 
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Figure 5. Comparison of Transformer-based model performance. 

Subsequently, other comparative experiments included the model proposed in this paper, LSTM, 
Attention + TCN (shortened as Attn + TCN), and several advanced prediction models introduced in 
the past two years. Table 3 displays the final accuracy assessment scores for these models. 

Table 3. Other comparative experiments. 

Models MAE RMSE MSE 
Ours 0.0877 0.1134 0.0128 
LSTM 0.1890 0.2412 0.0582 
Attn+TCN 0.1381 0.1727 0.0298 
MICN 0.1060 0.1404 0.0197 
NS_Transformer 0.1340 0.1720 0.0296 
NS_Informer 0.1134 0.1472 0.0216 
SCINet 0.1340 0.1712 0.0293 
FedFormer 0.1210 0.1597 0.0255 
Dlinear 0.1506 0.1938 0.0375 
Nlinear 0.1739 0.2263 0.0512 

The results indicate that models with smaller numerical values predict more accurately. Three 
representative models among these were selected for numerical analysis: Compared with LSTM, the 
baseline model Informer, and the advanced model MICN [43], using MAE as the evaluation metric, 
our model improved by 53.5%, 44.7%, and 17.2%. Using RMSE as the evaluation metric, our model 
improved by 52.9%, 42.9%, and 19.2%. Using MSE as the evaluation metric, our models improved 
by 78.0%, 67.5%, and 35.0%. In terms of the average of the overall evaluation metrics, our model 
improved by 61.4%, 51.7%, and 23.8% over the LSTM, Informer, and MICN, respectively. Across 
all evaluation metrics, our model demonstrated superior predictive accuracy compared to other 
models, exhibiting optimal performance. According to Table 3, the performance of MICN and 
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NS_Informer [25] is quite exceptional, closely following our model. The performance of 
NS_Transformer, SCINet [44], Attn+TCN, and FedFormer is moderate, while the performance of 
LSTM, Dlinear [45], and Nlinear [45] is relatively low, indicating that they may not be suitable for 
predicting tidal datasets. We selected several representative experimental results and displayed them 
in Figure 6. 

From the graph, we can see how different models perform on a real tidal dataset. Through the 
fitting of time series graphs, it is observed that the NS_Transformer, which also focuses on predicting 
abrupt changes in non-stationary data, may not be precise during the fitting process, leading to greater 
errors in some cases. The LSTM underperforms in capturing mutation points and handling long-term 
dependencies. Similarly, the Attn+TCN fails to accurately capture areas with significant local 
fluctuations, resulting in substantial deviations in peak predictions. 

 

Figure 6. Tidal prediction results of several comparison models for Dandong area. 

5.5. Multi-time span experiments 

To assess the model’s predictive performance over different time spans, we also selected tasks 
with time spans of 24 hours, 48 hours, and 96 hours for a systematic analysis of the prediction results, 
as shown in Table 4. 

Our model outperforms the Transformer and Informer across all evaluation metrics (MAE, RMSE, 
MSE). Compared to our model and the Transformer, the Informer shows a significant increase in error 
as the prediction span progressively doubles to 24, 48, and 96 steps, relative to the 12-step prediction 
task. This indicates that despite the Informer’s ProbSparse self-attention mechanism and distilling 
operation being designed to focus more on the significant information within the sequence to reduce 
spatio-temporal complexity, inevitably, much crucial information is lost during the downsampling 
process. The results indicate that the Informer may not be suitable for long-term tidal prediction tasks. 
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It is also noteworthy that the Transformer’s MSE doubled from 0.068 to 0.1366 as the forecast span 
increased from 48 to 96 steps. In contrast, our model maintained a stable error rate during the same 
period (0.059 > 0.067). Figure 7 displays the data fitting under different spans. 

Table 4. Comparison of prediction results across different time spans. 

Prediction Span Models MAE RMSE MSE 
24 hours Ours 0.1049 0.1298 0.0168 

Transformer 0.1588 0.1944 0.0378 
Informer 0.4050 0.4763 0.2268 

48 hours Ours 0.1938 0.2429 0.0590 
Transformer 0.2164 0.2607 0.0680 
Informer 0.6456 0.8309 0.6904 

96 hours Ours 0.1928 0.2588 0.0670 
Transformer 0.2811 0.3696 0.1366 
Informer 0.7411 0.9281 0.8613 

 

 

Figure 7. Data fitting across time spans. 
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As can be seen from the figure, the Informer struggles to accurately capture basic trends in long-
term forecasting tasks, and the Transformer also lacks in extreme value prediction. In contrast, our 
model maintains high accuracy in predicting peaks and troughs across different time spans. From the 
perspective of model structure, it can also be confirmed that the PMW-Block (Section 3.3) effectively 
captures the long-distance dependencies of the same or similar periodic patterns by aggregating the 
same positions across periods. This strategy meets the demand for high precision in long-term 
prediction. 

5.6. Multi-site experiments 

We also selected seven tidal sites with varying geographical locations and environmental 
conditions. The selection of these sites allows for a comprehensive examination of our model’s 
applicability and stability. After calculations, the tidal characteristics of the sites at China-
Fangchenggang, Japan-Kamaishi, and USA-San Francisco are more consistent with the single-period 
mode. Section 5.4 has verified that the Informer outperforms other Transformer-based model variants 
in predicting 12-step scenarios. To further demonstrate that our model effectively extends the 
foundational theoretical framework of the Informer, and due to space limitations, Table 5 presents only 
the multi-site comparison results between our model and the Informer. 

Table 5. Comparison of multi-site experiment results (12 steps). 

Station MAE 
(Ours) 

MAE 
(Informer) 

RMSE 
(Ours) 

RMSE 
(Informer) 

MSE 
(Ours) 

MSE 
(Informer) 

Wusong 0.0830 0.1681 0.1068 0.2263 0.0114 0.0512 
Xiamen 0.0805 0.1123 0.1001 0.1400 0.0101 0.0196 
Fangchenggang 0.0811 0.1869 0.1028 0.2271 0.0105 0.0516 
Busan 0.0758 0.0924 0.0945 0.1168 0.0089 0.0136 
Kamaishi 0.0844 0.1323 0.1074 0.1664 0.0115 0.0277 
San Francisco 0.0813 0.1043 0.1056 0.1334 0.0111 0.0178 
Sydney 0.0914 0.0966 0.1134 0.1254 0.0128 0.0157 
Average 0.0825 0.1275 0.1043 0.1622 0.0109 0.0281 

Evaluating the normalized values, it can be concluded that our model exhibits similar performance 
across different sites, with more stable predictions compared to the Informer, and is applicable to tidal 
datasets of various period types. Specifically, compared to the Informer, the proposed model in this 
paper achieved average improvements of 35.2%, 35.6%, and 61.2% in the three evaluation metrics, 
respectively. To further substantiate our model’s fit, we selected sites with relatively large tidal ranges 
(Fangchenggang, China) and complex fluctuation patterns (Kamaishi, Japan) for deeper analysis. To 
show more intuitively, we used the following method in the plotting: Real data points (green dots) 
cover our model’s predictions (blue dots), and then the Informer model’s forecasts (yellow dots) are 
overlaid on top. Figure 8 shows the data fitting for the two sites. 

From the fitting diagrams, it can be observed that in areas with significant data fluctuations, such 
as extreme points, our model shows better conformity compared to the Informer. Additionally, for 
sudden tidal changes (as shown in the zoomed-in areas of the diagrams), our model also demonstrates 
robustness. Overall, our model can be effectively applied to predictive tasks for tidal data at various 
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sites under real-world conditions. 

 

 

Figure 8. Data fitting across sites. 

6. Summary and outlook 

In this paper, we propose a multi-scale Informer-based model that fuses memory factors and 
wavelet denoising that is capable of accurately predicting tidal series data characterized by non-
stationarity and multiple periodicities. Some conclusions can be drawn from the study: 

• By integrating normalized data with mean and standard deviation characteristics, 
comprehensive modeling of multiple statistical features is achieved. The introduction of memory 
factors not only enhances the predictability of the data, but also effectively avoids the issue of over-
stabilization, ensuring the effective capture of key temporal dependencies and sudden events in the 
raw series. Furthermore, feature fusion enhances the data representation capability, enabling the model 
to effectively capture deep patterns in the data from a more comprehensive perspective. 

• The set of signal frequencies defined by the Fourier transform, periodogram, and 
autocorrelation coefficients together reinforces the core periodic structure of the signal as well as 
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improves the model’s overall understanding of the dynamic properties of periodic signals. 
• The combination of progressive extraction and iterative optimization offers greater flexibility 

and accuracy than traditional one-time trend extraction. Employing larger convolutional kernels to 
extract macro trends, followed by smaller kernels to identify micro-dynamic changes, allows each 
analytical stage to focus on features at different levels of the data. 

• The periodic multi-level wavelet block employs dynamic data partitioning, combined with 
multi-level wavelets and cross-attention mechanisms, significantly enhancing the accuracy of long-
term prediction and the model’s ability to capture complex periodic features. 

These mechanisms collectively enable the model to achieve excellent predictive performance, 
validated at multiple representative tidal stations with wide geographic distribution, varying tidal 
timings, and significant altitude differences. Our model’s design and algorithms also demonstrate 
broad applicability to different time-span predictive tasks. However, the model has the following 
limitations. For each limitation, we propose corresponding directions for future research: Although the 
model demonstrates good performance in long-term predictions, its accuracy inevitably declines as the 
prediction horizon extends. Future research could explore the incorporation of advanced time series 
analysis methods or the optimization of the model structure to improve its ability to capture long-term 
patterns. Additionally, our existing model relies solely on data from a single station, limiting its ability 
to consider spatial correlations between different tidal stations. A potential avenue for future work is 
to integrate concepts from graph theory, leveraging data from neighboring stations to inform and adjust 
the final predictions. Furthermore, we plan to extend the application of this model to other practical 
domains to thoroughly assess its generalizability. 
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