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Abstract: In this work, we aimed at a kind of multi-term variable-order time fractional mobile-
immobile diffusion (TF-MID) equation satisfying the Neumann boundary condition, with fractional
orders αm(t) for m = 1, 2, · · · , P, and introduced a QSC-L1+ scheme by applying the quadratic spline
collocation (QSC) method along the spatial direction and using the L1+ formula for the temporal
direction. This new scheme was shown to be unconditionally stable and convergent with the accuracy
O(τmin {3−α∗−α(0), 2} + ∆x2 + ∆y2), where ∆x, ∆y, and τ denoted the space-time mesh sizes. α∗ was the
maximum of αm(t) over the time interval, and α(0) was the maximum of αm(0) in all values of m. The
QSC-L1+ scheme, under certain appropriate conditions on αm(t), is capable of attaining a second order
convergence in time, even on a uniform space-time grid. Additionally, we also implemented a fast
computation approach which leveraged the exponential-sum-approximation technique to increase the
computational efficiency. A numerical example with different fractional orders was attached to confirm
the theoretical findings.

Keywords: multi-term variable fractional order mobile-immobile equations; Neumann boundary
condition; quadratic spline collocation; L1+ method; numerical analysis; fast computation

1. Introduction

In recent years, the fractional partial differential equations (FPDEs) have been widely used to
simulate various phenomena of anomalous diffusion, such as Brownian motion in fractal theory [1],
and solute transport in porous media [2]. Samko and Ross [3] proposed an important kind of
fractional operators, which are dependent on time and space. Recent studies showed that
variable-order fractional derivatives can describe some complicated phenomena more precisely [4, 5],
such as the viscoelasticity oscillators [6] and the motion of particles in special circumstances [7]. The
multi-term variable-order time fractional mobile-immobile diffusion (TF-MID) equation offers a more
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precise and realistic depiction of solute diffusion in heterogeneous porous media compared to its
single-term counterpart, as referenced in [8, 9].

Different kinds of numerical methods have been proposed for solving PDEs, such as the finite
difference method [10–12] and finite element method [13–15]. The quadratic spline collocation (QSC)
method stands out as an efficient discretization approach. The basis functions of the quadratic spline
space are very smooth, and the smooth conditions at interpolation points are helpful to reduce the
number of unknowns, which means the resulting algebraic equation has small scale. As a result,
QSC has been widely adopted for solving both integer-order problems [16, 17] and fractional-order
differential equations [18, 19].

Many efficient numerical schemes have been proposed to solve time fractional PDEs, including the
classical L1 scheme [20, 21] and L2-1σ scheme [22]. She et al. [23] introduced a transformed L1
method to solve the multi-term time-fractional initial-boundary value problem. Yuan et al. [24]
introduced linearized transformed L1 Galerkin finite element method for nonlinear time fractional
Schrödinger equations. Chen et al. [25] studied a Grunwald-Letnikov scheme on uniform mesh for
reaction sub-diffusion equations with weakly singular solutions and presented a sharp error estimate.
Zhou et al. [26] proposed the nonuniform Alikhanov schemes on the nonuniform meshes for
nonlinear time fractional parabolic equations. Ren et al. [27] established sharp H1 norm error
estimates for the L1 formula and a fractional Crank-Nicolson scheme on nonuniform meshes for
reaction sub-diffusion problems. However, for variable-order models, since the fractional derivative
has a variable-dependent kernel, it is more difficult to construct suitable numerical approximations.
Zheng and Wang [28] presented an L1 scheme for variable-order time-fractional diffusion equations.
Du et al. [29] developed an L2-1σ formula for the variable-order time-fractional wave equation.
Zhang et al. [30] considered an implicit numerical method to solve space-time variable-order
fractional advection-diffusion equations. Liu et al. [31] proposed the regularity of the solution to a
variable-order time-fractional diffusion equation, and constructed a fully discrete numerical scheme.
Building on this foundation, we [32] expand the application of the L1 scheme by developing a
first-order numerical scheme for the variable-order TF-MID with variable coefficients. Ji et al. [33]
proposed the L1+ scheme of constant-order FPDEs, which can be derived by performing the classical
L1 scheme to the integral form of the FPDEs. The L1+ scheme has almost the same computational
cost as the classical L1 scheme, while improving the convergence order (2 − α) of the classical L1
scheme to second order, if the solution is sufficiently well-defined. In this paper, we will investigate
the L1+ formula for multi-term variable-order time fractional derivatives.

Furthermore, the fast implementation of numerical methods for time-fractional differential
equations is another focus of researchers. Jiang et al. [34] introduced the sum-of-exponentials (SOE)
technique, to greatly reduce the computational cost for the evaluation of the constant-order time
fractional derivatives. Subsequently, Zhang et al. [35] employed the exponential sum approximation
(ESA) method, adeptly handling the singular kernels of variable-order Caputo fractional derivatives.
Building on this foundation, they developed a second-order fast evaluation method in [36].

In this paper, we combine the temporal L1+ formula with the spatial QSC method to construct a
QSC-L1+ scheme, to solve two-dimensional multi-term variable-order TF-MID equations. The
Neumann boundary conditions are incorporated into the framework of the energy method, which
leads to a novel technique for the unconditionally stability and convergence of the QSC-L1+ scheme.
In addition, we conduct a comprehensive improvement and optimization of the ESA technique to
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fully meet the L1+ formula. Such a fast evaluation demonstrates exceptional performance by
significantly reducing the computational cost and memory requirements, particularly when combined
with carefully selected parameters, which further highlights its notable advantages.

The structure of the paper is as follows. In Section 2, we introduce the multi-term variable-order TF-
MID equations and propose the QSC-L1+ scheme. Subsequently, we meticulously construct an energy
method aimed at rigorously demonstrating the unconditional stability and convergence of the QSC-L1+

scheme in Section 3. In Section 4, we harness the ESA technique to achieve fast computations along
the temporal direction. Section 5 presents detailed results from numerical experiments, which not only
substantiate our theoretical findings but also highlight the efficiency and practicality of the proposed
scheme. In Section 6, we provide a concise summary of the entire work. It is worth noting that, we use
Ci in this paper to denote constants which are independent of mesh sizes.

2. Equation and discretization

In this section, we consider a kind of two-dimensional multi-term variable-order TF-MID equation
as follows, and the equation can be used to understand and simulate diffusion behavior of solutes in
heterogeneous porous media [9],

ut(x, y, t) +
P∑

m=1

C
0 Dα

m(t)
t u(x, y, t) = κLu(x, y, t) + f (x, y, t), (2.1)

defined in a rectangular spatial domain Ω = (xL, xR) × (yL, yR), and the temporal interval is denoted by
[0,T ]. At the initial time, the solution satisfies

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω̄ = Ω ∪ ∂Ω, (2.2)

and at the boundary ∂Ω, the solution satisfies the Neumann condition

∂u(x, y, t)
∂n

= φ(x, y, t), (x, y, t) ∈ ∂Ω × (0,T ]. (2.3)

Here, the positive constant κ signifies the diffusion coefficient and f denotes a predefined smooth
source function. Additionally, L stands as a spatial elliptic operator, which stands for:

Lu =
∂2u
∂x2 +

∂2u
∂y2 .

αm(t) for m = 1, 2, · · · , P are the variable time fractional orders which satisfy

0 < α∗ ≤ αm(t) ≤ α∗ < 1, t ∈ [0,T ], lim
t→0+

(αm(t) − αm(0)) ln t exists. (2.4)

For the solute transport problem in porous media, a small portion of solute transport follows the
Fickian diffusion process, and it can be expressed as the term ut(x, y, t), while the majority of solute
particle transport follows anomalous diffusion, which can be described by the variable-order Caputo
fractional operator C

0 Dα(t)
t u(x, y, t). In order to distinguish anomalous diffusion with different speeds,

we use multi-fractional orders C
0 Dα

m(t)
t u(x, y, t) in the modeling. The Caputo fractional operator

C
0 Dα

m(t)
t u(x, y, t) is rigorously defined as
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C
0 Dα

m(t)
t u(x, y, t) :=

∫ t

0
ω1−αm(t)(t − s)∂su(x, y, s)ds,

where the weight function ωβ(t) is specified by:

ωβ(t) :=
tβ−1

Γ(β)
.

To characterize the initial singularity of the solution, one can introduce the weighted Banach space
Cm
µ ((0,T ];X), which incorporates with the norm ∥ · ∥X, where m ≥ 2 and 0 ≤ µ < 1, as defined in [37].

The space is defined as:

Cm
µ ((0,T ];X) :=

{
v ∈ C1([0,T ];X) : ∥v∥Cm

µ ((0,T ];X) < ∞
}
,

with the norm given by:

∥v∥Cm
µ ((0,T ];X) := ∥v∥C1([0,T ];X) +

m∑
l=2

sup
t∈(0,T ]

tl−1−µ

∥∥∥∥∥∥∂lv
∂tl

∥∥∥∥∥∥
X

.

The eigenfunctions {φi}
∞
i=1 of the Sturm-Liouville problem, which satisfy the equations

−Lφi(x, y) = λiφi(x, y), (x, y) ∈ Ω; ∂nφi(x, y) = 0, (x, y) ∈ ∂Ω,

constitute an orthogonal basis in the L2(Ω) space. The eigenvalues {λi}
∞
i=1 are strictly positive and non-

decreasing, approaching ∞ as i increases. By harnessing the theory of sectorial operators, we define
the fractional Sobolev space

H̆γ(Ω) :=
{
v ∈ L2(Ω) : |v|2H̆γ :=

∞∑
i=1

λ
γ
i (v, φi)2 < ∞

}
,

equipped with the norm ∥v∥H̆γ :=
(
∥v∥2L2 + |v|2H̆γ

)1/2
. Moreover, H̆γ(Ω) is a subset of the fractional

Sobolev space Hγ(Ω), distinguished by the characteristics outlined in [38]:

H̆γ(Ω) = {v ∈ Hγ(Ω) : Lsv(x, y) = 0} ,

for all (x, y) ∈ ∂Ω, where s < γ/2 .

Lemma 2.1 ( [8, 31]). If condition (2.4) holds, suppose that u0 ∈ H̆γ+6 for γ > 1/2,
f ∈ H1

(
[0,T ]; H̆ s+4

)
∩ H2

(
[0,T ]; H̆ s+2

)
∩ H3

(
[0,T ]; H̆ s

)
for 0 ≤ s ≤ γ and α ∈ C2[0,T ]. If

αm(0) > 0, for m = 1, 2, · · · , P, we have u ∈ C3
(
(0,T ]; H̆γ(0, L)

)
∩C3

1−αm(0)

(
(0,T ]; H̆γ(0, L)

)
and

∥u∥C1([0,T ];H̆s(Ω)) ≤ C0

(∥∥∥u0
∥∥∥

H̆s+2(Ω)
+ ∥ f ∥H1(H̆s+4) + ∥ f ∥H2(H̆s+2) + ∥ f ∥H3(H̆s)

)
,

∥u∥C3
1−αm(0)((0,T ];H̆γ(0,L)) ≤ C1

(∥∥∥u0
∥∥∥

H̆γ+6(0,L)
+ ∥ f ∥H1(H̆s+4) + ∥ f ∥H2(H̆s+2) + ∥ f ∥H3(H̆s)

)
.

Next, we will conduct a comprehensive exploration of the L1+ scheme applied to the temporal
domain, accompanied by the analysis of the QSC discretization in the spatial domain.
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2.1. Temporal L1+ scheme

Given a positive integer N, we divide the time interval [0,T ] uniformly as 0 = t0 < t1 < ... < tN = T .
Therefore, we can conclude that tn = nτ, where τ is defined as τ = T

N . For a given continuous function
v(t), we refer to its piecewise linear interpolation as Πv(t). To quantify the discrepancy between the
original function and its interpolation, we introduce the interpolation error θev (t) = v (t)−Πv (t), which
can be expressed as

θev (t) =
∫ t

tn−1

(t − s)∂2
sv (s) ds −

1
τ

∫ tn

tn−1

(t − tn−1) (tn − s) ∂2
sv (s) ds, tn−1 ≤ t ≤ tn, 1 ≤ n ≤ N.

Based on Lemma 2.1, we have
∥∥∥∥∂2v
∂t2

∥∥∥∥
X
≤ C2t−α

m(0). Therefore, we can verify that

|θev (t)| ≤ C3τ
(
t1−αm(0)
n − t1−αm(0)

n−1

)
. (2.5)

We represent vn as the numerical approximation of v(t) at the specific time instant t = tn, and define
T =
{
vn, n = 0, 1, · · · ,N

}
as a finite-dimensional function space that spans over the temporal grid. For

convenience, we further define

δtvn− 1
2 =

vn − vn−1

τ
and vn− 1

2 =
vn + vn−1

2
.

Then, averaging the integral of C
0 Dα

m(t)
t v(t) over [tn−1, tn], and approximating αm(t) at the midpoint of

this subinterval, we have

1
τ

∫ tn

tn−1

C
0 Dα

m(t)
t v(t)dt =

1
τ

∫ tn

tn−1

C
0 Dα̃

m
n

t v(t)dt + r1,n,m, (2.6)

where α̃m
n := αm

n− 1
2
, for n = 1, 2, · · · , N and m = 1, 2, · · · , P. Based on the trapezoidal formula and

Lemma 2.1, we can verify that

|r1,n,m| ≤ C4

∣∣∣∣1
τ

∫ tn

tn−1

∫ t

0

[
ω1−αm(t)(t − s) − ω1−α̃m

n (t − s)
]
dsdt
∣∣∣∣

≤
C5

τ

∣∣∣∣ ∫ tn

tn−1

Γ
(
2 − α̃m

n
) (

t1−αm(t) − t1−α̃m
n
)

Γ
(
2 − α̃m

n
)
Γ(2 − αm(t))

dt
∣∣∣∣ + C6

τ

∣∣∣∣ ∫ tn

tn−1

t1−α̃m
n
[
Γ
(
2 − α̃m

n
)
− Γ(2 − αm(t))

]
Γ
(
2 − α̃m

n
)
Γ(2 − αm(t))

dt
∣∣∣∣,

where C4 is the upper bound for v(t), and C5, C6 are positive constants related to C4. According to the
boundedness of Γ(x) and applying Taylor’s expansion for two numerators above, we have

|r1,n,m| ≤
C7

τ

∣∣∣∣ ∫ tn

tn−1

[
C8
(
t − tn− 1

2

)
+C9
(
t − tn− 1

2

)2]dt
∣∣∣∣ + C10

τ

∣∣∣∣ ∫ tn

tn−1

[
C11
(
t − tn− 1

2

)
+C12

(
t − tn− 1

2

)2]dt
∣∣∣∣,

where Ci for i = 7, 8, · · · , 12 are the upper bounds of some functions. Since the integration of linear
terms are equal to zero, we can obtain

∣∣∣r1,n,m

∣∣∣ = O(τ2). Furthermore, the first term on the righthand side
of (2.6) can be approximated by the L1 formula as

1
τ

∫ tn

tn−1

C
0 Dα̃

m
n

t v(t)dt =
1
τ

∫ tn

tn−1

∫ t

0
ω1−α̃m

n (t − s)∂sΠv(s)dsdt + r2,n,m. (2.7)
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According to the truncation error analysis in [33, 39], we have r2,n,m = O
(
τ2t−α̃

m
n −α

m(0)
n

)
. Substituting

Eq (2.7) into (2.6), we have the approximation for n = 1, 2, · · · , N that

1
τ

∫ tn

tn−1

C
0 Dα

m(t)
t v(t)dt =

n∑
k=1

a(n,m)
n−k+1

(
vk − vk−1) + r1,n,m + r2,n,m := δ̄t

α̃m
n vn− 1

2 + r1,n,m + r2,n,m, (2.8)

where

a(n,m)
n−k+1 =

1
τ2

∫ tn

tn−1

∫ min{t,tk}

tk−1

ω1−α̃m
n (t − s)dsdt, k = 1, 2, · · · , n, m = 1, 2, · · · , P. (2.9)

The discretization (2.8) for the variable-order Caputo fractional derivative C
0 Dα

m(t)
t v(t), with the

coefficients (2.9), is called the L1+ formula.

2.2. Spatial QSC method

For given positive integer Mx, we divide spatial domain [xL, xR] uniformly as

△x := {xL = x0 < x1 < . . . < xMx = xR},

with mesh size ∆x = xR−xL
Mx

. Then, we define the quadratic spline space with the variable x as

Vx :=
{
v ∈ C1 (xL, xR) , v|[xi−1,xi] ∈ P2

(
△x
)
, i = 1, 2, . . . ,Mx

}
,

where P2(·) represents the set of piecewise quadratic polynomials with the variable x. Similarly, we
can define the quadratic spline space Vy for the variable y. Furthermore, we denote by △ := △x ×

△y the mesh partition of the spatial domain, and denote by V := Vx ⊗ Vy the space of piecewise
biquadratic polynomials.

Next, we consider the basis functions of the spaceV. We let

ϕ(x) =
1
2


x2, 0 ≤ x ≤ 1,
− 2(x − 1)2 + 2(x − 1) + 1, 1 ≤ x ≤ 2,
(3 − x)2, 2 ≤ x ≤ 3,
0, elsewhere,

and define the quadratic B-splines

ϕ j(x) = ϕ
( x − xL

∆x
− j + 2

)
, j = 0, 1, · · · ,Mx + 1 (2.10)

as the basis function ofVx. Similarly, we get
{
ϕ j(y), j = 0, · · · ,My + 1

}
as the basis functions forVy.

Thus, the quadratic spline solution un
h ∈ V of Eq (2.1) is represented as

un
h(x, y) =

Mx+1∑
i=0

My+1∑
j=0

cn
i, jϕi(x)ϕ j(y), n = 1, · · · ,N, (2.11)

where cn
i, j are the coefficients to be solved.
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In order to solve these unknowns, we choose the centers of the rectangular mesh △ as the collocation
points, denoted by

ξ =
{(
ξx

i , ξ
y
j
)
, i = 1, 2, . . . ,Mx, j = 1, 2, · · · ,My

}
,

where
{
ξx

i =
1
2 (xi−1 + xi) , i = 1, 2, · · · ,Mx

}
and
{
ξ

y
j =

1
2 (y j−1 + y j), j = 1, 2, · · · ,My

}
. We denote

ξx
0 = xL, ξx

Mx+1 = xR and ξy
0 = yL, ξy

My+1 = yR, and denote ∂ξ =
{(

xL, ξ
y
j
)
, j = 0, 1, · · · ,My + 1

}
∪{(

xR, ξ
y
j
)
, j = 0, 1, · · · ,My + 1

}
∪
{(
ξx

i , yL
)
, i = 0, 1, · · · ,Mx + 1

}
∪
{(
ξx

i , yR
)
, i = 0, 1, · · · ,Mx + 1

}
as the

boundary collocation points. Consequently, we select ξ̄ = ξ ∪ ∂ξ as the set encompassing both interior
and boundary collocation points. For simplicity, we further define index sets: Λ =

{
(i, j), (ξx

i , ξ
y
j) ∈ ξ

}
,

∂Λ =
{
(i, j), (ξx

i , ξ
y
j) ∈ ∂ξ

}
, and Λ̄ = Λ ∪ ∂Λ.

Taking the collocation points into expressions (2.11), we get

un
h

(
ξx

k , ξ
y
l

)
:= θxθycn

k,l,
∂2

∂x2 un
h

(
ξx

k , ξ
y
l

)
:= ηxθycn

k,l,
∂2

∂y2 un
h

(
ξx

k , ξ
y
l

)
:= ηyθxcn

k,l,

and the Neumann boundary condition

−
∂

∂x
un

h

(
ξx

0, ξ
y
l

)
:= −ςxθycn

0,l,
∂

∂x
un

h

(
ξx

Mx+1, ξ
y
l

)
:= ςxθycn

Mx+1,l,

−
∂

∂y
un

h

(
ξx

k , ξ
y
0

)
:= −ςyθxcn

k,0,
∂

∂y
un

h

(
ξx

k , ξ
y
My+1

)
:= ςyθxcn

k,My+1,

where operators θx, ςx, and ηx are defined as

θxcn
k,l =

1
8


4
(
cn

0,l + cn
1,l

)
, k = 0,

cn
k−1,l + 6cn

k,l + cn
k+1,l, k = 1, 2, · · · ,Mx,

4
(
cn

Mx,l + cn
Mx+1,l

)
, k = Mx + 1,

(2.12)

ςxc
n
k,l =

1
∆x

cn
1,l − cn

0,l, k = 0,
cn

Mx+1,l − cn
Mx,l, k = Mx + 1,

(2.13)

ηxc
n
k,l =

1
∆x2

0, k = 0,Mx + 1,
(cn

k−1,l − 2cn
k,l + cn

k+1,l), k = 1, 2, · · · ,Mx.
(2.14)

We further define
ϑxcn

k,l =
1
∆x
(
cn

k,l − cn
k−1,l
)
, k = 1, 2, · · · ,Mx + 1,

which leads to
ηxc

n
k,l =

1
∆x
(
ϑxcn

k+1,l − ϑxcn
k,l
)
, k = 1, 2, · · · ,Mx.

In addition, the operators θy, ηy, and ϑy are defined along the y direction similarly. We need to
notice that ςx and ςy are discretizations for the Neumann boundary conditions, and their definitions
are compatible with ϑx and ϑy, respectively. In this paper, we keep both definitions without confusion.
Next, we will delve into the full discretization scheme, which is built upon the spatial and temporal
discretizations, to construct a robust numerical method for Eqs (2.1)–(2.3).

Electronic Research Archive Volume 33, Issue 2, 642–666.



649

2.3. QSC-L1+ scheme

We consider Eq (2.1) on the time subinterval [tn−1, tn], and take the integral average to obtain

1
τ

∫ tn

tn−1

ut(x, y, t)dt +
1
τ

∫ tn

tn−1

P∑
m=1

C
0 Dα

m(t)
t u(x, y, t)dt =

1
τ

∫ tn

tn−1

κLu(x, y, t)dt +
1
τ

∫ tn

tn−1

f (x, y, t)dt. (2.15)

Through calculations, we can validate the first term of Eq (2.15),

1
τ

∫ tn

tn−1

ut(x, y, t)dt =
un(x, y) − un−1(x, y)

τ
= δtun− 1

2 (x, y). (2.16)

Regarding the first term at the righthand side of Eq (2.15),

1
τ

∫ tn

tn−1

κLu(x, y, t)dt = κLun− 1
2 (x, y) + r3,n,

where

r3,n =
1
τ

∫ tn

tn−1

κLu (x, y, t) dt − κLun− 1
2 (x, y) =

1
τ

∫ tn

tn−1

κLθeu (x, y, t) dt,

and based on estimations (2.5), it satisfies

|r3,n| ≤
κ

τ

∫ tn

tn−1

|Lθeu (x, y, t) |dt ≤ C13τ
(
t1−αm(0)
n − t1−αm(0)

n−1

)
.

Similarly, for the last term of Eq (2.15), we have

1
τ

∫ tn

tn−1

f (x, y, t)dt = f n− 1
2 (x, y) + r4,n, (2.17)

where r4,n satisfies

|r4,n| ≤
C14

2τ

∫ tn

tn−1

(t − tn) (t − tn−1) dt = O
(
τ2),

with C14 as an upper bound for ftt(x, y, t).
Utilizing Eqs (2.16) and (2.17), in conjunction with the discretization method outlined in (2.8),

Eq (2.15) can be reformulated as

δtun− 1
2 (x, y) +

P∑
m=1

δ̄t
α̃m

n un− 1
2 (x, y) = κLun− 1

2 (x, y) + f n− 1
2 (x, y) + Rn, (2.18)

with the truncation errors

Rn =

P∑
m=1

(
r1,n,m + r2,n,m

)
+ r3,n + r4,n = O

(
τ2

P∑
m=1

t−α̃
m
n −α

m(0)
n + τ

(
t1−αm(0)
n − t1−αm(0)

n−1
)
+ τ2
)
. (2.19)
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Subsequently, we will proceed to approximate the solution of Eq (2.1) with the QSC method.
Specifically, we substitute un

h(x, y) of the form given by (2.11) into Eq (2.18), neglect the truncation
errors, and obtain

Mx+1∑
i=0

My+1∑
j=0

δtc
n− 1

2
i, j ϕi(x)ϕ j(y) +

Mx+1∑
i=0

My+1∑
j=0

P∑
m=1

δ̄t
α̃m

n cn− 1
2

i, j ϕi(x)ϕ j(y)

= κ

Mx+1∑
i=0

My+1∑
j=0

cn− 1
2

i, j

[
ϕ′′i (x)ϕ j(y) + ϕi(x)ϕ′′j (y)

]
+ f n− 1

2 (x, y), (x, y) ∈ Ω, 1 ≤ n ≤ N.

(2.20)

Taking the collocation points (ξx
i , ξ

y
j) into Eq (2.20), we get the QSC-L1+ scheme,

δtθxθyc
n− 1

2
i, j +

P∑
m=1

δ̄t
α̃m

n θxθycn
i, j = κ(ηxθy + ηyθx)c

n− 1
2

i, j + f n− 1
2

i, j , (i, j) ∈ Λ, 1 ≤ n ≤ N. (2.21)

For the initial condition (2.2), we have

θxθyc0
i, j = u0

i, j, (i, j) ∈ Λ̄, (2.22)

and on the boundary collocation points, we have

−ςxθyc
n− 1

2
0, j = φ

n− 1
2

0, j , ςxθyc
n− 1

2
Mx+1, j = φ

n− 1
2

Mx+1, j, −ςyθxc
n− 1

2
i,0 = φ

n− 1
2

i,0 , ςyθxc
n− 1

2
i,My+1 = φ

n− 1
2

i,My+1. (2.23)

Remark 2.1. If the equation includes additional convection terms, such as ux + uy, the corresponding

QSC-L1+ scheme (2.21) will also be appended an additional term (ϑxθy + θxϑy)c
n− 1

2
i, j , which leads to

a sparse matrix-vector multiplication. Therefore, the QSC-L1+ scheme can be applied for TF-MID
equations with convection terms, with additional little computational cost.

Next, we will delve into a comprehensive analysis of the stability and convergence properties of the
proposed numerical scheme.

3. Numerical analysis of the QSC-L1+ method

Before conducting the numerical analysis, it is imperative to establish some fundamental definitions
concerning inner products and norms. Specifically, we defineMh =

{
w, w = {wi, j, (i, j) ∈ Λ}

}
as the

spatial grid function space and further introduce M̊h = {w ∈ Mh, ςxwi, j = ςywi, j = 0 for (i, j) ∈ ∂Λ}.
For two functions w, v ∈ M̊h, we proceed to define the inner product,

⟨w, v⟩ :=∆x∆y
Mx∑
i=1

My∑
j=1

wi, jvi, j,

⟨ϑxw,ϑxv⟩x := ∆x∆y
Mx+1∑
i=1

My∑
j=1

(
ϑxwi, j

) (
ϑxvi, j

)
, ⟨ϑyw,ϑyv⟩y := ∆x∆y

Mx∑
i=1

My+1∑
j=1

(
ϑywi, j

) (
ϑyvi, j

)
,
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which induce the associated discrete norms

∥w∥ :=
√
⟨w,w⟩, |w|1x :=

√
⟨ϑxw,ϑxw⟩x , |w|1y :=

√
⟨ϑyw,ϑyw⟩y .

We can reformulate scheme (2.21) as

(
1 + τ

P∑
m=1

a(n,m)
1

) (
θxθycn

i, j − θxθycn−1
i, j

)
+ τ

n−1∑
k=1

P∑
m=1

a(n,m)
n−k+1

(
θxθyck

i, j − θxθyck−1
i, j

)
= τκ(ηxθy + ηyθx)c

n− 1
2

i, j + τ f n− 1
2

i, j .

(3.1)

To facilitate clarity and consistency in our notation, we uniformly define the coefficients for Eq (3.1)
as follows:

b(n)
1 = 1 + τ

P∑
m=1

a(n,m)
1 , b(n)

n−k+1 = τ

P∑
m=1

a(n,m)
n−k+1, 1 ≤ k ≤ n − 1.

With these new coefficients, the QSC-L1+ method (2.21) can be rewritten in a more compact form as

n∑
k=1

b(n)
n−k+1

(
θxθyck

i, j − θxθyck−1
i, j

)
= τκ

(
ηxθy + ηyθx

)
cn− 1

2
i, j + τ f n− 1

2
i, j , (i, j) ∈ Λ, 1 ≤ n ≤ N. (3.2)

We notice that the orders of magnitude of the coefficients can be estimated as b(n)
1 = O(1),

b(n)
2 = O(τ1−α̃m

n ). Considering the coefficient properties outlined in [33, 39], the newly defined set of
coefficients

{
b(n)

n−k+1, k = 1, 2, · · · , n
}

fulfills the properties stated in the following lemma.

Lemma 3.1. For sufficiently small values of τ, the coefficients b(n)
k are monotonically decreasing for

k = 1, 2, · · · , n, i.e.,
b(n)

1 > b(n)
2 > · · · > b(n)

n > 0,

where n is a fixed time index.

3.1. Basic preparations

Before the numerical analysis, we need to provide some basic lemmas which are necessary in the
stability and convergence analysis. Here, we first introduce some lemmas on the coefficients of the
QSC-L1+ method.

Lemma 3.2. We assume that the fractional order αm(t) satisfies (αm(t))′ ≤ 0, for 0 ≤ t ≤ T and
m = 1, 2, · · · , P, then the coefficients b(n)

n−k in the QSC-L1+ scheme (3.2) fulfill the estimation

b(n)
n−k ≤ (1 +C15τ) b(n−1)

n−k , 1 ≤ k ≤ n − 1, 2 ≤ n ≤ N.

Lemma 3.3. The coefficients of the QSC-L1+ scheme have a positive lower bound, i.e.,

P∑
m=1

a(n,m)
n ≥

P∑
m=1

T−α̃
m
n

Γ(1 − α̃m
n )
≥ C16,

where n ≥ 2.
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Lemma 3.4. A special summation of the coefficients of the QSC-L1+ scheme is bounded, i.e.,

n−1∑
k=1

b(k)
k ≤ C17.

The proof of above lemmas can be referred to [40]. Furthermore, we also require the subsequent
lemmas concerning the operators that have been previously defined.

Lemma 3.5 ( [22]). If the coefficients b(n)
k are monotonically decreasing, for k = 1, 2, · · · , n, then we

have the estimate,

n∑
k=1

b(n)
n−k+1

〈
θxθyck − θxθyck−1, θxθycn

〉
≥

1
2

 n∑
k=1

b(n)
n−k+1

(∥∥∥θxθyck
∥∥∥2 − ∥∥∥θxθyck−1

∥∥∥2) ,
where ck =

{
ck

i, j, (i, j) ∈ Λ̄
}

are the coefficients in the quadratic spline approximation uk
h.

Lemma 3.6. For function w ∈ M̊h, we have

1
2
∥w∥2 ≤ ⟨θxw,w⟩ ≤ ∥w∥2,

1
2
∥w∥2 ≤ ⟨θyw,w⟩ ≤ ∥w∥2.

Proof. We prove the first estimation for simplicity. According to reference [40], the operator θx can
be decomposed as θx = ζ

2
x , where ζ x is also a spatial operator. Similarly, θy = ζ

2
y . Since

∥∥∥ζ xw
∥∥∥2 =

⟨ζ xw, ζ xw⟩ = ⟨θxw,w⟩, we can get from the definition of θx in (2.12) that

⟨θxw,w⟩ =
∆x∆y

8

My∑
j=1

[
(w0, j)(w1, j) + 2

Mx−1∑
i=1

(wi, j)(wi+1, j) + 6
Mx∑
i=1

(wi, j)2 + (wMx+1, j)(wMx, j)
]
. (3.3)

According to the homogeneous Neumann boundary conditions, we get w0, j = w1, j and wMx+1, j =

wMx, j. Then, we have

⟨θxw,w⟩ =
∆x∆y

8

My∑
j=1

[
(w1, j)2 + 2

Mx−1∑
i=1

(wi, j)(wi+1, j) + 6
Mx∑
i=1

(wi, j)2 + (wMx j)2
]
. (3.4)

We utilize the inequality 2ab ≤ a2 + b2 in equality (3.4) to get

⟨θxw,w⟩ ≤ ∆x∆y
My∑
j=1

Mx∑
i=1

(wi, j)2 = ∥w∥2.

Then, using the inequality 2ab ≥ −a2 − b2 in equality (3.4), we can get

⟨θxw,w⟩ ≥
∆x∆y

8

My∑
j=1

[
6(w1, j)2 + 4

Mx−1∑
i=2

(wi, j)2 + 6(wMx, j)
2
]
≥

1
2
∥w∥2.

The second estimation can be obtained in the similar way.
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Lemma 3.7. For any vn ∈ M̊h, n = 1, 2, · · · ,N, we have

〈(
ηxθy + ηyθx

)
vn− 1

2 , θxθyvn
〉
≤ −

1
4

(∣∣∣ζ xθyvn
∣∣∣2
1x
+
∣∣∣ζyθxvn

∣∣∣2
1y

)
+

1
4

(∣∣∣ζ xθyvn−1
∣∣∣2
1x
+
∣∣∣ζyθxvn−1

∣∣∣2
1y

)
.

Proof. Recalling the notation vn− 1
2 = 1

2

(
vn + vn−1

)
, we have

〈(
ηxθy + ηyθx

)
vn− 1

2 , θxθyvn
〉
=

1
2

〈
ηxθyvn−1, θxθyvn

〉
+

1
2

〈
ηxθyvn, θxθyvn

〉
+

1
2

〈
ηyθxvn−1, θyθxvn

〉
+

1
2

〈
ηyθxvn, θyθxvn

〉
:=

1
2

4∑
i=1

Pi.
(3.5)

We first present the estimation for P1,

P1 = ∆x∆y
Mx∑
i=1

My∑
j=1

(
ηxθyvn−1

i, j

) (
θxθyvn

i, j

)
= ∆y

Mx∑
i=1

My∑
j=1

(
ϑxθyvn−1

i+1, j − ϑxθyvn−1
i, j

) (
θxθyvn

i, j

)
.

Applying the homogeneous Neumann boundary conditions ςxθyvn−1
0, j = 0 and ςxθyvn−1

Mx+1, j = 0, for
j = 1, 2, · · · ,My, we rearrange the terms in P1 and obtain

P1 = −∆x∆y
Mx+1∑
i=1

My∑
j=1

(
ϑxθyvn−1

i, j

) (
ϑxθxθyvn

i, j

)
= −
〈
ϑxθyvn−1,ϑxθxθyvn

〉
.

Likewise, we have

P2 = −
〈
ϑxθyvn,ϑxθxθyvn

〉
= −
∣∣∣ζ xθyvn

∣∣∣2
1x
.

Furthermore, we use the Cauchy-Schwarz inequality and −2ab ≤ a2 + b2 to obtain

P1 + P2 ≤ −
∣∣∣ζ xθyvn

∣∣∣2
1x
+

1
2

(∣∣∣ζ xθyvn
∣∣∣2
1x
+
∣∣∣ζ xθyvn−1

∣∣∣2
1x

)
= −

1
2

(∣∣∣ζ xθyvn
∣∣∣2
1x
−
∣∣∣ζ xθyvn−1

∣∣∣2
1x

)
.

The terms P3 and P4 have similar results. Thus, we can complete the proof.

Lemma 3.8 ( [41]). We suppose vn, wn ∈ T satisfy the inequality vn ≤ (1 + τC18)vn−1 + τwn−1, with
n = 1, 2, . . . ,N, then we can obtain

vn ≤ eC18nτ

[
v0 + τ

n−1∑
l=0

wl

]
,

where C18 is a positive constant.

Given the lemmas presented above, we will focus on the stability of the QSC-L1+ scheme (2.21)–
(2.23), or its equivalent form (3.2).
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3.2. Stability analysis

Theorem 3.1. We denote by cn = {cn
i, j, (i, j) ∈ Λ, 0 ≤ n ≤ N} the coefficients of the

approximation (2.11) solved by the QSC-L1+ method. If the fractional orders αm(t) are monotonically
decreasing functions, then the following estimate holds:∥∥∥θxθycn

∥∥∥2 + τκ
4

(∣∣∣ζ xθycn
∣∣∣2
1x
+
∣∣∣ζyθxcn

∣∣∣2
1y

)
≤ C19

[∥∥∥θxθyc0
∥∥∥2 + τκ

2

(∣∣∣ζ xθyc0
∣∣∣2
1x
+
∣∣∣ζyθxc0

∣∣∣2
1y

)]
+C20τ

n∑
k=1

∥∥∥∥ f k− 1
2

∥∥∥∥2 .
Proof. We multiply Eq (3.2) by 2∆x∆yθxθycn

i, j. Taking summation for the indices i from 1 to Mx and
for j from 1 to My yield

n∑
k=1

b(n)
n−k+1

〈
θxθyck − θxθyck−1, 2θxθycn

〉
= τκ

〈
(ηxθy + ηyθx)cn− 1

2 , 2θxθycn
〉
+ τ
〈

f n− 1
2 , 2θxθycn

〉
.

According to Lemmas 3.5 and 3.7, we achieve the following estimation
n∑

k=1

b(n)
n−k+1

∥∥∥θxθyck
∥∥∥2 + τκ

2

(∣∣∣ζ xθycn
∣∣∣2
1x
+
∣∣∣ζyθxcn

∣∣∣2
1y

)
≤

n−1∑
k=1

b(n)
n−k

∥∥∥θxθyck
∥∥∥2 + b(n)

n

∥∥∥θxθyc0
∥∥∥2 + τκ

2

(∣∣∣ζ xθycn−1
∣∣∣2
1x
+
∣∣∣ζyθxcn−1

∣∣∣2
1y

)
+ 2τ
〈

f n− 1
2 , θxθycn

〉
.

(3.6)

Then, based on Lemma 3.2, we obtain

n−1∑
k=1

b(n)
n−k+1

∥∥∥θxθyck
∥∥∥2 ≤ (1 +C15τ)

n−1∑
k=1

b(n−1)
n−k

∥∥∥θxθyck
∥∥∥2 . (3.7)

Denote

G0 =
τκ

2

(∣∣∣ζ xθyc0
∣∣∣2
1x
+
∣∣∣ζyθxc0

∣∣∣2
1y

)
, Gn =

n∑
k=1

b(n)
n−k+1

∥∥∥θxθyck
∥∥∥2 + τκ

2

(∣∣∣ζ xθycn
∣∣∣2
1x
+
∣∣∣ζyθxcn

∣∣∣2
1y

)
,

where 1 ≤ n ≤ N. With inequality (3.7), the inequality (3.6) can be simplified as

Gn ≤ (1 +C15τ) Gn−1 + b(n)
n

∥∥∥θxθyc0
∥∥∥2 + 2τ

〈
f n− 1

2 , θxθycn
〉
.

We utilize Lemma 3.8 to derive that

Gn ≤ eC15nτ

[
G0 +

n−1∑
k=1

b(k)
k

∥∥∥θxθyc0
∥∥∥2 + 2τ

n∑
k=1

〈
f k− 1

2 , θxθyck
〉 ]
, 1 ≤ n ≤ N. (3.8)

According to the definition of
{
b(n)

n−k+1, k = 1, 2, · · · , n
}
, we have by Lemma 3.3 that b(n)

1 = 1+τa(n)
1 >

1 +C16τ, and b(n)
n−k+1 > C16τ, for k = 1, 2, · · · , n − 1. Then, Gn has the lower bound

Gn ≥ (1 +C16τ)
∥∥∥θxθycn

∥∥∥2 +C16τ

n−1∑
k=1

∥∥∥θxθyck
∥∥∥2 + τκ

2

(∣∣∣ζ xθycn
∣∣∣2
1x
+
∣∣∣ζyθxcn

∣∣∣2
1y

)
. (3.9)
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We combine estimates (3.8) and (3.9) to conclude that for 1 ≤ n ≤ N,

(1 +C16τ)
∥∥∥θxθycn

∥∥∥2 +C16τ

n−1∑
k=1

∥∥∥θxθyck
∥∥∥2 + τκ

2

(∣∣∣ζ xθycn
∣∣∣2
1x
+
∣∣∣ζyθxcn

∣∣∣2
1y

)
≤ eC15T

τκ2
(∣∣∣ζ xθyc0

∣∣∣2
1x
+
∣∣∣ζyθxc0

∣∣∣2
y

)
+

n−1∑
k=1

b(k)
k

∥∥∥θxθyc0
∥∥∥2 + 2eC15Tτ

n∑
k=1

〈
f k− 1

2 , θxθyck
〉
.

(3.10)

Next, we will analyze the terms in (3.10) individually. First, based on Lemma 3.6, we obtain
the estimates

τκ

2

(∣∣∣ζ xθycn
∣∣∣2
1x
+
∣∣∣ζyθxcn

∣∣∣2
1y

)
≥
τκ

4

(∣∣∣θycn
∣∣∣2
1x
+ |θxcn|

2
1y

)
,

τκ

2

(∣∣∣ζ xθyc0
∣∣∣2
1x
+
∣∣∣ζyθxc0

∣∣∣2
1y

)
≤
τκ

2

(∣∣∣θyc0
∣∣∣2
1x
+
∣∣∣θxc0
∣∣∣2
1y

)
.

(3.11)

By the inequality 2ab ≤ 2εa2 + (1/2ε)b2,

2eC15Tτ

n∑
k=1

〈
f k− 1

2 , θxθyck
〉
≤ C16τ

n∑
k=1

∥∥∥θxθyck
∥∥∥2 + τe2C15T

C16

n∑
k=1

∥∥∥∥ f k− 1
2

∥∥∥∥2 . (3.12)

Taking the estimates (3.11) – (3.12) into (3.10), we can derive the conclusion of the theorem.

3.3. Convergence analysis

Recall that the quadratic spline interpolation Iw(x, y) of the function w(x, y) satisfies

(Iw)
(
ξx

i , ξ
y
j

)
= w
(
ξx

i , ξ
y
j

)
, (i, j) ∈ Λ, (3.13)

and satisfies

(Iw)x

(
xL, ξ

y
j

)
= wx

(
xL, ξ

y
j

)
, (Iw)x

(
xR, ξ

y
j

)
= wx

(
xR, ξ

y
j

)
, j = 0, 1, · · · ,My + 1,

on the left and right boundaries, as well as

(Iw)y
(
ξx

i , yL
)
= wy

(
ξx

i , yL
)
, (Iw)y

(
ξx

i , yR
)
= wy

(
ξx

i , yR
)
, i = 0, 1, · · · ,Mx + 1,

on the other two boundaries. For w(x, y) ∈ C4(Ω̄), we denote a norm ∥w∥c = max(i, j)∈Λ |w
(
ξx

i , ξ
y
j
)
|, and

the interpolation error satisfies [17, 42]

∥(Iw − w)xx∥c = O(∆x2), ∥(Iw − w)yy∥c = O(∆y2). (3.14)

We denote un =
{
un(ξx

i , ξ
y
j), (i, j) ∈ Λ̄

}
as the true solution, and un

h =
{
un

h(ξx
i , ξ

y
j), (i, j) ∈ Λ̄

}
as the

numerical solution by the the QSC-L1+ scheme. Then, the convergence of the QSC-L1+ scheme can
be derived as follows.

Theorem 3.2. If the fractional orders αm(t) satisfy 0 < α∗ ≤ αm(t) ≤ α∗ < 1, then the numerical
solution of the QSC-L1+ scheme converges and satisfies∥∥∥un − un

h

∥∥∥ ≤ C21
(
τmin {3−α∗−α(0), 2} + ∆x2 + ∆y2).
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Proof. With Eq (2.18), for any fixed n, we can construct the following difference equation on the
interpolation Iun(x, y):

δtIun− 1
2 (x, y) +

P∑
m=1

δ̄t
α̃m

nIun− 1
2 (x, y) = κ

[
Iun− 1

2
xx (x, y) + Iun− 1

2
yy (x, y)

]
+ f n− 1

2 (x, y) + gn− 1
2 (x, y), (3.15)

where

gn− 1
2 (x, y) =δt(Iu − u)n− 1

2 (x, y) +
P∑

m=1

δ̄t
α̃m

n (Iu − u)n− 1
2 (x, y)

− κ
[
(Iu − u)n− 1

2
xx (x, y) + (Iu − u)n− 1

2
yy (x, y)

]
+ Rn,

(3.16)

with the definition of Rn in (2.19). We take the collocation points (ξx
i , ξ

y
j) for (i, j) ∈ Λ into (3.15)–

(3.16), and obtain
n∑

k=1

b(n)
n−k+1

[
Iuk(ξx

i , ξ
y
j
)
− Iuk−1(ξx

i , ξ
y
j
)]

= τκ
[
(Iu)n− 1

2
xx
(
ξx

i , ξ
y
j
)
+ (Iu)n− 1

2
yy
(
ξx

i , ξ
y
j
)]
+ τ f n− 1

2
(
ξx

i , ξ
y
j
)
+ τgn− 1

2
(
ξx

i , ξ
y
j
)
.

(3.17)

Based on (2.19) and properties (3.14), gn− 1
2 can be estimated by

∥gn− 1
2 ∥c ≤ C22

(
∆x2 + ∆y2 + τ2

P∑
m=1

t−α̃
m
n −α

m(0)
n + τ

(
t1−αm(0)
n − t1−αm(0)

n−1
)
+ τ2
)
. (3.18)

Since Iun(x, y) ∈ V, we assume Iun(x, y) can be written as

Iun(x, y) =
Mx+1∑
i=0

My+1∑
j=0

dn
i, jϕi(x)ϕ j(y),

where dn
i, j are degrees of freedom (DOFs) of Iun(x, y). Then, Eq (3.17) can be rewritten as

n∑
k=1

b(n)
n−k+1

(
θxθydk

i, j − θxθydk−1
i, j

)
= τκ
(
ηxθy + ηyθx

)
dn− 1

2
i, j + τ f n− 1

2
i, j + τg

n− 1
2

i, j , (i, j) ∈ Λ, (3.19)

where gn− 1
2

i, j = gn− 1
2
(
ξx

i , ξ
y
j
)
, and the boundary conditions for (i, j) ∈ ∂Λ, 1 ≤ n ≤ N,

−ςxθyd
n− 1

2
0, j = φ

n− 1
2

0, j , ςxθyd
n− 1

2
Mx+1, j = φ

n− 1
2

Mx+1, j, −ςyθyd
n− 1

2
i,0 = φ

n− 1
2

i,0 , ςxθyd
n− 1

2
i,My+1 = φ

n− 1
2

i,My+1. (3.20)

Denote en = dn
− cn, and we substitute (3.2) and (2.23) from (3.19) and (3.20) to obtain

n∑
k=1

b(n)
n−k+1

(
θxθyek

i, j − θxθyek−1
i, j

)
= τκ

(
ηxθy + ηyθx

)
en− 1

2
i, j + τg

n− 1
2

i, j , (i, j) ∈ Λ, 1 ≤ n ≤ N,

and for (i, j) ∈ ∂Λ, 1 ≤ n ≤ N such that

−ςxθye
n− 1

2
0, j = 0, ςxθye

n− 1
2

Mx+1, j = 0, −ςyθye
n− 1

2
i,0 = 0, ςxθye

n− 1
2

i,My+1 = 0.
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Applying estimation (3.10) in the proof of Theorem 3.1, together with e0 = 0, we can get

∥∥∥θxθyen
∥∥∥2 ≤ 2eC15Tτ

n∑
k=1

〈
gk− 1

2 , θxθyck
〉
. (3.21)

Defining En = max1≤l≤n

∥∥∥θxθyel
∥∥∥, for n = 1, 2, · · · ,N, we have from (3.21) that

∥∥∥θxθyel
∥∥∥2 ≤ 2τeC15T El

l∑
k=1

∥∥∥∥gk− 1
2

∥∥∥∥ ≤ 2τeC15T En
n∑

k=1

∥∥∥∥gk− 1
2

∥∥∥∥ .
Taking the maximum on the left-hand side for l = 1, 2, · · · , n, we have

(En)2 ≤ 2τeC15T En
n∑

k=1

∥∥∥∥gk− 1
2

∥∥∥∥ ,
which leads to ∥∥∥θxθyen

∥∥∥ ≤ En ≤ 2τeC15T
n∑

k=1

∥∥∥∥gk− 1
2

∥∥∥∥ ≤ C23τ

n∑
k=1

∥∥∥∥gk− 1
2

∥∥∥∥
c
.

Based on the estimation (3.18), we see

C23τ

n∑
k=1

∥∥∥∥gk− 1
2

∥∥∥∥
c
≤ C24

[
T
(
τ2 + ∆x2 + ∆y2

)
+ τ

P∑
m=1

n∑
k=1

(
τ2t
−α̃m

k −α
m(0)

k

)
+ τ2t1−αm(0)

n

]
. (3.22)

Next, we give further discussions on the values of tn.
(I) If tn ≤ 1, we have t1−αm(0)

n ≤ t1−α(0)
n , and t

−α̃m
k −α

m(0)
k ≤ t−α

∗−α(0)
k for k ≤ n, where α̃n = max1≤m≤P α̃

m
n ,

and α(0) = max1≤m≤P α
m(0). Therefore, we have

τ

n∑
k=1

(
τ2t
−α̃m

k −α
m(0)

k

)
≤ τ3−α∗−α(0) + τ2

∫ tn

t1
t−α

∗−α(0)dt =
τ2t1−α∗−α(0)

n

1 − α∗ − α(0)
−
α∗ + α(0)

1 − α∗ − α(0)
τ3−α∗−α(0). (3.23)

(II) If tn > 1, we have t1−αm(0)
n ≤ t1−ᾱ(0)

n for ᾱ(0) = min1≤m≤P α
m(0). Meanwhile, we define an integer

k̄ = ⌊1/τ⌋, which leads to tk ≤ 1 for k ≤ k̄, and we can refer to the case (I) above for the summation.
For k ≥ k̄ + 1, we have tk > 1 and t

−α̃m
k −α

m(0)
k ≤ t−α∗−ᾱ(0)

k , then we have

τ

n∑
k=1

(
τ2t
−α̃m

k −α
m(0)

k

)
=

t1−α∗−α(0)
k̄

1 − α∗ − α(0)
τ2 −

α∗ + α(0)
1 − α∗ − α(0)

τ3−α∗−α(0) +
t1−α∗−ᾱ(0)
n − t1−α∗−ᾱ(0)

k̄

1 − α∗ − α(0)
τ2. (3.24)

Thus, we can substitute (3.23) and (3.24) into (3.22) to obtain∥∥∥θxθyen
∥∥∥ ≤ C21

(
τmin {3−α∗−α(0), 2} + ∆x2 + ∆y2

)
. (3.25)

Since
(
Iu − u

)n (
ξx

i , ξ
y
j

)
= 0, we can get∥∥∥un − un

h

∥∥∥ = ∥Iun − un
h∥ = ∥θxθyen∥.

With the estimate provided in (3.25), we can obtain the convergence result.
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Remark 3.1. If the fractional orders αm(t) satisfy α∗ + α(0) < 1, one can obtain∥∥∥un − un
h

∥∥∥ ≤ C25

(
τ2 + ∆x2 + ∆y2

)
.

Remark 3.2. The convergence of the numerical solution always depends on the well-posedness of the
solution. If the fractional orders do not satisfy the restriction (2.4), the well-posedness of the solution
in Lemma 2.1 will not hold anymore. Under some weak regularity of the solution, such as

||u(X, t)||2 ≤ C, ||u′(X, t)||2 + t||u′′(X, t)||1 + t2||u′′′(X, t)||1 ≤ Ctσ−1,

for a positive parameter σ, then it can be obtained similarly that∥∥∥un − un
h

∥∥∥ ≤ C
(
τmin{σ,2} + ∆x2 + ∆y2

)
.

Remark 3.3. If the solution satisfies u ∈ C2[0,T ], the QSC-L1+ scheme can achieve second temporal
convergence order, which fits well with the example confirmation in Ref. [33].

4. Acceleration techniques

The Caputo time fractional operator is a nonlocal operator, and its discretization typically involves
the numerical approximations at all the historical time points, which can be prohibitively expensive,
especially for complicated systems and long-term simulations. To mitigate this computational burden,
we utilize the ESA technique introduced in [35] to reduce the computational cost during the
implementation of the L1+ formula. The primary task is to efficiently approximate the function t−α̃

m
n in

the integration (2.7) over the subinterval [τ,T ], while the implementation on the subinterval [0, τ]
does not require acceleration.

It is reported in [35] that for a small tolerance ε > 0, one can define

h =
2π

log 3 + α∗ log(cos 1)−1 + log ε−1 , N =
⌈1
h

1
α∗

(
log ε + logΓ(1 + α∗)

)⌉
,

N =
⌊1
h

(
log

T
τ
+ log log ε−1 + logα∗ + 2−1

)⌋
.

For t ∈ [tn−1, tn], s ∈ [0, tn−2], such that t − s ≥ τ, and the exponential function in the definition of
the variable order Caputo time fractional derivative can be approximated by

( t − s
T

)−α̃m
n
≈

N∑
r=N+1

ϱ(n,r)e
−χ(r)(t−s)

T ,

where

χ(r) = erh, ϱ(n,r) =
heα̃

m
n rh

Γ
(
α̃m

n
) .

Now for any v ∈ T and 1 ≤ m ≤ P, the L1+ operator δ̄α̃
m
n

t v(tn− 1
2
) with n ≥ 2 defined in (2.8) can be

decomposed as

δ̄
α̃m

n
t v
(
tn− 1

2

)
=

1
τ

∫ tn

tn−1

∫ tn−2

0
∂tΠv(s) ω1−α̃m

n (t − s)dsdt +
1
τ

∫ tn

tn−1

∫ t

tn−2

∂tΠv(s) ω1−α̃m
n (t − s)dsdt

:= Itn−2
t0

(
tn− 1

2

)
+

n∑
k=n−1

a(n,m)
n−k+1

(
vk − vk−1). (4.1)
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The first term in (4.1) represents the historical summation, which can be written as

Itn−2
t0

(
tn− 1

2

)
=

T−α̃
m
n

τΓ(1 − α̃m
n )

∫ tn

tn−1

∫ tn−2

0
∂tΠv(s)

( t − s
T

)−α̃m
n dsdt

≈
T−α̃

m
n

τΓ(1 − α̃m
n )

∫ tn

tn−1

∫ tn−2

0
∂tΠv(s)

N∑
r=N+1

ϱ(n,r)e−χ
(r) t−s

T dsdt

:=
T−α̃

m
n

τΓ(1 − α̃m
n )

N∑
r=N+1

ϱ(n,r)b(n,r)V (n,r),

(4.2)

where

b(n,r) =

∫ tn

tn−1

e−χ
(r) t−tn−2

T dt, V (n,r) =

∫ tn−2

0
∂tΠv(s)e−χ

(r) tn−2−s
T ds, r = N + 1, · · · , N.

We can see that V (2,r) = 0, and V (n,r) can be expressed as obtained recursively by

V (n,r) =

∫ tn−3

0
∂tΠv(s)e−χ

(r) tn−2−s
T ds +

∫ tn−2

tn−3

∂tΠv(s)e−χ
(r) tn−2−s

T ds

= e−χ
(r) τ

T V (n−1,r) +
T
χ(r)τ

(
1 − e−χ

(r) τ
T
)(

vn−2 − vn−3).
This means that V (n,r) can be recursively obtained with the value V (n−1,r) at the previous time instant.

Taking expressions (4.2) into (4.1), we can get the fast evaluation method of the L1+ formula for the
variable order fractional operator,

δ̃
α̃m

n
t v
(
tn− 1

2

)
:=

n∑
k=n−1

a(n,m)
n−k+1

(
vk − vk−1) + T−α̃

m
n

τΓ(1 − α̃m
n )

N∑
r=N+1

ϱ(n,r)b(n,r)V (n,r). (4.3)

Using the fast evaluation (4.3), we can get an accelerated scheme, named the QSC-FL1+ scheme.
Actually, when n = 1, 2, we still employ (2.21) to compute Eq (2.1). For n ≥ 3, we take the following
QSC-FL1+ scheme,

δtθxθyc
n− 1

2
i, j +

P∑
m=1

δ̃t
α̃m

n θxθycn
i, j = κ(ηxθy + ηyθx)c

n− 1
2

i, j + f n− 1
2

i, j . (4.4)

Compared with the computational cost O(MxMyN2) for the QSC-L1+ scheme (2.21), the cost for
the QSC-FL1+ scheme (4.4) is reduced to O(MxMyN log2 N). Moreover, the memory requirement is
also significantly decreased from O(MxMyN) to O(MxMy log2 N).

5. Numerical experiments

Example 5.1. We limit Eq (2.1) within the spatial domain Ω = (0, 1) × (0, 1) and over the temporal
interval [0,T ] = [0, 1], and consider various combinations of the subsequent variable fractional
time orders,

α1(t) = 0.3 + 0.5t, α2(t) = 0.9 − 0.5t −
1

4π
[
sin
(
2π(1 − t)

)]
,

α3(t) = 0.45 − 0.3t, α4(t) =
∣∣∣3(t − 0.5)2 − 0.2

∣∣∣ + 0.3.
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We take κ = 1, u0(x, y) = cos(πx) cos(πy), and impose the homogeneous Neumann boundary
conditions and a homogeneous source function.

Since the true solution is unknown, the numerical solution on a finer space-time mesh is chosen as
the reference solution for comparison, then the error can be measured by

Err2 := ∆x∆y
Mx+1∑
i=0

My+1∑
j=0

∣∣∣∣un
h
(
ξx

i , ξ
y
j
)
− u2n

h
(
ξx

2i, ξ
y
2 j

)∣∣∣∣2 .
Now, we compute the convergence orders of the new proposed scheme. We first choose Mx = My =

212, which is small enough, and change the value of N from 29 to 212. The observed errors near the
initial time point and the corresponding orders of convergence in time are shown in Table 1. It can be
seen that the temporal convergence orders fit the theoretical order O

(
τmin {3−α∗−α(0), 2}) very well. The

errors at the final point and corresponding orders are shown in Table 2. It seems that the initial weak
singularity almost does not effect the convergence orders at the instances far away. Then, we choose
N = 210 such that temporal mesh size is small enough, and change the value of Mx and My from 26

to 29. The observed errors and the spatial orders are shown in Table 3. We can see that the numerical
results are consistent with the theoretical results.

Besides, in order to thoroughly investigate the effectiveness and efficiency of the ESA technique,
we compare the observed errors and the running time for both the QSC-L1+ scheme and the QSC-
FL1+ scheme in Table 4. We can clearly observe that the QSC-FL1+ scheme requires significantly less
running time compared to the QSC-L1+ scheme, while achieving comparable levels of errors with the
same discretization parameters. This finding exhibits the superiority of the ESA technique in terms of
computational efficiency.

Table 1. Errors and temporal convergence orders of QSC-L1+ near the initial time point.(
α1(t), α3(t)

) (
α1(t), α4(t)

) (
α2(t), α4(t)

)
N Err order Err order Err order
29 4.00e-05 — 5.93e-05 — 5.12e-05 —
210 7.05e-06 2.50 1.84e-05 1.68 1.98e-05 1.37
211 1.26e-06 2.48 6.40e-06 1.52 8.31e-06 1.25
212 2.30e-07 2.45 2.42e-06 1.40 3.65e-06 1.19

≈ 2.00 ≈ 1.30 ≈ 1.20

Table 2. Errors and temporal convergence orders of QSC-L1+ at final point.(
α1(t), α3(t)

) (
α1(t), α4(t)

) (
α2(t), α4(t)

)
N Err order Err order Err order
27 1.11e-06 — 2.47e-06 — 2.80e-06 —
28 2.76e-07 1.99 3.69e-07 2.74 5.37e-07 2.38
29 6.89e-08 2.00 8.88e-08 2.05 1.31e-07 2.03
210 1.72e-08 2.00 2.15e-08 2.04 3.24e-08 2.01

≈ 2.00 ≈ 2.00 ≈ 2.00
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Table 3. Errors and spatial convergence orders of the QSC-L1+ scheme.(
α1(t), α3(t)

) (
α1(t), α4(t)

) (
α2(t), α4(t)

)
Mx = My Err order Err order Err order
26 4.58e-06 — 4.06e-06 — 4.87e-06 —
27 1.15e-06 1.99 1.02e-06 2.00 1.22e-06 1.99
28 2.87e-07 2.00 2.54e-07 2.00 3.05e-07 2.00
29 7.16e-08 2.00 6.35e-08 1.99 7.61e-08 2.00

≈ 2.00 ≈ 2.00 ≈ 2.00

Table 4. Observing errors and computational cost of the numerical schemes.

QSC-L1+ QSC-FL1+

Mx = My N Err T ime (S ec.) Err T ime (S ec.)(
α1(t), α2(t)

)
26 29 4.80e-06 2.2 5.03e-06 2.6
27 210 1.20e-06 36.9 1.18e-06 33.3
28 211 3.00e-07 446.8 2.79e-07 274.1
29 212 7.51e-08 11217.5 5.22e-08 4178.5(

α1(t), α4(t)
)

26 29 4.44e-06 2.1 4.44e-06 2.8
27 210 1.34e-06 37.0 1.34e-06 36.1
28 211 2.88e-07 438.8 2.88e-07 300.0
29 212 8.29e-08 11079.5 8.29e-08 4533.4(

α2(t), α4(t)
)

26 29 4.29e-06 2.1 4.52e-06 2.6
27 210 1.07e-06 36.7 1.05e-06 33.1
28 211 2.69e-07 447.1 2.63e-07 280.6
29 212 6.72e-08 11173.7 1.74e-08 4068.3

Example 5.2. We extend Eq (2.1) into three-dimensional spatial domain Ω = (0, 1) × (0, 1) × (0, 1),
and still on the temporal interval [0,T ] = [0, 1], with the same variable fractional orders as
Example 5.1. We choose the proper source function, such that the true solution is
u(x, y, z, t) = (1 + t3) cos πx cos πy cos πz, which satisfies the homogeneous Neumann boundary
conditions and the initial value u0(x, y) = cos πx cos πy cos πz. For such a problem, there is no
singularity at the initial point, and the theoretical convergence order is O

(
τ2 + ∆x2 + ∆y2). To verify

such a result, we first choose Mx = My = Mz = 26, and change the value of N from 22 to 25. The
observed errors at the final point and the corresponding temporal convergence orders are shown in
Table 5. Then, we choose N = 28, and change the value of Mx, My, and Mz from 22 to 25. The
observed errors and the spatial convergence orders are shown in Table 6. We can see that the
numerical results are consistent with the theoretical results.
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Table 5. Errors and temporal convergence orders of QSC-L1+ for Example 5.2.(
α1(t), α3(t)

) (
α1(t), α4(t)

) (
α2(t), α4(t)

)
N Err order Err order Err order
22 1.62e-02 — 1.61e-02 — 1.62e-02 —
23 4.08e-03 1.99 4.07e-03 1.98 4.09e-03 1.99
24 1.07e-03 1.93 1.06e-03 1.94 1.07e-03 1.93
25 3.15e-04 1.80 3.13e-04 1.76 3.15e-04 1.76

≈ 2.00 ≈ 2.00 ≈ 2.00

Table 6. Errors and spatial convergence orders of the QSC-L1+ scheme for Example 5.2.(
α1(t), α3(t)

) (
α1(t), α4(t)

) (
α2(t), α4(t)

)
Mx = My = Mz Err order Err order Err order
22 1.51e-02 — 1.51e-02 — 1.51e-02 —
23 3.97e-03 1.92 3.95e-03 1.93 3.96e-03 1.93
24 1.01e-03 1.97 1.00e-03 1.98 1.01e-03 1.97
25 2.55e-04 1.99 2.54e-04 1.98 2.55e-04 1.99

≈ 2.00 ≈ 2.00 ≈ 2.00

6. Concluding remark

In this paper, we have proposed a novel QSC-L1+ scheme specifically designed for solving the
multi-term variable-order TF-MID equation with Neumann boundary conditions, which is often used
to model solute transport in porous media. The new scheme has been proved to be unconditionally
stable and convergent with order O

(
τmin {3−α∗−α(0), 2} + ∆x2 + ∆y2), with some proper assumptions on

αm(t) and without any restrictions on the solution of the original model. The numerical experiments
have demonstrated that the results obtained using the proposed QSC-L1+ scheme align well with the
theoretical analysis, even when the variable-order function αm(t) is not monotonically decreasing or
even not smooth. Furthermore, to enhance computational efficiency, we incorporate a fast evaluation
method based on the ESA technique into the QSC-L1+ scheme, resulting in the QSC-FL1+ scheme.
This refined approach significantly reduces the computation cost, making it more practical for large-
scale and time-consuming simulations.
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