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Abstract: This paper was based on a kernel-free boundary integral (KFBI) method for solving the
reaction-diffusion equation. The KFBI method serves as a general elliptic solvers for boundary value
problems in an irregular problem domain. Unlike traditional boundary integral methods, the KFBI
method avoids complicated direct integral calculations. Instead, a Cartesian grid-based five-point
compact difference scheme was used to discretize the equivalent simple interface problem, whose
solution is the integral involved in the corresponding boundary integral equations (BIEs). The resulting
linear system was treated with a fast Fourier transform (FFT)-based elliptic solver, and the BIEs were
iteratively solved by the generalized minimal residual (GMRES) method. The first step in solving the
reaction-diffusion equation was to discretize the time variable with a two-stage second-order semi-
implicit Runge-Kutta (SIRK) method, which transforms the problem into a spatial modified Helmholtz
equation in each time step and can be solved by the KFBI method later. The proposed algorithm had
second-order accuracy in both time and space even for small diffusion problems, and the computational
work was roughly proportional to the number of grid nodes in the Cartesian grid due to the fast elliptic
solver used. Numerical results verified the stability, efficiency, and accuracy of the method.

Keywords: kernel-free boundary integral method; Cartesian grid-based method; reaction-diffusion
equation; two-step semi-implicit Runge-Kutta method

1. Introduction

Let Ω ⊂ R2 be a bounded domain. Define the reaction-diffusion equation

∂u(p, t)
∂t

= D∆u + R(u) t > 0, p ∈ Ω, (1.1)

subject to both the initial condition

u(p, 0) = j(p) t = 0, p ∈ Ω, (1.2)
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and the Dirichlet boundary condition

u(p, t) = gD(p, t) t > 0, p ∈ ∂Ω, (1.3)

where u(p, t) is a function that describes the concentration of substances concerning time t and the
two-dimensional space vector p, D is the diffusion coefficient, which is used to express the rate of
diffusion of a substance through space, R(u) describes a chemical or biological reaction as a function
of concentration u, j(p) is the initial data in Ω at time t = 0, and gD(p, t) is the boundary data on ∂Ω.
The first term on the right-hand side of Eq (1.1) represents the diffusion of a substance through space,
and the second term represents the concentration-dependent reaction. The two parts of Eq (1.1) can
lead to a singular perturbation problem. One is when D is small and the diffusion process is completed
in a very short time, and the other is when the reaction term R(u) is nonlinear, both of which can
lead to dramatic oscillations in space. Reaction-diffusion equations for a singular perturbation have
been addressed in several fields, including physics [1–3], ecology [4–6], chemistry [7], and climate
science [8].

For singular perturbation problems, the use of conventional finite-difference methods on uniform
grids can lead to significant oscillations near the boundaries. An effective approach is to improve the
mesh by enabling automatic adjustments of the mesh resolution based on the properties and
requirements of the problem. Gupta et al. [9] generated a spatially adaptive mesh using an
equidistributed positive monitoring function to automatically detect the position, height, and thickness
of the parabolic boundary layer in the solution. Zhang and Liu [10] conducted convergence analysis
on rectangular grids of Bakhvalov type, a special finite element mesh structure. Kaushik et al. [11]
recursively generated modified hierarchical grids by constructing a mesh distribution function, which
served as an upper bound on the optimization error. The Shishkin grid comprises internal and external
layers with the former being a denser grid. A transition layer [12] exists between the two layers to
ensure a smooth transition. Besides, some variations like segmented uniform Shishkin grids [13] have
been proposed to get more flexibility.

Another effective approach is to improve the numerical methods tailored to the specific problem.
The finite difference method (FDM) and the finite element method (FEM) are the most commonly
used numerical techniques for solving the singular perturbation problem. In the framework of the
FDM, non-isometric finite difference schemes [14], hybrid finite difference schemes [13], and special
FDMs incorporating Euler’s method [15] have been successively proposed. High-order FEMs [11],
bilinear FEMs [16], FEMs in h-p version [17, 18], and other novel FEMs have been extensively used.
The reaction-diffusion problem can be solved in time and space separately by applying the multiscale
methods, where different FDMs [13, 15] are applied to time and space, respectively, based on the
problem’s characteristics. In addition to this, Galerkin’s method [19–21] as an application of the
variational method is often applied to solve singular perturbation problems. When the problem has
significant differences in characteristic scales, the numerical asymptotic method [22] allows the
problem to be divided into different regions, where different numerical methods are used separately.

The high-order compact FDM [23–25], when combined with multigrid methods [26], provides an
efficient approach for discretizing equations on both uniform and non-uniform grids. For uniform
grids, Zhang [27] and Gupta et al. [28, 29] proposed multigrid methods and high-order compact
schemes, which were later extended to sixth-order accuracy by Spotz and Carey [30], and Kyei et
al. [31]. On the other hand, for non-uniform grids, researchers such as Ge [32] and Ge et al. [33]
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addressed irregular grid challenges through transformation-free high-order schemes. Similarly, Mayo
and Greenbaum [34] proposed high-order methods for external integral problems, effectively handling
complex grid geometries. Additionally, Saldanha [35] and Boisvert [36] proposed general-purpose
methods that bridge the gap between uniform and non-uniform grids, demonstrating flexibility across
various computational scenarios. Hackbusch and Nowak [37] proposed an approximate matrix-vector
multiplication method for solving linear systems with full matrices in the boundary element method
(BEM) and sparse matrices in FEM, which saves a large number of computations and has been
subsequently applied. To further improve computational speed and memory efficiency, fast solvers
have been proposed and applied to solve the equation on a mesh [38–42], which contains a high-order
boundary integral equation solver [43], including the “black box” solver [44] and FFT-based
solver [45–49].

As we all know, the traditional boundary integral method (BIM) [50] requires the analytical
expression of the kernel function for integral evaluation. To circumvent the calculation of complex
Green’s functions, Ying and Henriquez [46] proposed the KFBI method, which transforms elliptic
problems into boundary integral equations (BIEs) and approximates the boundary or volume integrals
by the FDM. This can be naturally achieved since those integrals are exactly the solutions to some
equivalent simple interface problems according to the potential theory [51]. In this way, analytical
expressions of Green’s functions are no longer needed to be determined, formulated, or computed in
the whole calculation process. This is the true essence of the “kernel-free” method. Besides, the
coefficient matrix of the discrete system always remains unchanged for equivalent interface problems,
thus the system can be solved with a fast elliptic solver. The BIEs for second-order elliptic problems
are the Fredholm integral equations of the second kind and can be solved efficiently by any Krylov
subspace iterative method since the condition number of the resulting system is essentially
independent of the mesh parameter. These advantages constitute the KFBI method to be an efficient,
accurate, and stable solver for elliptic problems in general domains. In this paper, we employ the
KFBI method as the spatial discretization method and use the GMRES method [45, 52] to iteratively
solve the corresponding BIEs.

The rest of the paper is organized as follows. Section 2 discretizes the reaction-diffusion equation
using the two-step semi-implicit Runge-Kutta method reducing it to the form of the modified
Helmholtz equation in each time step. Section 3 introduces the boundary value problem (BVP) and its
integral form, reformulating the Dirichlet BVP into the corresponding BIE. Section 4 addresses
simple interface problems equivalent to boundary or volume integrals involved in the BIE. Section 5
presents the KFBI method for solving the interface problem. Specific numerical examples are
provided in Section 6.

2. Time integral method

The two-step semi-implicit Runge-Kutta (SIRK) method is selected to discretize the time variable t
in the reaction-diffusion equation for the singular perturbation problem. The two-step SIRK method is
a numerical integration algorithm that combines the stability of the implicit Runge-Kutta method with
the geometric properties of the symplectic method. Consider ∂u/∂t = f (u) + g(u) where f (u) is a rigid
term. To balance the computational effort and stability, both implicit and explicit processing of rigid
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and non-rigid terms are employed to derive

K0 = f (un +
1
2

K0∆t) + g(un),

K1 = f (un +
1
2

K1∆t) + g(un + K0∆t),

un+1 = un +
1
2
∆t(K0 + K1).

(2.1)

Here un ≈ u(p, tn) represents the approximation at the time tn, where ∆t = tn+1 − tn is the time
step. The two-stage SIRK method divides time step ∆t into two stages. The interval is considered
(tn, tn + 1

2∆t) as the first stage, and (tn + 1
2∆t, tn + ∆t) for the second stage. K0 and K1 are intermediate

variables for the slope of the first and second stages, respectively. By combining K0 and K1, a second-
order time-integral approximation is constructed. In the SIRK scheme (2.1), the first two steps are
semi-implicit, while the third step is fully explicit. This structure allows the method to preserve the
symplecticity and compatibility of the system while ensuring numerical stability. Define v0 = un,
v1 = un + 1

2 K0∆t ≈ un+ 1
2 , and v2 = un + 1

2 K1∆t ≈ un+ 1
2 . Then the simplification of (2.1) reads

v1 − v0
1
2∆t

= K0 = f (v1) + g(v0),

v2 − v0
1
2∆t

= K1 = f (v2) + g(2v1 − v0),

un+1 = v1 + v2 − v0.

(2.2)

Substituting f (v) = D∆v and g(v) = R(v) into (2.2) will reduce the first two equations to the form
of the modified Helmholtz equation such that

∆v1 −
2

D∆t
v1 = −

2v0

D∆t
−

R(v0)
D

,

∆v2 −
2

D∆t
v2 = −

2v0

D∆t
−

R(2v1 − v0)
D

,

un+1 = v1 + v2 − v0.

(2.3)

According to the Dirichlet boundary condition (1.3), we have

v1(p) = gD(p, tn+ 1
2 ) on ∂Ω,

v2(p) = gD(p, tn+ 1
2 ) on ∂Ω.

(2.4)

This gives us two elliptic partial differential boundary value problems:

∆v1 −
2

D∆t
v1 = −

2v0

D∆t
−

R(v0)
D

in Ω,

v1(p) = gD(p) on ∂Ω,
(2.5)

and
∆v2 −

2
D∆t

v2 = −
2v0

D∆t
−

R(2v1 − v0)
D

in Ω,

v2(p) = gD(p) on ∂Ω.
(2.6)

Solutions v1 and v2 for (2.5) and (2.6) are solved with the KFBI method, and un+1 is updated by
substituting into un+1 = v1 + v2 − v0. The specific calculation process for the elliptic boundary value
problem with the KFBI method is described in the following sections.
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3. Boundary value problem

Suppose Ω ⊂ R2 is a closed domain and Γ = ∂Ω represents its smooth boundary. We consider the
following Dirichlet boundary value problem (BVP):

Au(p) ≡ ∆u(p) − κu(p) = f (p) in Ω,
u(p) = gD(p) on Γ = ∂Ω,

(3.1)

where A is a differential operator for the modified Helmholtz equation, u is an unknown function, ∆
denotes the Laplace operator, p is a spatial variable in Ω, κ is a constant, f is a smooth function defined
in Ω, and gD represents the Dirichlet boundary data.

Let B ⊂ R2 be a large rectangle containing Ω, and let G denote Green’s function to the differential
operatorA on B. Green’s function satisfies the following conditions:

AG = ∆pG(p,q) − κG(p,q) = δ(p − q) p ∈ B, (3.2)
G(p,q) = 0 p ∈ ∂B, (3.3)

for any q ∈ B. Here δ(p − q) denotes the Dirac function, and A is the differential operator defined
earlier. According to potential theory [51], the Dirichlet BVP can be reformulated as:

1
2
φ(p) +

∫
Γ

∂G(q,p)
∂nq

φ(q)dsq = gD(p) −
∫
Ω

G(q,p) f (q)dq. (3.4)

The solution to the Dirichlet BVP is

u(p) =
∫
Γ

∂G(q,p)
∂nq

φ(q)dsq +

∫
Ω

G(q,p) f (q)dq, (3.5)

where φ(q) is the density function and nq is the unit normal vector outward at an interface point q ∈ Γ.
Equation (3.4) can be solved either by Krylov subspace methods such as the GMRES method [52] or
the simple Richardson iteration, which is given by

φk+1(p) = φk(p) + γ
[
gD(p) −

∫
Ω

G(q,p) f (q)dq −
(
1
2
φk(p) +

∫
Γ

∂G(q,p)
∂nq

φk(q)dsq

)]
, (3.6)

where p ∈ Γ is the spatial vector on the boundary, and γ is the iteration parameter with values in the
range (0, 2). As the iteration converges, u(p) can be calculated by formula (3.5).

4. KFBI method

The KFBI method is usually used to solve problems with smooth irregular surfaces, where the
elliptic PDEs are transformed into BIEs using Green’s first or second formula. The integrals in these
equations are computed by a Cartesian grid-based finite difference method. It does not require the
explicit expression of the kernel function, thereby avoiding the direct calculation of complex volume
and boundary integrals.
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4.1. Redefinition of integrals

Let B ⊂ R2 be a rectangular region in the plane. Γ ⊂ B is a smooth interface that divides B into two
regions, Ωi and Ωe, i.e., Γ = Ω̄i ∩ Ω̄e and B = Ωi ∪Ωe ∪Γ. Let n denote the outward unit normal vector
on Γ. With Green’s function defined in B, the double layer potential is presented by

Mφ(p) ≡
∫
Γ

∂G(q,p)
∂nq

φ(q)dsq. (4.1)

The volume integral is defined as

G f (p) ≡
∫
Ω

G(q,p) f (q)dq. (4.2)

By the continuity/discontinuity of the boundary and volume integrals, it is possible to reformulate
the integrals as their equivalent simpler interface problems. The double-layer potential v(p) =Mφ(p)
satisfies the following interface problem:

Av ≡ ∆v − κv = 0 in B \ Γ,
[v] = φ on Γ,
[∂nv] = 0 on Γ,
v = 0 on ∂B.

(4.3)

The discontinuity of the double-layer potential is given by

v+(p) =
1
2
φ(p) +Mφ(p) for p ∈ Γ,

v−(p) = −
1
2
φ(p) +Mφ(p) for p ∈ Γ.

(4.4)

The volume integral v(p) = G f (p) satisfies

Av(p) =
{

fi p ∈ Ωi,

0 p ∈ Ωe,

[v] = 0 on Γ,
[∂nv] = 0 on Γ,
v = 0 on ∂B.

(4.5)

Note that the interface conditions above reflect the continuous property of the potential function v
and its normal derivative ∂nv.

4.2. Interface problem

For a general function u defined in B, which is continuous only in Ωi and Ωe, and discontinuous
across the interface Γ. We define the unknown restriction functions ui = u|p∈Ωi and ue = u|p∈Ωe , while
fi = fi(p) and fe = fe(p) are, respectively, the smooth known functions defined in Ωi and Ωe. We now
consider the interface problem

Au = ∆u − κu =
{

fi in Ωi,

fe in Ωe,
(4.6)
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subject to the interface conditions
ui − ue = φ on Γ,
∂nui − ∂nue = ψ on Γ,

(4.7)

and the Dirichlet boundary condition

ue = 0 on ∂B. (4.8)

To explain the interface conditions (4.7), let u+(p) be the one-sided limit of u at an interface point p
from the subdomain Ωi, and let u−(p) be the one-sided limit at p from Ωe. The difference between the
two is then defined as the jump function φ on the interface. Similarly, the difference between the limits
of their normal partial derivatives is defined as the jump in the partial derivatives ψ:

[u(p)] = u+(p) − u−(p) on Γ,
[∂nu(p)] = ∂nu+(p) − ∂nu−(p) on Γ.

(4.9)

With the notations and properties of the integrals given above, BIE (3.4) can be concisely
expressed as

(Mφ)+ = b on Γ, (4.10)

where b = gD − (G f )+ is the right-hand side. The discretization points on the interface Γ can be
simply selected as quasi-uniformly spaced points through uniformly distributed curve parameters, or
intersection points of the interface with Cartesian grid lines if the interface is implicitly defined. Then
the unknown densities are discretized on these points, thus the dimension of the discrete system is
exactly the number of discrete points on the interface.

Two kinds of iteration methods are feasible to solve the BIE. The Richardson iteration (3.6)
mentioned before can be briefly rewritten in the form of

φk+1 = φk + γ
[
b −

(
Mφk

)+]
. (4.11)

To efficiently solve the discrete system, we consider the generalized minimal residual (GMRES)
method [45], which is a Krylov subspace method for solving general linear system Ax = b. This
method iteratively constructs an orthonormal basis of the Krylov subspace
Km = span{r0, Ar0, A2r0, . . . , Am−1r0}, where r0 = b − Ax0 is the initial residual. At the k-th step, the
algorithm minimizes the residual norm ∥b − Axk∥ over the subspace Km. The key steps in the GMRES
method are described in Algorithm 1.

Algorithm 1: Key steps in GMRES.

1) Start with an initial guess x0 and compute the residual r0 = b − Ax0.

2) Construct an orthonormal basis for the Krylov subspace using the Arnoldi iteration.

3) Solve a least-squares problem to determine the update direction.

4) Update the solution xk+1 and repeat until convergence.
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In this work, the coefficient matrix A in the linear system is not explicitly given but is defined by
the integral operator. To use the GMRES method, BIE (4.10) is regarded as a linear system, where the
discrete vector φ is unknown to be solved, the discrete boundary integral operator (Mφ)+ is considered
as the matrix-vector product “Ax”, and b = gD − (G f )+ is the right-hand side computed in advance.
This information is substituted into the GMRES procedure. In the iterative process, when a matrix-
vector product is encountered, we compute the corresponding integral as its counterpart. The GMRES
method is particularly well-suited for large, sparse systems. Specifications for integral computation are
presented in the following subsections.

4.3. Discretization with the compact difference method

Let B be a square box with sides (a, b) and (c, d) that contains Γ, M is the number of partitions on
each side, and h = (b−a)/M = (d−c)/M is the grid parameter. The grid nodes can then be represented
by (xi, y j), where xi = a + ih, y j = c + jh with i, j = 0, 1, 2, . . . ,M. For a general function v defined on
B, denote vi, j ≈ v(xi, y j) as its grid approximation. For a given function f , denote fi, j = f (xi, y j) as its
value on the grid. Based on the traditional five-point finite difference scheme for second-order partial
differential approximation [53], one obtains the following five-point finite difference scheme for the
modified Helmholtz equation:

Ahvi, j ≡
vi−1, j + vi+1, j + vi, j−1 + vi, j+1 − 4vi, j

h2 − κvi, j = fi, j. (4.12)

HereAh represents the difference operator for the partial differential equations and κ is a constant.
In the discretization process, the standard finite difference scheme produces large local truncation

errors near the interface. Thus, it is necessary to identify the irregular grid points near the interface
before correcting the truncation error. For a given grid point P, the four neighboring grid points
P1, P2, P3, and P4 along with the centering point P constitute the five-point compact difference stencil,
as shown in Figure 1. Grid points whose five-point stencil intersects the interface are classified as
irregular points. More concisely, two adjacent grid points located on different sides of the interface
are considered to be irregular. For simplicity, we consider only the case where the five-point stencil
intersects the interface once.

Figure 1. Five-point compact difference stencil for irregular points.
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Suppose (xi, y j) is an irregular grid point in the subdomain Ωi, whose right-hand neighboring grid
(xi+1, y j) lies in Ωe. The second-order finite difference scheme at (xi, y j) is given by

Ahv+i, j ≡
v+i−1, j + v+i+1, j + v+i, j−1 + v+i, j+1 − 4v+i, j

h2 − κv+i, j = f +i, j, (4.13)

where the superscript “+” is used because the centering point (xi, y j) is an interior point Ωi. However,
since (xi+1, y j) lies in Ωe as an assumption, this leads to a large local truncation error. Next, we will
estimate the leading order term of the local truncation error using a Taylor expansion. Denote zi

as the intersection point of the five-point stencil and the interface in the horizontal direction, with
xi ≤ zi < xi+1. We perform a Taylor expansion of v+(x, y j) and v−(x, y j) at the intersection point (zi, y j),
and then

v±(xi+1, y j) = v±(zi, y j) + ∂xv±(zi, y j)(xi+1 − zi) +
1
2
∂xx(zi, y j)(xi+1 − zi)2 + O(h3). (4.14)

Substituting the Taylor expansion (4.14) into the calculation of the truncation error yields

E+h,x(xi, y j) =
v+(xi+1, y j) − v−(xi+1, y j)

h2

=
1
h2

{
[v] + [vx](xi+1 − zi) +

1
2

[vxx](xi+1 − zi)2
}
+ O(h),

(4.15)

where [v] = v+(zi, y j)− v−(zi, y j), [vx] = v+x (zi, y j)− v−x (zi, y j) and [vxx] = v+xx(zi, y j)− v−xx(zi, y j) represent
jumps of v and its partial derivatives. If (xi, y j) is an irregular grid point in the subdomain Ωe, then the
truncation error is

E−h,x(xi, y j) = −
v+(xi+1, y j) − v−(xi+1, y j)

h2

= −
1
h2

{
[v] + [vx](xi+1 − zi) +

1
2

[vxx](xi+1 − zi)2
}
+ O(h).

(4.16)

Thus, we can obtain a first-order approximation C±h,x of the truncation error E±h,x at the interface

C+h,x(xi, y j) =
1
h2

{
[v] + [vx](xi+1 − zi) +

1
2

[vxx](xi+1 − zi)2
}

if (xi, y j) ∈ Ωi,

C−h,x(xi, y j) = −
1
h2

{
[v] + [vx](xi−1 − zi) +

1
2

[vxx](xi−1 − zi)2
}

if (xi, y j) ∈ Ωe.

(4.17)

Similarly, the approximation of the truncation error in the vertical direction can be calculated by

C+h,y(xi, y j) =
1
h2

{
[v] + [vy](y j+1 − z j) +

1
2

[vyy](y j+1 − z j)2
}

if (xi, y j) ∈ Ωi,

C−h,y(xi, y j) = −
1
h2

{
[v] + [vy](y j+1 − z j) +

1
2

[vyy](y j+1 − z j)2
}

if (xi, y j) ∈ Ωe,

(4.18)

where z j is the intersection point along the y-direction, and y j ≤ z j < y j+1. For irregular points,
intersections of the five-point stencil and the interface are discussed separately in both horizontal and
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vertical directions, which are shown in Figure 2. The leading order terms of the truncation error in the
x- and y-direction can be computed according to correction formulas (4.17) and (4.18). Thus, we have
the following corrected finite difference scheme.

Ahvi, j =

{
fi, j if (xi, y j) is a regular point,

fi, j +Ch(xi, y j) if (xi, y j) is an irregular point.
(4.19)

The modified system has the same coefficient matrix as the standard five-point compact finite
difference equations, thus can be solved by the FFT-based fast elliptic solver. Numerical experiments
show that correcting the local truncation errors, which are O(h) at irregular grid points, is sufficient to
guarantee global second-order accuracy of the discrete solution.

Figure 2. Schematic diagram of the intersection in the vertical and horizontal directions.

4.4. Interpolation of the boundary integral values

Let v(p) be a smooth function on B \ Γ, which is discontinuous only across Γ, and thus we need to
recalculate the value of the function on the interface. Here we use polynomial interpolation because
polynomial interpolation provides numerical stability. Assume that q ∈ Γ is a point on the interface,
and then the Taylor expansion of v(p) around the point q yields

v(p) = v+(q) +
∂v+(q)
∂x

ζ +
∂v+(q)
∂y

η +
1
2
∂2v+(q)
∂x2 ζ2

+
∂2v+(q)
∂x∂y

ζη +
1
2
∂2v+(q)
∂y2 η2 + O(|p − q|3) p ∈ Ωi,

(4.20)

v(p) = v−(q) +
∂v−(q)
∂x

ζ +
∂v−(q)
∂y

η +
1
2
∂2v−(q)
∂x2 ζ2

+
∂2v−(q)
∂x∂y

ζη +
1
2
∂2v−(q)
∂y2 η2 + O(|p − q|3) p ∈ Ωe,

(4.21)

where (ζ, η)T = p − q. According to the Taylor expansions (4.20) and (4.21), the solution v+(q) is
obtained. There are six unknowns in the equation, and for the equation to have a unique solution, it is
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necessary to find six different points and perform a Taylor expansion at each of them to form a system
of linear equations, which is then solved by the GMRES method.

For a given point Q on the interface, the first step is to select the nearest grid point P1 to Q. Then the
four neighboring grid points P2, P3, P4, and P5 of P1 (above, below, left and right) are chosen as part
of the six-point template. Finally, the diagonal grid point of P1 is selected as the sixth point. When Q
lies on a grid line, the diagonal grid point to the left of the vector

−−−→
P1Q, which is closer to Q, is chosen

as the sixth point. When Q lies exactly on a grid point, the diagonal grid point on the left side of the
two outer diagonal grid points of Q is selected as the sixth point, as shown in Figure 3.

Figure 3. Three cases of six-point templates in polynomial interpolation.

For convenience, let

V± = v±(q), V±x =
∂v±(q)
∂x

, V±y =
∂v±(q)
∂y

,

V±xx =
∂2v±(q)
∂x2 , V±xy =

∂2v±(q)
∂x∂y

, V±yy =
∂2v±(q)
∂y2 .

(4.22)

Thus, for each point p j ( j = 0, 1, 2, 3, 4, 5), the Taylor expansion can be rewritten as

V+ + V+x ζ j + V+y η j +
1
2

V+xxζ
2
j + V+xyζ jη j +

1
2

V+yyη
2
j = v(p j) p j ∈ Ωi, (4.23)

V− + V−x ζ j + V−y η j +
1
2

V−xxζ
2
j + V−xyζ jη j +

1
2

V−yyη
2
j = v(p j) p j ∈ Ωe. (4.24)

Since the points on the interface and the jumps in the partial derivatives of their first- and second-
order are known, we can re-express the Taylor expansions for the points p j outside the interface as

V+ + V+x ζ j + V+y η j +
1
2

V+xxζ
2
j + V+xyζ jη j +

1
2

V+yyη
2
j

= [V] + [Vx]ζ j + [Vy]η j +
1
2

[Vxx]ζ2
j + [Vxy]ζ jη j +

1
2

[Vyy]η2
j + v(p j) p j ∈ Ωe.

(4.25)
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Combining the formulas (4.23) and (4.25) yields a system of linear equations for six points, which
is then solved using either the GMRES method or the CG algorithm. The resulting V+ is used as
the function value at the points on the interface. We note that the jump calculation required in the
correction and interpolation module is detailed in [42].

5. Algorithm summary

In the proposed method, the reaction-diffusion equation is discretized by a two-stage SIRK method.
At each time step, the resulting spatial equation is always a modified Helmholtz equation and can be
solved by the KFBI method. The KFBI method first reformulates the elliptic boundary value problem
into BIEs. Integrals involved in the BIEs are regarded as the solutions to some equivalent simple
interface problems defined in the regular domainB. Grid solutions of the equivalent interface problems
are obtained by a three-step procedure, namely discretization, correction, and a fast solution, while the
boundary evaluation of integrals needs a further interpolation process. The specific calculation process
is summarized in Algorithm 2.

Algorithm 2: Solution of the reaction-diffusion equation.

1) Discretize the reaction-diffusion equation using the two-stage SIRK method.

2) Solve the elliptic BVPs at each time step using the KFBI method:

- Setup a Cartesian grid on the domain B.

- Identify and adjust the regular and irregular grid nodes near the interface.

- Correct the finite difference scheme on irregular grid nodes.

- Calculate the approximate grid data by the FFT-based fast elliptic solver.

- Use polynomial interpolation to compute data on the interface.

- Iterate using the GMRES or Richardson method to update the solution of the BIEs until
convergence.

3) Update the temporal data according to the SIRK scheme.

6. Numerical example

This section presents numerical examples of the modified Helmholtz equation and the reaction-
diffusion equation, both of which are solved using the KFBI method. For convenience, the square
domain B is set to be [−1.2, 1.2]× [−1.2, 1.2] by default, and interfaces or boundaries are described by
parametric curves or quadratic spline curves. Boundary integral equations involved in the algorithm
are iteratively solved by the GMRES method and iteration ends when the residuals are less than 10−15.
Tables 1–3 provide numerical results of different reaction-diffusion equations with different diffusion
coefficients D. In each case, solution error eh is computed in both the maximum norm and the one
norm where
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∥eh∥∞ = max
(xi,y j)∈Ω

∣∣∣ei j

∣∣∣ ,
∥eh∥1 =

1
N

∑
(xi,y j)∈Ω

∣∣∣ei j

∣∣∣ . (6.1)

Here N is the number of points in the domain Ω. Table 1 shows the results for the curve obtained by
four spline interpolations for the scattered points. Tables 2 and 3 show the results based on the known
parametric equations.

Table 1. Numerical results of arithmetic Example 1.

D Grid size 128 × 128 256 × 256 512 × 512 1024 × 1024
D = 100 Time step 0.1 0.05 0.025 0.0125

∥eh∥∞ 3.31E-03 9.36E-04 2.57E-04 6.81E-05
∥eh∥1 1.65E-03 4.63E-04 1.26E-04 3.31E-05

D = 10−1 Time step 0.1 0.05 0.025 0.0125
∥eh∥∞ 3.61E-03 9.46E-04 2.45E-04 6.20E-05
∥eh∥1 1.78E-03 4.67E-04 1.20E-04 3.06E-05

D = 10−2 Time step 0.1 0.05 0.025 0.0125
∥eh∥∞ 4.28E-03 9.87E-04 2.45E-04 7.45E-05
∥eh∥1 1.38E-03 3.58E-04 9.25E-05 2.35E-05

D = 10−3 Time step 0.1 0.05 0.025 0.0125
∥eh∥∞ 8.67E-02 1.51E-02 3.85E-03 8.68E-04
∥eh∥1 1.86E-03 4.32E-04 1.02E-04 2.51E-05

Table 2. Numerical results of Example 2.

D Grid size 128 × 128 256 × 256 512 × 512 1024 × 1024
D = 100 Time step 0.1 0.05 0.025 0.0125

∥eh∥∞ 7.62E-02 1.99E-02 5.13E-03 1.31E-03
∥eh∥1 3.59E-02 9.16E-03 2.31E-03 5.82E-04

D = 10−1 Time step 0.1 0.05 0.025 0.0125
∥eh∥∞ 1.06E-01 2.88E-02 7.49E-03 1.91E-03
∥eh∥1 6.04E-02 1.62E-02 4.21E-03 1.07E-03

D = 10−2 Time step 0.1 0.05 0.025 0.0125
∥eh∥∞ 1.55E-01 4.25E-02 1.09E-02 2.80E-03
∥eh∥1 7.71E-02 2.10E-02 5.45E-03 1.39E-03

D = 10−3 Time step 0.1 0.05 0.025 0.0125
∥eh∥∞ 8.67E-01 2.02E-01 5.35E-02 1.35E-02
∥eh∥1 8.36E-02 2.22E-02 5.72E-03 1.45E-03

Electronic Research Archive Volume 33, Issue 2, 556–581.



569

Table 3. Numerical results of Example 3.

D Grid size 128 × 128 256 × 256 512 × 512 1024 × 1024
D = 100 Time step 0.1 0.05 0.025 0.0125

∥eh∥∞ 2.50E-03 6.54E-04 1.68E-04 4.22E-05
∥eh∥1 1.32E-03 3.50E-04 9.17E-05 2.36E-05

D = 10−1 Time step 0.1 0.05 0.025 0.0125
∥eh∥∞ 2.83E-03 7.41E-04 1.92E-04 4.91E-05
∥eh∥1 1.58E-03 4.12E-04 1.07E-04 2.70E-05

D = 10−2 Time step 0.1 0.05 0.025 0.0125
∥eh∥∞ 4.17E-03 9.84E-04 2.91E-04 7.23E-05
∥eh∥1 1.36E-03 3.46E-04 9.29E-05 2.33E-05

D = 10−3 Time step 0.1 0.05 0.025 0.0125
∥eh∥∞ 6.14E-02 1.36E-02 3.93E-03 1.02E-03
∥eh∥1 2.10E-03 4.79E-04 1.07E-04 2.64E-05

Tables 4–6 show the results calculated from the modified Helmholtz equation. The first two rows of
the table show the infinite norm error ∥eh∥∞ and the one norm error ∥eh∥1, respectively, and the third row
shows the CPU times (in seconds) on a MacBook Air laptop computer with an Apple M2 processor.
Table 4 computes the error for the four-spline interpolation curve, and Tables 5 and 6 compute the error
for the parametric curve. Table 7 shows a numerical example for the Allen-Cahn equation whose exact
solution is unknown. We test the numerical accuracy by subtracting the numerical solution on a coarse
grid by that on a corresponding refined grid, and computing the discrete absolute difference in both the
maximum norm and one norm.

Table 4. Numerical results of Example 4.

Grid size 128 × 128 256 × 256 512 × 512 1024 × 1024 2048 × 2048
∥eh∥∞ 2.92E-05 4.50E-06 1.48E-06 1.72E-07 3.95E-08
∥eh∥1 5.47E-06 1.36E-06 3.29E-07 8.17E-08 2.04E-08
CPU time 5.05E+00 1.14E+01 3.12E+01 9.05E+01 3.03E+02

Table 5. Numerical results of Example 5.

Grid size 128 × 128 256 × 256 512 × 512 1024 × 1024 2048 × 2048
∥eh∥∞ 1.29E-04 2.03E-05 2.49E-06 4.77E-07 1.88E-07
∥eh∥1 1.21E-06 1.81E-07 2.25E-08 3.32E-09 5.68E-10
CPU time 1.14E+00 5.40E+00 2.38E+01 1.41E+02 7.04E+02
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Table 6. Numerical results of Example 6.

Grid size 128 × 128 256 × 256 512 × 512 1024 × 1024 2048 × 2048
∥eh∥∞ 1.84E-05 1.49E-06 2.76E-07 5.38E-08 6.27E-09
∥eh∥1 5.50E-07 1.01E-07 2.34E-08 5.49E-09 1.32E-09
CPU time 6.03E-01 2.73E+00 1.42E+01 8.70E+01 5.87E+02

Table 7. Numerical results of Example 7.

Grid size 64 × 64 128 × 128 256 × 256 512 × 512
Time step 0.08 0.04 0.02 0.01
∥eh∥∞ 9.89E-03 2.75E-03 7.28E-04 1.59E-04
∥eh∥1 7.10E-04 1.84E-04 5.30E-05 1.22E-05
CPU time 3.30E+01 3.72E+02 2.96E+02 1.85E+03

Example 1. This example solves the reaction-diffusion equation ∂u/∂t = D∆u + g(u) on the
Dirichlet boundary, with the analytic solution and the corresponding g(u) chosen as

u = et cos(x) sin(y),
g(u) = (1 + 2D)u.

The interface is obtained from 100 scattered points using four spline interpolations and the final
numerical results are shown in Table 1. The heat map and contour map of the numerical results are
shown in Figure 4, and the heat map of the error is shown in Figure 5.

(a) Heat map (b) Contour map

Figure 4. Heat map and contour map of Example 1 on a 512 × 512 grid with D = 1.0 at time
T = 1.0.
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(a) D = 1.0 (b) D = 0.1

(c) D = 0.01 (d) D = 0.001

Figure 5. Error thermogram of the numerical solution of Example 1 on a 512 × 512 grid at
time T = 1.0.

Example 2. This example solves the reaction-diffusion equation ∂u/∂t = D∆u + g(u) on the
Dirichlet boundary, where the solution region is bounded by parametric curves. The parametric
equations are {

x = [(1 − c) − c cos(4t)] cos(t)
y = [(1 − c) − c sin(3t)] sin(t) − 0.1

t ∈ [0, 2π),

with c = 0.1. The analytic solution in this case is

u(x, y, t) = e0.6x+0.8y+2t. (6.2)

Numerical results are shown in Table 2, the heat map and contour plot of the numerical results are
shown in Figure 6, and the heat map of the error is shown in Figure 7.
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(a) Heat map (b) Contour map

Figure 6. Heat map and contour map of Example 2 on a 512 × 512 grid with D = 1.0 at time
T = 1.0.

(a) D = 1.0 (b) D = 0.1

(c) D = 0.01 (d) D = 0.001

Figure 7. Error thermogram of the numerical solution of Example 2 on a 512 × 512 grid at
time T = 1.0.
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(a) Heat map (b) Contour map

Figure 8. Heat map and contour map of Example 3 on a 512 × 512 grid with D = 1.0 at time
T = 1.0.

(a) D = 1.0 (b) D = 0.1

(c) D = 0.01 (d) D = 0.001

Figure 9. Error thermogram of the numerical solution of Example 3 on a 512 × 512 grid at
time T = 1.0.
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Example 3. This example solves the reaction-diffusion equation ∂u/∂t = D∆u + g(u) on the
Dirichlet boundary, where the solution region is enclosed by parametric curves. The parametric
equations are {

x = [(1 − c) − c sin(3t)] cos(t)
y = [(1 − c) − c cos(2t)] sin(t)

t ∈ [0, 2π),

with c = 0.2. The analytic solution is

u(x, y, t) = et sin(0.6x + 0.8y). (6.3)

Numerical results are shown in Table 3, the heat map and contour plot of the numerical results are
shown in Figure 8, and the heat map and contour plot of the errors are shown in Figure 9.

Example 4. This example solves the modified Helmholtz equation ∆u(x, y) − κu(x, y) = f (x, y),
(x, y) ∈ Ω, on the Dirichlet boundary, and the solution region Ω is obtained by interpolating 100
scattered points using four spline interpolations. The coefficient κ is set to be 2.0. The analytic solution
chosen for this example is

u(x, y) = cosh(x + y). (6.4)

Numerical results are shown in Table 4, and heat maps of the numerical results and errors are shown
in Figure 10.

Figure 10. Thermogram of the numerical solution and error for Example 4 on a 1024 × 1024
grid.

Example 5. This example solves the modified Helmholtz equation ∆u(x, y) − κu(x, y) = f (x, y),
(x, y) ∈ Ω, on the Dirichlet boundary, where the solution region is bounded by parametric curves. The
parametric equations are {

x = [(1 − c) + c cos(5t)] cos(t)
y = [(1 − c) + c cos(5t)] sin(t)

t ∈ [0, 2π), (6.5)

with c = 0.3. The coefficient κ is set to be 1.0. The analytic solution in this case is

u(x, y) = sinh(
12
13

x +
5

13
y). (6.6)
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Numerical results are shown in Table 5, and the heat maps of the numerical results and errors are
shown in Figure 11.

Figure 11. Thermogram of the numerical solution and error for Example 5 on a 1024 × 1024
grid.

Example 6. This example solves the modified Helmholtz equation ∆u(x, y) − κu(x, y) = f (x, y),
(x, y) ∈ Ω, on the Dirichlet boundary, where the solution region is bounded by parametric curves, and
parametric equations are {

x = [(1 − c) + c cos(3t)] cos(t)
y = [(1 − c) + c cos(2t)] sin(t)

t ∈ [0, 2π),

with c = 0.1. The coefficient κ is set to be 1.0. The analytic solution in this example is the same as
in Example 5. Numerical results are shown in Table 6, and the heat maps of the numerical results and
errors are shown in Figure 12.

Figure 12. Thermogram of the numerical solution and error for Example 6 on a 1024 × 1024
grid.
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Example 7. This example solves the Allen-Cahn equation ∂u/∂t = D∆u − f (u) with D = 0.01 and
f (u) = u − u3 being the derivatives of the Ginzburg-Landau double-well potential. Suppose that the
solution to the Allen-Cahn equation is subject to the initial condition u0(x, y) = 0.05 sin(x) sin(y), and
the homogeneous Dirichlet boundary condition u|∂Ω = 0. This example has been investigated in [54]
where the problem domain is set to be a square. Here, we consider a general irregular problem domain.
Suppose the domain boundary is given by{

x = [α + β cos(4t)] cos(t) + 3
y = [α + β cos(3t)] sin(t) + 3

t ∈ [0, 2π),

with α = 2.3 and β = 0.2. The bounding box for the interface problem is set to be [0, 2π] × [0, 2π],
consistent with the reference. To verify the numerical accuracy, we take the numerical solution
obtained on 1024 × 1024 grid mesh with ∆t = 5 × 10−3 as the exact solution and compare it with the
corresponding approximation on a coarse grid and time step. The error in maximum norm and one
norm at time T = 1.2 are shown in Table 7, from which it is observed that the scheme achieves
second-order accuracy. Figure 13 presents the heat maps of the numerical results and their
corresponding errors.

Figure 13. Thermogram of the numerical solution and error for Example 7 on a 512 × 512
grid at time T = 1.2.

7. Discussion

This study primarily relies on the KFBI method for solving elliptic partial differential equations on
the Dirichlet boundary, which transforms the boundary value problem into an interface problem,
avoiding the need for complex integral computations. The entire computational process consists of
four steps. The first step is to choose a suitable rectangular region to include the interface and
establish a Cartesian grid, the second step is to correct for irregular points at the interface, the third
step is to solve the problem, using the FFT to compute values at all grid points, and the fourth step is
to interpolate. Polynomial interpolation is used to recalculate the function values at the interface.
Finally, the boundary integral equations are solved using the GMRES method. This method is tested
to enable numerical solution errors of second-order accuracy. This applies not only to the case where
the interface is a parametric curve but also to quadratic spline interpolated curves. On this basis,
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further consideration is given to solving the reaction-diffusion equation, which is transformed into the
form of two modified Helmholtz equations using the two-step semi-implicit Runge-Kutta method, and
the final numerical solution error is obtained with the same second-order accuracy.
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