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Abstract: We study here the special decay properties of real solutions to the initial value problem
associated with the (3 + 1)-dimensional modified Zakharov-Kuznetsov equation. More precisely, we
prove the properties of exponential decay of order 3/2 above the plane x + y + z = 0 as time evolves.
This property is related with the persistence properties of the solution flow in weighted Sobolev spaces
and sharp unique continuation properties of solutions to this problem.
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1. Introduction

In this paper, we would like to investigate the initial value problem (IVP) associated with the
(3+1)-dimensional modified Zakharov-Kuznetsov (mZK) equation∂tu + ∂3

xu + ∂x∂
2
yu + ∂x∂

2
z u + γu2∂xu = 0, (x, y, z) ∈ R3 t ≥ 0,

u(0) = u0,
(1.1)

where u = u(x, y, z, t) is a real-valued function, u0 = u0(x, y, z), and γ is a nonzero constant. Furthermore,
it is proved that its solutions u(x, y, z, t) have the properties of exponential decay above the plane
x + y + z = 0.

Equation (1.1) was proposed by Zakharov and Kuznetsov [1] as a three-dimensional generalization
of the Korteweg-de Vries (KdV) equation, which was derived from the Euler-Poisson system with
magnetic field by Lannes et al. in [2]. This equation describes the unidirectional propagation of
ionic-acoustic waves in magnetized plasma.
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It is easy to see that the ZK equation can be regarded as a multidimensional generalization of the
one-dimensional KdV equation∂tu + ∂3

xu + u∂xu = 0, x ∈ R, t ≥ 0,
u(0) = u0.

It is worth mentioning that two dimensional versions of the KdV equation and modified Korteweg-de
Vries (mKdV) equation are the ZK equation and the mZK equation, respectively. Up to now, to the best
of our knowledge, for the two-dimensional ZK equation, the well-posedness and uniqueness results have
been studied extensively. For some related works, refer to [3–8] and references therein. At the same
time, the Cauchy problem for the 2D mZK equation has also been discussed. The local well-posedness
in H1(R2) was obtained by Biagioni and Linares in [9]. The local result was generalized to the data in
H s(R2), s > 3/4, by Linares and Pastor in [10]. In terms of a smallness assumption on the L2-norm of
the data [11], they proved the global well-posedness in H s(R2), s > 53/63. In [12], Ribaud and Vento
investigated the local well-posedness in H s(R2), s > 1/4.

On the other hand, for the three-dimensional ZK equation, many interesting results have been
obtained. For initial data in H s(R3) with s > 9/8, Linares and Saut [13] showed the local well-posedness
of this initial problem. The local well-posedness theory of the Benjamin-Ono equation was established
in [14] by utilizing similar techniques in [13]. For more discussions of the 3D ZK equation, see [15–17]
and reference therein. Moreover, for the 3D mZK equation, in [18], Grünrock proved the local well-
posedness of the Cauchy problem (1.1) for initial data in H s(R3) with s > 1/2. Kinoshita [19] established
the well-posedness in the critical space H1/2(R3) for the Cauchy problem of the mZK equation. Ali et
al. [20] developed the propagation of dispersive wave solutions for (3+1)-dimensional nonlinear mZK
equation in plasma physics. Further analysis results can be also found in [21] and references therein.

The properties of decay preservation are of great interest. In an innovative paper, Isaza and
León [22] studied the optimal exponential decay properties of solutions to the KdV equation. Larkin and
Tronco [23] derived the decay properties of small solutions for the ZK equation posed on a half-strip.
In [24], Larkin further established the exponential decay of the H1-norm for the 2D ZK equation.
Recently, the decay properties for solutions of the ZK equation were also obtained in [25].

It is obvious that the decay properties are closely related to the aspect of unique continuation. It is
noted that Bustamante et al. [15] derived the unique continuation property of the solutions of the 3D
Zakharov-Kuznetsov equation. In recent years, the unique continuation principles of several models
arising in nonlinear dispersive equations were investigated, see references [26–30] for example.

The well-posedness for the two dimensional generalized ZK equation in anisotropic weighted
Sobolev spaces was discussed in [31]. In [32], Bustamante et al. established the well-posedness of the
IVP for the 2D ZK equation in weighted Sobolev spaces H s(R2) ∩ L2((1 + x2 + y2)rdxdy) for s, r ∈ R.
Furthermore, they also showed in [15] that, for some small ε > 0,

u1, u2 ∈ C([0, 1]; H4(R3) ∩ L2((1 + x2 + y2 + z2)
8
5+εdxdydz)) ∩C1([0, 1]; L2(R3)),

are solutions of the IVP for the three-dimensional ZK equation. Then, there exists a constant a0 > 0
such that if for some a > a0,

u1(0) − u2(0), u1(1) − u2(1) ∈ L2(ea(x2+y2+z2)3/4
dxdydz),
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then u1 ≡ u2.
The main goal of the present paper is to formally derive the decay properties of exponential type

solutions u(x, y, z, t) to the IVP (1.1). In order to achieve this goal, we shall utilize Kato’s approach to
prove Kato’s estimation in three-dimensional form.

Now, we are in the position to state our main results.

Theorem 1.1. Let a0 be a positive constant. For any given data

u0 ∈ H2(R3) ∩ L2(ea0(x+y+z)3/2
+ dxdydz), (1.2)

the unique solution u(·, ·, ·) of the IVP (1.1) provided in [18]

u ∈ C([0,T ]; H2(R3))

satisfies

sup
t∈[0,T ]

∫
R3

ea(t)(x+y+z)3/2
+ |u(x, y, z, t)|2dxdydz ≤ c∗, (1.3)

where

c∗ = c∗
(
a0; ∥u0∥H1(R3); ∥ea0(x+y+z)3/2

+ u0∥L2(R3); T
)
,

with

a(t) =
a0√

1 + 81
4 a2

0t
.

Let us consider weighted spaces with symmetric weight, which take the form

L2(⟨x + y + z⟩bdxdydz) = L2((1 + (x + y + z)2)
b
2 dxdydz).

Regardless of whether the time direction is forward t > 0 or backward t < 0, its persistent properties
should hold.

Theorem 1.2. Let a0 be a positive constant. Let u1, u2 be solutions of the IVP (1.1) such that

u1 ∈ C([0,T ]; H3(R3)) ∩ L2(⟨x + y + z⟩2dxdydz),
u2 ∈ C([0,T ]; H3(R3)).

If

Λ =

∫
R3

ea0(x+y+z)3/2
+ |u0,1(x, y, z) − u0,2(x, y, z)|2dxdydz < ∞,

then

sup
t∈[0,T ]

∫
R3

ea(t)(x+y+z)3/2
+ |u1(x, y, z, t) − u2(x, y, z, t)|2dxdydz ≤ c∗∗, (1.4)

where c∗∗ = c∗∗
(
a0; ∥u0,1∥H4(R3); ∥u0,2∥H4(R3); ∥x2u0,1∥L2(R3); ∥xu0,2∥L2(R3);Λ; T

)
and

a(t) =
a0√

1 + 81
4 a2

0t
.
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Let us denote the norm of the functional space Xs by

∥ f ∥Xs = ∥J s
x f ∥L2(R3) + ∥ f ∥H1

yzL2
x
,

for s > 1/2, where Ĵ s
x(ξ, η, γ) = (1 + ξ2)s/2 f̂ (ξ, η, γ).

In terms of the context, the previous result shows that it is necessary to have a similar property in
a suitable Sobolev space H s(R3) for a solution of the IVP (1.1) to satisfy the persistent property in
L2(⟨x + y + z⟩bdxdydz).

Theorem 1.3. Let u0 ∈ Xs, s > 9/8. There exists T = T (∥u0∥Xs) and a unique solution of the IVP (1.1)
such that u ∈ C([0,T ]; Xs) provided by Lemma 2.1 below. If there exist α > 0 and two different instants
of time t0, t1 ∈ [0,T ] such that

⟨x + y + z⟩αu(x, y, z, t0), ⟨x + y + z⟩αu(x, y, z, t1) ∈ L2(R3),

then for any t ∈ [0,T ],

u(t) ∈ L2(⟨x + y + z⟩αdxdydz),(
∂xu(t) + ∂yu(t)

)
, (∂xu(t) + ∂zu(t)) ∈ L2(⟨x + y + z⟩α−1/2dxdydz).

The rest of this paper is organized as follows. In Section 2, some details on known results of the
three-dimensional mZK equation will be introduced. In Section 3, the weights will be constructed to
put forward the theory. Section 4 is devoted to proving Theorems 1.1 and 1.2. Finally, in Section 5, we
demonstrate Theorem 1.3.

2. Preliminaries

Attention in this section is now turned to prove some preliminary estimates which we often use in
our analysis. We first give the following result.

Lemma 2.1. Given u0 ∈ Xs, s > 9/8, there exists T = T (∥u0∥Xs) and a unique solution of the IVP
(1.1) such that u ∈ C([0,T ]; Xs), u, ∂xu ∈ L1

T L∞xyz. Moreover, the map u0 7→ u is continuous from a
neighborhood of u0 ∈ Xs into C([0,T ]; Xs).

The proof is similar to Theorem 3.9 in [13]. Meanwhile, using the assumptions of Theorem 1.3, we
deduce that ∫ T

0
∥u∥L∞xyzdt +

∫ T

0
∥∂xu∥L∞xyzdt ≤ cT , (2.1)

where cT is a constant.

Lemma 2.2. Let u ∈ C([0,T ]; H2(R3)) be a solution of the IVP (1.1), corresponding to data u0 ∈

H2(R3) ∩ L2(eβ(x+y+z)dxdydz), β > 0. Then,

eβ(x+y+z)u ∈ C([0,T ]; L2(R3))

and

∥eβ(x+y+z)u(t)∥L2(R3) ≤ c∥eβ(x+y+z)u0∥L2(R3), t ∈ [0,T ].
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Proof. Applying Kato’s approach in [33], let us now prove this lemma. First, we consider the equation

∂tu + ∂3
xu + ∂x∂

2
yu + ∂x∂

2
z u + γu2∂xu = 0, (x, y, z) ∈ R3, t ≥ 0. (2.2)

Next, multiplying by uφδ on both sides of Eq (2.2) and integrating by parts, a direct computation gives
rise to

d
dt

∫
R3

u2φδdxdydz +
∫
R3

(∂xu + ∂yu)2∂yφδdxdydz +
∫
R3

(∂xu + ∂zu)2∂zφδdxdydz

+

∫
R3

(∂xu)2(3∂xφδ − ∂yφδ − ∂zφδ)dxdydz +
∫
R3

(∂yu)2(∂xφδ − ∂yφδ)dxdydz

+

∫
R3

(∂zu)2(∂xφδ − ∂zφδ)dxdydz

=

∫
R3

u2
(
∂3

xφδ + ∂xyyφδ + ∂xzzφδ
)

dxdydz +
γ

2

∫
R3

u4∂xφδdxdydz.

For β > 0, we define

φδ(x, y, z) =
eβ(x+y+z)

1 + δeβ(x+y+z) for δ ∈ (0, 1), δ ≪ 1.

Thus, we see that

φδ ∈ L∞(R3) and ∥φδ∥L∞(R3) =
1
δ
. (2.3)

0 ≤ ∂xφδ(x, y, z) = ∂yφδ(x, y, z) = ∂zφδ(x, y, z) =
βeβ(x+y+z)

(1 + δeβ(x+y+z))2 ≤ βφδ(x, y, z),

∂2
xφδ(x, y, z) = ∂xyφδ(x, y, z) = ∂xzφδ(x, y, z) =

β2eβ(x+y+z)(1 − δeβ(x+y+z))
(1 + δeβ(x+y+z))3 ,

and then

|∂2
xφδ(x, y, z)| = |∂xyφδ(x, y, z)| = |∂xzφδ(x, y, z)| ≤ β2 eβ(x+y+z)

(1 + δeβ(x+y+z))2 .

∂3
xφδ(x, y, z) = ∂xyyφδ(x, y, z) = ∂xzzφδ(x, y, z)

=
β3eβ(x+y+z)(1 − 4δeβ(x+y+z) + δ2e2β(x+y+z))

(1 + δeβ(x+y+z))4 ,

hence

|∂3
xφδ(x, y, z)| = |∂xyyφδ(x, y, z)| = |∂xzzφδ(x, y, z)| ≤ 2β3 eβ(x+y+z)

(1 + δeβ(x+y+z))2 .

Electronic Research Archive Volume 33, Issue 1, 447–470.



452

Therefore,

∂3
xφδ(x, y, z) + ∂xyyφδ(x, y, z) + ∂xzzφδ(x, y, z) ≤ c0β

3φδ(x, y, z). (2.4)

Moreover,

φδ(x, y, z) ≤ φδ′(x, y, z), (x, y, z) ∈ R3 if 0 < δ′ < δ,

and

lim
δ↓0

φδ(x, y, z) = eβ(x+y+z).

We apply properties (2.3) and (2.4) to obtain the estimate

d
dt

∫
R3

u2φδ(x, y, z)dxdydz

≤ c0β
3
∫
R3

u2φδ(x, y, z)dxdydz +
γ

2

∫
R3

u4∂xφδ(x, y, z)dxdydz. (2.5)

In the case of u ∈ C([0,T ]; H2(R3)), there exists a positive constant c such that

∥u∥L∞(R3) ≤ c.

Next, we consider the last term of (2.5). We write∫
R3

u4∂xφδ(x, y, z)dxdydz ≤ β∥u∥2L∞(R3)

∫
R3

u2φδ(x, y, z)dxdydz

≤ c
∫
R3

u2φδ(x, y, z)dxdydz.

Inserting this estimate into (2.5), one has

d
dt

∫
R3

u2φδ(x, y, z)dxdydz ≤ c
∫
R3

u2φδ(x, y, z)dxdydz. (2.6)

Using Gronwall’s lemma and integrating (2.6) in t ∈ [0,T ], we deduce that

sup
t∈[0,T ]

∫
R3

u2(x, y, z, t)φδ(x, y, z)dxdydz

≤ c
∫
R3

u2
0(x, y, z)φδ(x, y, z)dxdydz

≤ c
∫
R3

u2
0(x, y, z)φ0(x, y, z)dxdydz,

where c is a constant.
Letting δ ↓ 0, this completes the proof of Lemma 2.2.

□
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3. Construction of weights

We multiply uϕN on both sides of (2.2). Then, for a fixed t ∈ [0,T ], integrating over R3 with x, y,
and z, and making use of integration by parts yields

d
dt

∫
R3

u2ϕNdxdydz +
∫
R3

(∂xu + ∂yu)2∂yϕNdxdydz +
∫
R3

(∂xu + ∂zu)2∂zϕNdxdydz

+

∫
R3

(∂xu)2(3∂xϕN − ∂yϕN − ∂zϕN)dxdydz +
∫
R3

(∂yu)2(∂xϕN − ∂yϕN)dxdydz

+

∫
R3

(∂zu)2(∂xϕN − ∂zϕN)dxdydz (3.1)

=

∫
R3

u2
(
∂3

xϕN + ∂xyyϕN + ∂xzzϕN + ∂tϕN

)
dxdydz +

γ

2

∫
R3

u4∂xϕNdxdydz.

A sequence of the weights {ϕN}
∞
N=1 will be constructed, which plays an important role in the proof of

our main theorems.

Theorem 3.1. Given a0 > 0, there exists a sequence {ϕN}
∞
N=1 of functions with

ϕN : R3 × [0,∞)→ R

satisfying for any N ∈ Z+:
(i) ϕN ∈ C2(R3 × [0,∞)) with ∂3

xϕN(·, ·, ·, t), ∂xyyϕN(·, ·, ·, t), ∂xzzϕN(·, ·, ·, t) having a jump discontinuity at
x + y + z = N.
(ii) ϕN(x, y, z, t) > 0 for all (x, y, z, t) ∈ R3 × [0,∞).
(iii) ∂xϕN(x, y, z, t) = ∂yϕN(x, y, z, t) = ∂zϕN(x, y, z, t) > 0 for all (x, y, z, t) ∈ R3 × [0,∞).
(iv) There exist constants cN = c(N) > 0 and c0 = c0(a0) > 0 such that

ϕN(x, y, z, t) ≤ cNc0⟨(x + y + z)+⟩2,

with

(x + y + z)+ = max{0; x + y + z}, ⟨x + y + z⟩ = (1 + (x + y + z)2)1/2.

(v) For T > 0, there is N0 ∈ Z
+ such that

ϕN(x, y, z, 0) ≤ ea0(x+y+z)3/2
+ i f N > N0.

Also,

lim
N↑∞

ϕN(x, y, z, t) = ea(t)(x+y+z)3/2
+ ,

for any t > 0 and x + y + z ∈ (−∞, 0) ∩ (1,∞), where

a(t) =
a0√

1 + 81
4 a2

0t
.

Electronic Research Archive Volume 33, Issue 1, 447–470.



454

(vi) There exists a constant c0 = c0(a0) > 0 such that

∂tϕN + ∂
3
xϕN + ∂xyyϕN + ∂xzzϕN ≤ c0ϕN , (3.2)

for any (x, y, z, t) ∈ R3 × [0,∞).
(vii) There exists a constant c1 = c1(a0) > 0 such that

|∂xϕN(x, y, z, t)| ≤ c1⟨x + y + z⟩1/2ϕN(x, y, z, t), (3.3)

for any (x, y, z, t) ∈ R3 × [0,∞).

Proof. For N ∈ Z+, given a0 > 0, let us first define

ϕN(x, y, z, t) =


ea(t)φ(x,y,z), −∞ < x + y + z ≤ 1,

ea(t)(x+y+z)3/2
, 1 ≤ x + y + z ≤ N,

PN(x, y, z, t), x + y + z ≥ N,

where

a(t) =
a0√

1 + 81
4 a2

0t
∈ (0, a0], t ≥ 0, (3.4)

a0 being the initial parameter.

φ(x, y, z) = (1 − η(x + y + z))(x + y + z)3
+ + η(x + y + z)(x + y + z)3/2,

(x + y + z)+ = max{0; x + y + z},

for x + y + z ∈ (−∞, 1] where η ∈ C∞(R3), ηx = ηy = ηz ≥ 0, and

η(x + y + z) =

0, x + y + z ≤ 1/2,
1, x + y + z ≥ 3/4,

(3.5)

i.e., for each x + y + z ∈ [0, 1], φ(x, y, z) is a convex combination of (x + y + z)3 and (x + y + z)3/2.
PN(x, y, z, t) is a polynomial of order 2 in (x + y + z), which matches the value of ea(t)(x+y+z)3/2

and its
partial derivatives up to order 2 at x + y + z = N:

PN(x, y, z, t)

=

[
1 +

3
2

aN1/2(x + y + z − N) +
(
9
4

a2N +
3
4

aN−1/2
)

(x + y + z − N)2

2

]
eaN3/2

,

with a = a(t) as in (3.4).
Thus, to prove Theorem 3.1, let us consider the regions x+ y+ z ∈ (−∞, 0], [0, 1], [1,N], and [N,∞),

respectively.
In the first region x + y + z ≤ 0, we get

ϕN(x, y, z, t) = ea(t)·0 = 1,
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which clearly satisfies Theorem 3.1.
In the region x + y + z ∈ [0, 1], we deduce that

ϕN(x, y, z, t) = ea(t)φ(x,y,z),

with

φ(x, y, z) = (1 − η(x + y + z))(x + y + z)3 + η(x + y + z)(x + y + z)3/2 ≥ 0, x + y + z ∈ [0, 1],

with η as in (3.5). Since in this region (x + y + z)3/2 ≥ (x + y + z)3, it follows that

∂xφ(x, y, z) = (1 − η(x + y + z))3(x + y + z)2 + η(x + y + z)
3
2

(x + y + z)1/2

+ ∂xη(x + y + z)((x + y + z)3/2 − (x + y + z)3)

≥ (1 − η(x + y + z))3(x + y + z)2 + η(x + y + z)
3
2

(x + y + z)1/2 ≥ 0,

likewise

∂yφ(x, y, z) ≥ 0, ∂zφ(x, y, z) ≥ 0,

with

∂xφ(x, y, z) = ∂yφ(x, y, z) = ∂zφ(x, y, z), (3.6)

and there exists c > 0 such that

∂xφ(x, y, z), ∂xxφ(x, y, z), ∂xyφ(x, y, z), ∂xzφ(x, y, z) ≤ c,

∂xxxφ(x, y, z), ∂xyyφ(x, y, z), ∂xzzφ(x, y, z) ≤ c, x + y + z ∈ [0, 1].

Note that for a′(t) ≤ 0, it is found that

a(t) ≤ a0 for t ≥ 0, (3.7)

and it is deduced that

∂tϕN(x, y, z, t) = a′(t)φ(x, y, z)ϕN(x, y, z, t) ≤ 0.

Next, let us prove that there exists c0 = c0(a0) > 0 in this region such that

∂3
xϕN + ∂xyyϕN + ∂xzzϕN ≤ c0ϕN .

Since

∂xϕN = aφxϕN , ∂yϕN = aφyϕN , ∂zϕN = aφzϕN ,

∂2
xϕN =

(
aφxx + (aφx)2

)
ϕN , ∂xyϕN =

(
aφxy + a2φxφy

)
ϕN ,

∂xzϕN =
(
aφxz + a2φxφz

)
ϕN , ∂3

xϕN =
(
aφxxx + 3a2φxxφx + (aφx)3

)
ϕN ,
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∂xyyϕN =
(
aφxyy + 2a2φxyφy + a2φxφyy + a3φxφ

2
y

)
ϕN ,

∂xzzϕN =
(
aφxzz + 2a2φxzφz + a2φxφzz + a3φxφ

2
z

)
ϕN .

From (3.6), we derive that

∂xϕN = ∂yϕN = ∂zϕN ,

thus, for x + y + z ∼ 0 (x + y + z ≥ 0),

∂xϕN = ∂yϕN = ∂zϕN ∼ 3a(x + y + z)2ϕN ,

∂2
xϕN = ∂xyϕN = ∂xzϕN ∼

(
6a(x + y + z) + 9a2(x + y + z)4

)
ϕN ,

∂3
xϕN = ∂xyyϕN = ∂xzzϕN ∼

(
6a + 54a2(x + y + z)3 + 27a3(x + y + z)6

)
ϕN .

Hence, for x + y + z ∼ 0 (0 ≤ x + y + z ≤ 1),

∂3
xϕN(x, y, z, t) ≤ c(a + a3)ϕN , ∂xyyϕN(x, y, z, t) ≤ c(a + a3)ϕN ,

∂xzzϕN(x, y, z, t) ≤ c(a + a3)ϕN .

Using (3.7) (i.e., a(t) ≤ a0 for t ≥ 0), it is easy to see that there exist δ > 0 and a universal constant
c > 0 such that

∂3
xϕN + ∂xyyϕN + ∂xzzϕN ≤ c(a0 + a3

0)ϕN , for x ∈ [0, δ], t ≥ 0. (3.8)

In the region x + y + z ∈ [1, δ], we conclude that (3.8) still holds (with a possible large c > 0).
Applying the above estimates, it then follows that Theorem 3.1 holds in this region.

In the domain x + y + z ∈ [1,N], we observe that

ϕN(x, y, z, t) = ea(t)(x+y+z)3/2
, x + y + z ∈ [1,N], t ≥ 0.

Then, a direct computation gives rise to

∂xϕN =
3
2

a(x + y + z)1/2ϕN > 0,

∂2
xϕN =

[
9
4

a2(x + y + z) +
3
4

a(x + y + z)−1/2
]
ϕN ,

∂xyϕN =

[
9
4

a2(x + y + z) +
3
4

a(x + y + z)−1/2
]
ϕN ,

∂xzϕN =

[
9
4

a2(x + y + z) +
3
4

a(x + y + z)−1/2
]
ϕN , (3.9)

∂3
xϕN =

[
27
8

a3(x + y + z)3/2 +
27
8

a2 −
3
8

a(x + y + z)−3/2
]
ϕN ,

∂xyyϕN =

[
27
8

a3(x + y + z)3/2 +
27
8

a2 −
3
8

a(x + y + z)−3/2
]
ϕN ,

∂xzzϕN =

[
27
8

a3(x + y + z)3/2 +
27
8

a2 −
3
8

a(x + y + z)−3/2
]
ϕN .
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Hence, ϕN > 0 and

∂tϕN + ∂
3
xϕN + ∂xyyϕN + ∂xzzϕN

=

[
a′(x + y + z)

3
2 +

81
8

a3(x + y + z)
3
2 +

81
8

a2 −
9
8

a(x + y + z)−
3
2

]
ϕN . (3.10)

Taking advantage of

a′(t) +
81
8

a3(t) = 0,

we eliminate the terms with power 3/2 on the right-hand side of (3.10). Therefore,

a(t) =
a0√

1 + 81
4 a2

0t
. (3.11)

We show that

∂tϕN + ∂
3
xϕN + ∂xyyϕN + ∂xzzϕN ≤ c0ϕN ,

with c0 = c0(a0) > 0, and it is easy to find that for 1 ≤ x + y + z ≤ N,

81
8

a2 −
9
8

a(x + y + z)−
3
2 ≤ c0,

since a(t) = a ≤ a0, −9
8a(x + y + z)−

3
2 ≤ 0.

Next, it follows from (3.9) that

∂xϕN = ∂yϕN = ∂zϕN =
3
2

a(x + y + z)1/2ϕN ≤ ca0⟨x + y + z⟩1/2ϕN ,

∂2
xϕN = ∂xyϕN = ∂xzϕN ≤ c(a2

0 + a0)⟨x + y + z⟩ϕN ,

∂3
xϕN = ∂xyyϕN = ∂xzzϕN ≤ c(a3

0 + a0)⟨x + y + z⟩ϕN .

Lastly, we remark that

ϕN(x, y, z, t) = ea(t)(x+y+z)3/2
≤ ea0N3/2

for t ≥ 0, x + y + z ∈ [1,N],

which completes the proof of Theorem 3.1 in this region.
Finally, let us consider the last region x + y + z ∈ [N,∞]. In this domain,

ϕN(x, y, z, t) = PN(x, y, z, t)

=

[
1 +

3
2

aN1/2(x + y + z − N) +
(
9
4

a2N +
3
4

aN−1/2
)

(x + y + z − N)2

2

]
eaN3/2

, (3.12)

with a = a(t) as in (3.11). Hence, we obtain that there exists c > 0 such that for x + y + z ≥ N,

PN(x, y, z, t)
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≥ c
[
1 + aN1/2(x + y + z − N) + (a2N + aN−1/2)

(x + y + z − N)2

2

]
eaN3/2

≥ ceaN3/2
> 0, (3.13)

which proves (ii) in Theorem 3.1 in this region. Furthermore, one gets

∂xPN(x, y, z, t) = ∂yPN(x, y, z, t) = ∂zPN(x, y, z, t)

≥

[
3
2

aN1/2 +
9
4

a2N(x + y + z − N)
]

eaN3/2
≥ 0,

which proves (iii) in Theorem 3.1 in this domain, and

∂tPN(x, y, z, t) = a′(t)S N(x, y, z, t)eaN3/2
+ a′(t)N3/2PN(x, y, z, t),

where

S N(x, y, z, t) =
3
2

N1/2(x + y + z − N) +
(
9
4

aN +
3
8

N−1/2
)

(x + y + z − N)2 ≥ 0.

Next, we shall prove that if x + y + z ≥ N,

∂tϕN + ∂
3
xϕN + ∂xyyϕN + ∂xzzϕN ≤ c0ϕN . (3.14)

Note that

∂3
xϕN = ∂xyyϕN = ∂xzzϕN ≡ 0, ∂tϕN(x, y, z, t) = ∂tPN(x, y, z, t) < 0.

Combining the above estimates completes the proof of (3.14). Then, (3.13) yields (3.3) in this region
x + y + z ≥ N.

In order to complete the proof, it is necessary to prove (v) in the region x + y + z ∈ [N,∞). Taking
advantage of (3.9) with t = 0, we need only prove that for x + y + z ≥ N,

ϕN(x, y, z, 0) = PN(x, y, z, 0) ≤ ea0(x+y+z)3/2
+ . (3.15)

Let x + y + z = ω to prove (3.15). We need to prove that

ϕN(ω, 0) = PN(ω, 0) ≤ ea0ω
3/2
+ . (3.16)

Considering PN(ω, 0) and ea0ω
3/2
+ , and their derivatives up to the second order, which coincide at ω = N,

to prove (3.16), it is sufficient to prove that

∂2
ωPN(ω, 0) ≤

d2

dω2 ea0ω
3/2
, for ω ≥ N. (3.17)

For this purpose, we deduce from (3.12) that the constant value of ∂2
ωPN(ω, 0) is given by

∂2
ωPN(ω, 0) =

(
3
4

a0N−1/2 +
9
4

a2
0N

)
ea0N3/2
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and coincides at ω = N with

d2

dω2 ea0ω
3/2
=

(
3
4

a0ω
−1/2 +

9
4

a2
0ω

)
ea0ω

3/2
.

Let us observe that

d3

dω3 ea0ω
3/2
=

(
−

3
8

a0ω
−3/2 +

9
8

a2
0 +

9
4

a2
0 +

27
8

a3
0ω

3/2
)

ea0ω
3/2

=
27
8

a3
0ω

3/2
(
−

1
9a2

0ω
3
+

1
a0ω3/2 + 1

)
ea0ω

3/2
> 0,

if ω > N and N > (9a2
0)−1/3 ≡ N0(a0). Therefore, if N ≥ N0, d2

dω2 ea0ω
3/2

is an increasing function with
regard to the variable ω for ω ≥ N. According to this fact, we obtain (3.17). Hence, (3.16) and (3.15)
hold, which gives the proof of (v) in this region.

Thus, the proof of Theorem 3.1 has been completed. □

4. Decay of solutions

4.1. Proof of Theorem 1.1

By virtue of Lemma 2.2, we deduce that the solution u of IVP (1.1) satisfies

u ∈ C([0,T ]; H2(R3) ∩ L2(eβ(x+y+z)dxdydz)), for any β > 0. (4.1)

In general, if for some β > 0, eβ(x+y+z) f , ∂2
x f ∈ L2(R3), then eβ(x+y+z)/2∂x f ∈ L2(R3) since∫

R3
eβ(x+y+z)(∂x f )2dxdydz ≤ β2

∫
R3

eβ(x+y+z) f 2dxdydz +
∣∣∣∣∣∫
R3

eβ(x+y+z) f∂2
x f dxdydz

∣∣∣∣∣ . (4.2)

To prove (4.2), one initially assumes that f ∈ H2(R3) with compact support to obtain (4.2) by integration
by parts, and then the density of this class is employed to achieve the desired result.

Therefore, applying the last argument and (4.1), it follows that

∂ j
xu, ∂

j
yu, ∂

j
zu ∈ C([0,T ]; H2− j(R3) ∩ L2(eβ(x+y+z)dxdydz)), j = 0, 1, 2. (4.3)

In particular, for any k, u ∈ C([0,T ]; L2(⟨x + y + z⟩kdxdydz)), we assume that u is sufficiently regular,
that is, u ∈ C([0,T ]; H3(R3)). Then, we derive energy estimates on u applying the weights {ϕN} (since
ϕN ≤ c⟨x + y + z⟩2). Thus, multiplying by uϕN on both sides of (2.2), and integrating the result in R3

with x, y, z, we obtain∫
R3
∂tuuϕNdxdydz +

∫
R3
∂3

xuuϕNdxdydz +
∫
R3
∂xyyuuϕNdxdydz

+

∫
R3
∂xzzuuϕNdxdydz + γ

∫
R3

u2∂xuuϕNdxdydz = 0.
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Applying (3.1) and property (iii) in Theorem 3.1, it is inferred that

d
dt

∫
R3

u2ϕNdxdydz ≤
∫
R3

u2(∂tϕN + ∂
3
xϕN + ∂xyyϕN + ∂xzzϕN)dxdydz

+
γ

2

∫
R3

u4∂xϕNdxdydz.

From (3.2), it follows that

d
dt

∫
R3

u2ϕNdxdydz ≤ c0

∫
R3

u2ϕNdxdydz +
γ

2

∫
R3

u4∂xϕNdxdydz. (4.4)

with c0 = c0(a0).
Let us estimate the second term on the right-hand side of (4.4). To bound the contribution of the

second term using (3.3), we write

0 ≤ ∂xϕN(x, y, z, t) ≤ c1⟨x + y + z⟩1/2ϕN(x, y, z, t) ≤ c(1 + ex+y+z)ϕN(x, y, z, t),

hence ∫
R3

u4∂xϕNdxdydz ≤ c
(
∥e

1
2 (x+y+z)u∥2L∞(R3) + ∥u∥

2
L∞(R3)

) ∫
R3

u2ϕNdxdydz.

Combining the Sobolev embedding theorem and (4.3), one has∫ T

0
∥e

1
2 (x+y+z)u∥2L∞(R3)(t)dt < ∞.

Inserting the above estimates into (4.4), for any N ∈ Z+, we deduce that

d
dt

∫
R3

u2(x, y, z, t)ϕN(x, y, z, t)dxdydz ≤ L(t)
∫
R3

u2(x, y, z, t)ϕN(x, y, z, t)dxdydz,

with L(t) ∈ L∞([0,T ]), where L(·) = L(a0; ∥e
1
2 (x+y+z)u0∥L2(R3); ∥u0∥H1(R3)). In view of property (v) in

Theorem 3.1, and using Gronwall’s lemma, it follows that for t ∈ [0,T ],∫
R3

u2(x, y, z, t)ϕN(x, y, z, t)dxdydz

≤ c
(∫
R3

u2
0(x, y, z)ϕN(x, y, z, 0)dxdydz

)
e
∫ T

0 L(t′)dt′ (4.5)

≤ c
(
a0; ∥e

1
4 a0(x+y+z)3/2

+ u0∥L2(R3); ∥u0∥H1(R3); T
) ∫
R3

u2
0(x, y, z)ea0(x+y+z)3/2

+ dxdydz.

We are now in a position to establish (4.5) for our less regular solution u ∈ C([0,T ]; H2(R3)). For
this purpose, let us consider IVP (1.1) with regularized initial data u0,δ := ρδ ∗u(·+δ, ·+δ, ·+δ, 0), where
δ > 0, ρδ = 1

δ3ρ( ·
δ
, ·
δ
, ·
δ
), ρ ∈ C∞(R3) is supported in (−1, 1) × (−1, 1) × (−1, 1), and

∫
R3 ρdξdηdζ = 1.

Since

u0,δ → u0 in H2(R3) as δ→ 0, (4.6)
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for IVP (1.1) in H2(R3), according to the well-posedness result in [18], the corresponding solutions uδ
satisfy uδ(t)→ u(t) in H2(R3) uniformly for t ∈ [0,T ] as δ→ 0. Furthermore, in terms of the Sobolev
embedding theorem, for fixed t,

uδ(x, y, z, t)→ u(x, y, z, t) for all (x, y, z) ∈ R3 as δ→ 0.

Meanwhile, by applying Minkowski’s integral inequality, we prove that

∥e
1
2 a0(x+y+z)3/2

+ u0,δ∥L2(R3) ≤ ∥e
1
2 a0(x+y+z)3/2

+ u0∥L2(R3). (4.7)

Note that uδ is sufficiently regular, and we obtain (4.5) with uδ and u0,δ instead of u and u0. For fixed t,
taking account of (4.6), (4.7) and using Fatou’s lemma, one can deduce that∫

R3
u2(x, y, z, t)ϕN(x, y, z, t)dxdydz

≤ c
(
a0; ∥e

1
4 a0(x+y+z)3/2

+ u0∥L2(R3); ∥u0∥H1(R3); T
) ∫
R3

u2
0(x, y, z)ea0(x+y+z)3/2

+ dxdydz.

Taking N ↑ ∞, and making use of Fatou’s lemma and the property (v) in Theorem 3.1, it follows that

sup
t∈[0,T ]

∫
R3

ea(t)(x+y+z)3/2
+ |u(x, y, z, t)|2dxdydz ≤ c∗,

which completes the proof of Theorem 1.1.

4.2. Proof of Theorem 1.2

Let us consider the difference of the two solutions to the equation

w(x, y, z, t) = (u1 − u2)(x, y, z, t),

that is,

∂tw + ∂3
xw + ∂xyyw + ∂xzzw + γ(u2

1∂xw + (u1 + u2)w∂xu2) = 0. (4.8)

Taking advantage of the argument developed in Theorem 1.1, we multiply (4.8) by wϕN , integrate the
result in R3 with x, y, z, and formally use integration by parts to deduce that∫

R3
u2

1∂xwwϕNdxdydz = −
∫
R3

u1∂xu1w2ϕNdxdydz −
1
2

∫
R3

u2
1∂xϕNw2dxdydz,

where ∣∣∣∣∣∫
R3

u1∂xu1w2ϕNdxdydz
∣∣∣∣∣ ≤ ∥u1∂xu1∥L∞(R3)

∫
R3

w2ϕNdxdydz.

Using (3.3), it follows that∣∣∣∣∣∫
R3

u2
1∂xϕNw2dxdydz

∣∣∣∣∣ ≤ c
∫
R3

u2
1⟨x + y + z⟩

1
2 w2ϕNdxdydz
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≤ c∥u1⟨x + y + z⟩
1
4 ∥2L∞(R3)

∫
R3

w2ϕNdxdydz.

Altogether, ∣∣∣∣∣∫
R3
∂xu2(u1 + u2)w2ϕNdxdydz

∣∣∣∣∣
≤ ∥u1∂xu2∥L∞(R3)

∫
R3

w2ϕNdxdydz + ∥u2∂xu2∥L∞(R3)

∫
R3

w2ϕNdxdydz.

Thus, combining the equality∫
R3
∂twwϕNdxdydz +

∫
R3
∂3

xwwϕNdxdydz +
∫
R3
∂xyywwϕNdxdydz

+

∫
R3
∂xzzwwϕNdxdydz + γ

∫
R3

(u2
1∂xw + (u1 + u2)w∂xu2)wϕNdxdydz = 0,

and the above estimates, one has

d
dt

∫
R3

w2(x, y, z, t)ϕN(x, y, z, t)dxdydz

≤ c0

∫
R3

w2(x, y, z, t)ϕN(x, y, z, t)dxdydz + γ∥u1∂xu1∥L∞(R3)

∫
R3

w2ϕNdxdydz

+ cγ∥u1⟨x + y + z⟩
1
4 ∥2L∞(R3)

∫
R3

w2ϕNdxdydz + γ∥u1∂xu2∥L∞(R3)

∫
R3

w2ϕNdxdydz

+ γ∥u2∂xu2∥L∞(R3)

∫
R3

w2ϕNdxdydz,

i.e.,

d
dt

∫
R3

w2(x, y, z, t)ϕN(x, y, z, t)dxdydz ≤ G(t)
∫
R3

w2(x, y, z, t)ϕN(x, y, z, t)dxdydz,

where

G(t) = c(∥u1∂xu1∥L∞(R3) + ∥u1⟨x + y + z⟩
1
4 ∥2L∞(R3) + ∥u1∂xu2∥L∞(R3) + ∥u2∂xu2∥L∞(R3)),

with G(t) ∈ L∞([0,T ]). Therefore,

sup
t∈[0,T ]

∫
R3

w2(x, y, z, t)ϕN(x, y, z, t)dxdydz

≤ c
(∫
R3

w2(x, y, z, 0)ϕN(x, y, z, 0)dxdydz
)

e
∫ T

0 G(t)dt,

which completes the proof of Theorem 1.2.
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5. Proof of Theorem 1.3

Proof. We suppose t0 = 0 and 0 < t1 < T . First, let us consider α ∈ (0, 1/2]. For x + y + z ≥ 0,N ∈ Z+,
and α > 0, we are in a position to define

φN,α(x, y, z) =

[1 + (x + y + z)4]
α
2 − 1, x + y + z ∈ [0,N],

(2N)2α, x + y + z ≥ 10N,
(5.1)

with φN,α(x, y, z) ∈ C3(x + y + z ≥ 0), φN,α(x, y, z) ≥ 0, and ∂xφN,α = ∂yφN,α = ∂zφN,α ≥ 0, and for
α ∈ (0, 1/2],

|∂xφN,α(x, y, z)| = |∂yφN,α(x, y, z)| = |∂zφN,α(x, y, z)| ≤ C,

|∂3
xφN,α(x, y, z)| = |∂xyyφN,α(x, y, z)| = |∂xzzφN,α(x, y, z)| ≤ C,

where C is independent of N.
Let θN,α be defined as the following:

θN,α(x, y, z) = θN(x, y, z) =

φN,α(x, y, z), x + y + z ≥ 0,
− φN,α(−x,−y,−z), x + y + z ≤ 0.

(5.2)

Note that

∂xθN(x, y, z) = ∂yθN(x, y, z) = ∂zθN(x, y, z) ≥ 0, ∀(x, y, z) ∈ R3,

θN ∈ C3(R3), ∥θN∥L∞(R3) = (2N)2α.

Then, let (u0,m)m∈Z+ be a sequence in C∞0 (R3) such that

u0,m → u0 in H2(R3) as m ↑ ∞, (5.3)

and let um ∈ C([0,T ]; H∞(R3)) be the solution of Eq (1.1) corresponding to the initial data u0,m. We
have

um → u in C([0,T ]; H2(R3)). (5.4)

From the continuous dependence of the solution upon the data (see Lemma 2.1), (5.3), and (5.4), there
exists T > 0 such that

(a) sup
t∈[0,T ]

∥u(t) − um(t)∥L2(R3) → 0 as m ↑ ∞,

(b)
∫ T

0
∥u(t) − um(t)∥L∞(R3)dt → 0 as m ↑ ∞. (5.5)

Owing to um ∈ C([0,T ],H∞(R3)) satisfying Eq (1.1), we multiply it by umθN . Then integrating the
result and formally using integration by parts (justified since θN is bounded), we obtain

d
dt

∫
R3

u2
mθNdxdydz +

∫
R3

(∂xum + ∂yum)2∂yθNdxdydz +
∫
R3

(∂xum + ∂zum)2∂zθNdxdydz
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+

∫
R3

(∂xum)2(3∂xθN − ∂yθN − ∂zθN)dxdydz +
∫
R3

(∂yum)2(∂xθN − ∂yθN)dxdydz

+

∫
R3

(∂zum)2(∂xθN − ∂zθN)dxdydz (5.6)

=

∫
R3

u2
m∂

3
xθNdxdydz +

∫
R3

u2
m∂xyyθNdxdydz +

∫
R3

u2
m∂xzzθNdxdydz

+
γ

2

∫
R3

u4
m∂xθNdxdydz.

Notice that ∂xθN = ∂yθN = ∂zθN , 3∂xθN − ∂yθN − ∂zθN > 0, ∂xθN − ∂yθN = 0, and ∂xθN − ∂zθN = 0. We
rewrite (5.6) as follows:

d
dt

∫
R3

u2
mθNdxdydz +

∫
R3

(∂xum + ∂yum)2∂yθNdxdydz +
∫
R3

(∂xum + ∂zum)2∂zθNdxdydz

≤

∫
R3

u2
m∂

3
xθNdxdydz +

∫
R3

u2
m∂xyyθNdxdydz +

∫
R3

u2
m∂xzzθNdxdydz (5.7)

+
γ

2

∫
R3

u4
m∂xθNdxdydz.

For m large enough, thanks to the boundedness of the partial derivatives of θN , the L2−norm conservation
law, and the convergence of the sequence {u0,m}, we deduce that∣∣∣∣∣∫

R3
(um)2∂3

xθNdxdydz
∣∣∣∣∣ ≤ C∥u0,m∥

2
L2(R3) ≤ 2C∥u0∥

2
L2(R3),∣∣∣∣∣∫

R3
(um)2∂xyyθNdxdydz

∣∣∣∣∣ ≤ C∥u0,m∥
2
L2(R3) ≤ 2C∥u0∥

2
L2(R3),∣∣∣∣∣∫

R3
(um)2∂xzzθNdxdydz

∣∣∣∣∣ ≤ C∥u0,m∥
2
L2(R3) ≤ 2C∥u0∥

2
L2(R3), (5.8)∣∣∣∣∣∫

R3
(um)4∂xθNdxdydz

∣∣∣∣∣ ≤ C∥um(t)∥2L∞(R3)∥u0,m∥
2
L2(R3)

≤ 2C∥um(t)∥2L∞(R3)∥u0∥
2
L2(R3).

Integrating (5.7) with regard to t in [0, t1] and using (5.8), it follows that∫ t1

0

∫
R3

(∂xum + ∂yum)2(x, y, z, t)∂yθN(x, y, z)dxdydzdt

+

∫ t1

0

∫
R3

(∂xum + ∂zum)2(x, y, z, t)∂zθN(x, y, z)dxdydzdt

≤ ∥u2
m(t1)θN∥L1(R3) + ∥u2

0,mθN∥L1(R3) +Ct1∥u0∥
2
L2(R3)

+C∥u0∥
2
L2(R3)

∫ t1

0
∥um(t)∥2L∞(R3)dt,

where C represents a constant, and its value may change from line to line. Meanwhile, it does not
depend on the initial parameters of the problem. Setting m ↑ ∞ and making use of (5.5), Lemma 2.1,
(2.1), and the assumptions of Theorem 1.3, we deduce that

lim
m↑∞

∫ t1

0

∫
R3

(∂xum + ∂yum)2(x, y, z, t)∂yθN(x, y, z)dxdydzdt
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+ lim
m↑∞

∫ t1

0

∫
R3

(∂xum + ∂zum)2(x, y, z, t)∂zθN(x, y, z)dxdydzdt

≤ ∥u2(t1)θN∥L1(R3) + ∥u2
0θN∥L1(R3) +Ct1∥u0∥

2
L2(R3)

+C∥u0∥
2
L2(R3)

∫ t1

0
∥u(t)∥2L∞(R3)dt ≤ M, (5.9)

with M = M
(
∥⟨x + y + z⟩αu0∥L2(R3), ∥⟨x + y + z⟩αu(t1)∥L2(R3)

)
. Next, we use (5.4) and (5.5) to conclude

that for any fixed N̄ ∈ Z+ and N̄ > 10N,

∂xum → ∂xu, ∂yum → ∂yu, ∂zum → ∂zu, (5.10)

in L2
(
[0, t1] × {x + y + z ∈ [−N,N]}

)
as m ↑ ∞.

Thanks to ∂yθN and ∂zθN having compact support, one has∫ t1

0

∫
R3

(∂xu + ∂yu)2(x, y, z, t)∂yθN(x, y, z)dxdydzdt ≤ M,∫ t1

0

∫
R3

(∂xu + ∂zu)2(x, y, z, t)∂zθN(x, y, z)dxdydzdt ≤ M. (5.11)

At last, notice that ∂yθN = ∂zθN ≥ 0, and for x + y + z > 1,

∂yθN = ∂zθN →
2α(x + y + z)3

[1 + (x + y + z)4]1− α2
∼ ⟨x + y + z⟩2α−1.

Using Fatou’s lemma in (5.11), we obtain∫ t1

0

∫
|x+y+z|>1

(∂xu + ∂yu)2(x, y, z, t)⟨x + y + z⟩2α−1dxdydzdt ≤ M,∫ t1

0

∫
|x+y+z|>1

(∂xu + ∂zu)2(x, y, z, t)⟨x + y + z⟩2α−1dxdydzdt ≤ M. (5.12)

From Lemma 2.1 and (2.1), it follows that∫ t1

0

∫
|x+y+z|≤1

(∂xu + ∂yu)2(x, y, z, t)dxdydzdt ≤ M,∫ t1

0

∫
|x+y+z|≤1

(∂xu + ∂zu)2(x, y, z, t)dxdydzdt ≤ M.

We derive that ∫ t1

0

∫
R3

(∂xu + ∂yu)2(x, y, z, t)⟨x + y + z⟩2α−1dxdydzdt ≤ M,∫ t1

0

∫
R3

(∂xu + ∂zu)2(x, y, z, t)⟨x + y + z⟩2α−1dxdydzdt ≤ M. (5.13)
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With (5.13), we reapply the above argument with ψN,α(x, y, z) = ψN(x, y, z):

ψN,α(x, y, z) = ψN(x, y, z) =

φN,α(x, y, z), x + y + z ≥ 0,
φN,α(−x,−y,−z), x + y + z ≤ 0.

(5.14)

Note that

|∂xψN(x, y, z)| =
∣∣∣∂yψN(x, y, z)

∣∣∣ = |∂zψN(x, y, z)| ≤ C⟨x + y + z⟩2α−1.

In Eq (5.6) with ψN(x, y, z) instead of θN(x, y, z), similar computations to that in (5.8) lead us to

lim
m↑∞

∫ t1

0

∫
R3

(∂xum + ∂yum)2(x, y, z, t)∂yψN(x, y, z)dxdydzdt

=

∫ t1

0

∫
R3

(∂xu + ∂yu)2(x, y, z, t)∂yψN(x, y, z)dxdydzdt,

lim
m↑∞

∫ t1

0

∫
R3

(∂xum + ∂zum)2(x, y, z, t)∂zψN(x, y, z)dxdydzdt

=

∫ t1

0

∫
R3

(∂xu + ∂zu)2(x, y, z, t)∂zψN(x, y, z)dxdydzdt,

and ∣∣∣∣∣ ∫ t1

0

∫
R3

(∂xu + ∂yu)2(x, y, z, t)∂yψN(x, y, z)dxdydzdt
∣∣∣∣∣

≤

∫ t1

0

∫
R3

(∂xu + ∂yu)2(x, y, z, t)⟨x + y + z⟩2α−1dxdydzdt ≤ M,∣∣∣∣∣ ∫ t1

0

∫
R3

(∂xu + ∂zu)2(x, y, z, t)∂zψN(x, y, z)dxdydzdt
∣∣∣∣∣

≤

∫ t1

0

∫
R3

(∂xu + ∂zu)2(x, y, z, t)⟨x + y + z⟩2α−1dxdydzdt ≤ M.

Collecting all the above estimates and integrating in [0, t] ⊂ [0, t1] yields

⟨x + y + z⟩αu(t) ∈ L2(R3) t ∈ [0, t1]. (5.15)

Taking advantage of (5.13), for t ∈ [0, t1], it is inferred that

(∂xu(t) + ∂yu(t))⟨x + y + z⟩α−1/2 ∈ L2(R3),
(∂xu(t) + ∂zu(t))⟨x + y + z⟩α−1/2 ∈ L2(R3).

Hence, the desired result holds.
Next, let us consider the case α ∈ (1/2, 1]. A direct computation gives rise to

∂xθN,α(x, y, z) + ∂yθN,α(x, y, z) + ∂zθN,α(x, y, z) + |∂xψN,α(x, y, z)|
+ |∂yψN,α(x, y, z)| + |∂zψN,α(x, y, z)| + |θN,α− 1

2
(x, y, z)| ≤ C⟨x + y + z⟩,
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|∂3
xθN,α(x, y, z)| = |∂xyyθN,α(x, y, z)| = |∂xzzθN,α(x, y, z)| ≤ C.

As before, we deduce that

d
dt

∫
R3

u2
mθN,αdxdydz +

∫
R3

(∂xum + ∂yum)2∂yθN,αdxdydz

+

∫
R3

(∂xum + ∂zum)2∂zθN,αdxdydz

≤

∫
R3

u2
m∂

3
xθN,αdxdydz +

∫
R3

u2
m∂xyyθN,αdxdydz +

∫
R3

u2
m∂xzzθN,αdxdydz (5.16)

+
γ

2

∫
R3

u4
m∂xθN,αdxdydz,

with um ∈ C([0,T ]; H∞(R3)).
In (5.16), we first utilize that∣∣∣∣∣∫

R3
(um)2∂3

xθN,αdxdydz
∣∣∣∣∣ ≤ C∥u0,m∥

2
L2(R3) ≤ 2C∥u0∥

2
L2(R3),∣∣∣∣∣∫

R3
(um)2∂xyyθN,αdxdydz

∣∣∣∣∣ ≤ C∥u0,m∥
2
L2(R3) ≤ 2C∥u0∥

2
L2(R3), (5.17)∣∣∣∣∣∫

R3
(um)2∂xzzθN,αdxdydz

∣∣∣∣∣ ≤ C∥u0,m∥
2
L2(R3) ≤ 2C∥u0∥

2
L2(R3).

Next, for the last term on the right-hand side of (5.16), it follows that∣∣∣∂xθN,α(x, y, z)
∣∣∣ = ∣∣∣∂yθN,α(x, y, z)

∣∣∣ = ∣∣∣∂zθN,α(x, y, z)
∣∣∣ ≤ C|θN,α− 1

2
(x, y, z)|2,

with C independent of N. Accordingly,∣∣∣∣∣∫
R3

u4
m∂xθN,αdxdydz

∣∣∣∣∣ ≤ C∥um(t)∥2L∞(R3)∥um(t)θN,α− 1
2
∥2L2(R3). (5.18)

For each fixed N, the θN,α’s are bounded, and

sup
t∈[0,t1]

∥(u − um)(t)∥L2(R3) −→ 0 as m ↑ ∞,

we conclude that

sup
t∈[0,t1]

∥(u − um)(t)θN,α− 1
2
∥L2(R3) −→ 0 as m ↑ ∞.

Hence,

sup
t∈[0,t1]

∥um(t)θN,α− 1
2
∥L2(R3) ≤ 2 sup

t∈[0,t1]
∥u(t)θN,α− 1

2
∥L2(R3)

≤ 2 sup
t∈[0,t1]

∥⟨x + y + z⟩
1
2 u(t)∥L2(R3) ≤ M, (5.19)
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with M = M
(
∥⟨x + y + z⟩1/2u0∥L2(R3), ∥⟨x + y + z⟩1/2u(t1)∥L2(R3)

)
for m ≫ 1.

Plugging the above estimates into (5.16) and applying the same argument in the previous case
α ∈ (0, 1/2], we obtain∫ t1

0

∫
R3

(∂xum + ∂yum)2(x, y, z, t)∂yθN(x, y, z)dxdydzdt ≤ (1 + t1)M,∫ t1

0

∫
R3

(∂xum + ∂zum)2(x, y, z, t)∂zθN(x, y, z)dxdydzdt ≤ (1 + t1)M, (5.20)

for m ≫ 1, and ∫ t1

0

∫
R3

(∂xu + ∂yu)2(x, y, z, t)⟨x + y + z⟩2α−1dxdydzdt ≤ (1 + t1)M,∫ t1

0

∫
R3

(∂xu + ∂zu)2(x, y, z, t)⟨x + y + z⟩2α−1dxdydzdt ≤ (1 + t1)M, (5.21)

where M = M
(
∥⟨x + y + z⟩1/2u0∥L2(R3), ∥⟨x + y + z⟩1/2u(t1)∥L2(R3)

)
.

In the following, we use ψN,α instead of θN,α. Then we obtain the similar formulation to (5.16). From
(5.20) and (5.21), the desired result is valid.

For the case α ∈ (1, 3/2] and higher α, we may apply a similar bootstrap technique to get the desired
result. □
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15. E. Bustamante, J. Jiménez Urrea, J. Mejı́a, On the unique continuation property of solutions of the
three-dimensional Zakharov-Kuznetsov equation, Nonlinear Anal. Real World Appl., 39 (2018),
537–553. https://doi.org/10.1016/j.nonrwa.2017.08.003

16. S. Herr, S. Kinoshita, Subcritical well-posedness results for the Zakharov-Kuznetsov
equation in dimension three and higher, Ann. Inst. Fourier, 73 (2023), 1203–1267.
https://doi.org/10.5802/aif.3547

17. F. Ribaud, S. Vento, Well-posedness results for the three-dimensional Zakharov-Kuznetsov equation,
SIAM J. Math. Anal., 44 (2012), 2289–2304. https://doi.org/10.1137/110850566

18. A. Grünrock, A remark on the modified Zakharov-Kuznetsov equation in three space dimensions,
Math. Res. Lett., 21 (2014), 127–131. https://dx.doi.org/10.4310/MRL.2014.v21.n1.a10

19. S. Kinoshita, Well-posedness for the Cauchy problem of the modified Zakharov-Kuznetsov equation,
Funkcialaj Ekvacioj, 65 (2022), 139–158. https://doi.org/10.1619/fesi.65.139

20. K. K. Ali, A. R. Seadawy, A. Yokus, R. Yilmazer, H. Bulut, Propagation of dispersive wave solutions
for (3+1)-dimensional nonlinear modified Zakharov-Kuznetsov equation in plasma physics, Int. J.
Mod. Phys. B, 34 (2020), 2050227. https://doi.org/10.1142/S0217979220502276
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