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Abstract: We study here the special decay properties of real solutions to the initial value problem
associated with the (3 + 1)-dimensional modified Zakharov-Kuznetsov equation. More precisely, we
prove the properties of exponential decay of order 3/2 above the plane x + y + z = 0 as time evolves.
This property is related with the persistence properties of the solution flow in weighted Sobolev spaces
and sharp unique continuation properties of solutions to this problem.
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1. Introduction

In this paper, we would like to investigate the initial value problem (IVP) associated with the
(3+1)-dimensional modified Zakharov-Kuznetsov (mZK) equation

1.1
u(0) = uo, (b

{8,u + O03u + 0,00u + 0,07u + yu*du = 0, (x,y,2) €R® >0,
where u = u(x,y, z, t) is a real-valued function, uy = uy(x, y, z), and y is a nonzero constant. Furthermore,
it is proved that its solutions u(x,y, z,t) have the properties of exponential decay above the plane
x+y+z=0.

Equation (1.1) was proposed by Zakharov and Kuznetsov [1] as a three-dimensional generalization
of the Korteweg-de Vries (KdV) equation, which was derived from the Euler-Poisson system with
magnetic field by Lannes et al. in [2]. This equation describes the unidirectional propagation of
ionic-acoustic waves in magnetized plasma.
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It is easy to see that the ZK equation can be regarded as a multidimensional generalization of the
one-dimensional KdV equation

8,u+6iu+u(9xu:0, xeR, >0,
u(0) = uy.

It is worth mentioning that two dimensional versions of the KdV equation and modified Korteweg-de
Vries (mKdV) equation are the ZK equation and the mZK equation, respectively. Up to now, to the best
of our knowledge, for the two-dimensional ZK equation, the well-posedness and uniqueness results have
been studied extensively. For some related works, refer to [3—8] and references therein. At the same
time, the Cauchy problem for the 2D mZK equation has also been discussed. The local well-posedness
in H'(R?) was obtained by Biagioni and Linares in [9]. The local result was generalized to the data in
H*(R?), s > 3/4, by Linares and Pastor in [10]. In terms of a smallness assumption on the L?-norm of
the data [11], they proved the global well-posedness in H*(R?), s > 53/63. In [12], Ribaud and Vento
investigated the local well-posedness in H*(R?), s > 1/4.

On the other hand, for the three-dimensional ZK equation, many interesting results have been
obtained. For initial data in H*(R?) with s > 9/8, Linares and Saut [13] showed the local well-posedness
of this initial problem. The local well-posedness theory of the Benjamin-Ono equation was established
in [14] by utilizing similar techniques in [13]. For more discussions of the 3D ZK equation, see [15-17]
and reference therein. Moreover, for the 3D mZK equation, in [18], Griinrock proved the local well-
posedness of the Cauchy problem (1.1) for initial data in H*(R?) with s > 1/2. Kinoshita [19] established
the well-posedness in the critical space H'/>(R?) for the Cauchy problem of the mZK equation. Ali et
al. [20] developed the propagation of dispersive wave solutions for (3+1)-dimensional nonlinear mZK
equation in plasma physics. Further analysis results can be also found in [21] and references therein.

The properties of decay preservation are of great interest. In an innovative paper, Isaza and
Ledn [22] studied the optimal exponential decay properties of solutions to the KdV equation. Larkin and
Tronco [23] derived the decay properties of small solutions for the ZK equation posed on a half-strip.
In [24], Larkin further established the exponential decay of the H'-norm for the 2D ZK equation.
Recently, the decay properties for solutions of the ZK equation were also obtained in [25].

It is obvious that the decay properties are closely related to the aspect of unique continuation. It is
noted that Bustamante et al. [15] derived the unique continuation property of the solutions of the 3D
Zakharov-Kuznetsov equation. In recent years, the unique continuation principles of several models
arising in nonlinear dispersive equations were investigated, see references [26-30] for example.

The well-posedness for the two dimensional generalized ZK equation in anisotropic weighted
Sobolev spaces was discussed in [31]. In [32], Bustamante et al. established the well-posedness of the
IVP for the 2D ZK equation in weighted Sobolev spaces H*(R?) N L?>((1 + x* + y*)'dxdy) for s, r € R.
Furthermore, they also showed in [15] that, for some small € > 0,

uy, us € C([0, 11 HAR) N LA((1 + 2% +* + 22)5*dxdydz)) n C'([0, 1]; LA R?)),

are solutions of the IVP for the three-dimensional ZK equation. Then, there exists a constant ay > 0
such that if for some a > ay,

11(0) — ur(0), ur (1) — up(1) € L2+ dxdydy),
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then u; = u,.

The main goal of the present paper is to formally derive the decay properties of exponential type
solutions u(x, y, z,t) to the IVP (1.1). In order to achieve this goal, we shall utilize Kato’s approach to
prove Kato’s estimation in three-dimensional form.

Now, we are in the position to state our main results.

Theorem 1.1. Let ay be a positive constant. For any given data
o € HA(R3) N L2 dxdydy), (1.2)
the unique solution u(-,-,-) of the IVP (1.1) provided in [18]
u € C([0,T]; H*(RY))

satisfies
3/2 "
sup f O Dy (x, y, 7, 1)Pdxdydz < ¢, (1.3)
1€[0,7] JR3
where
* ok . 11 a0(x+y+2)Y? T
c =c ao,||uo||Hl(R3),||€ M0||L2(R3>, s
with
ao
a(t) = .
81 2
1+ Taot

Let us consider weighted spaces with symmetric weight, which take the form
L2((x +y + 2)Pdxdydz) = LX(1 + (x + y + 2)°)2dxdydy).

Regardless of whether the time direction is forward # > 0 or backward ¢ < 0, its persistent properties
should hold.

Theorem 1.2. Let ay be a positive constant. Let uy, u, be solutions of the IVP (1.1) such that

u € C([0, TT; H3(R?) N L2((x + y + z)*dxdydz),
u, € C([0, T]; H>(RY)).

If
A = ao(x+y+z)§r/2 _ 2d dvd
- , e |u0,1(~xaya Z) MO,Z(X,}’, Z)l xayaz < oo,
R
then
aln(ety+2)) 2 -
Sup ; e |u1(-x’yaza t) - MZ(-x’yaz’ t)l dXdde <c > (14)
t€[0,T] JR

where c** = ¢** (ao; et 1114 ey oo 2l crays 162 w0 1 22 cys 1o 2llr2eays As T) and

a,
a(t) = ———
81 2
1+ T(lot
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Let us denote the norm of the functional space X* by

Il = I l2es) + ||f||H;ZL§,

for s > 1/2, where J3(&,n,y) = (1 + )2 f(&,1, 7).

In terms of the context, the previous result shows that it is necessary to have a similar property in
a suitable Sobolev space H*(R?) for a solution of the IVP (1.1) to satisfy the persistent property in
L>((x + y + 2)’dxdydz).

Theorem 1.3. Let uy € X*, s > 9/8. There exists T = T (||lugl|xs) and a unique solution of the IVP (1.1)
such that u € C([0, T]; X*) provided by Lemma 2.1 below. If there exist @ > 0 and two different instants
of time ty, t; € [0, T] such that

(X +y+2%u(x,y,2.10), (X + y + 2)"u(x, y,2. 1) € L*(RY),
then for any t € [0, T],
u(t) € L*((x + y + 2)%dxdydz),

(0:00) + 0,(0))  @uu(t) + (1)) € L*((x + y + 2 Pdlxdyd).

The rest of this paper is organized as follows. In Section 2, some details on known results of the
three-dimensional mZK equation will be introduced. In Section 3, the weights will be constructed to
put forward the theory. Section 4 is devoted to proving Theorems 1.1 and 1.2. Finally, in Section 5, we
demonstrate Theorem 1.3.

2. Preliminaries

Attention in this section is now turned to prove some preliminary estimates which we often use in
our analysis. We first give the following result.

Lemma 2.1. Given uy € X°, s > 9/8, there exists T = T(||lupllxs) and a unique solution of the IVP
(1.1) such that u € C([0,T]; X*), u,0,u € LlTL;‘;,Z. Moreover, the map uy — u is continuous from a
neighborhood of uy € X* into C([0, T]; X®).

The proof is similar to Theorem 3.9 in [13]. Meanwhile, using the assumptions of Theorem 1.3, we
deduce that

T T
f llullog. dr + f l0ullg.dt < cr, 2.1
0 0

where c7 is a constant.

Lemma 2.2. Let u € C([0,T]; H*(R?)) be a solution of the IVP (1.1), corresponding to data u, €
H*(R*) N L2(P"*9dxdydz), B > 0. Then,

¢ e C([0,T1: L (RY))
and

1" Ul < elle®™ ™ Puollzgs, 1€ [0,T].
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Proof. Applying Kato’s approach in [33], let us now prove this lemma. First, we consider the equation
O + O + 0,00u + 0,07u + yu'du = 0, (x,y,2) €R®, t>0. (2.2)

Next, multiplying by ug;s on both sides of Eq (2.2) and integrating by parts, a direct computation gives
rise to

d
7 f W psdxdydz + f (Ocu +6yu)2(9yg05dxdydz+ f (Ot + 0.u)*0,psdxdydz
R3 R3 R3

. f (030,05 — y5 — Dopp)dxdlydz + f (0,10 (Orps — Oyps)dxdyd
R3 R3

; f (0.0 Oy — D.pp)dxdyd
R3

= fR 3 u? (8)36905 + 005 + zez(,o(;) dxdydz + % fR 3 u* 0 psdxdydz.
For 8 > 0, we define

Blrty+2)

(p§(x,y, Z) = W for o€ (O, 1), 0 < 1.

Thus, we see that

- 1
ws €L (R3) and sl sy = 5 (2.3)

,Beﬁ(x+y+Z)
0 < ax‘pﬁ(-x’ y7 Z) = aysod(x’y’ Z) = az()od(x, ya Z) =

(1 + 0ePry+a)2 < Bs(x,y,2),

ﬁZ eﬁ(x+y+z) (1 _ 5e,B(x+y+z))

2 _ _ —
6x(p5(x, ) Z) - aXy‘prS(x, ) Z) - 6xz‘105(x9 ) Z) - (1 + 56,6’(X+y+z))3 )

and then
5 5 (x+y+2)
|ax(p(5(-x’ Y, Z)l = |axy‘p(5(-x’ Vs Z)| = |axz(p(5(x’ Vs Z)l < ﬁ (1 + 56'8(x+y+z))2 .
B 05(X,¥,2) = 0y 05(X, ¥, 2) = Breetps(X, ¥, 2)
ﬁ3 e,B(x+y+z) (1 —46 e,B(x+y+z) + 52 eZﬁ(x+y+Z))
B (1 + GeBlrr+)s ’
hence

eﬁ(x+y+z)

3 _ _ 3
|ax90(5(x9 Y, Z)' - |axyyg0§(-x’ya Z)l - |axzz¢6(x,)’a Z)l < 2ﬁ (1 + 5eﬂ(x+y+1))2.

Electronic Research Archive Volume 33, Issue 1, 447-470.



452

Therefore,
Fips(X, 9 2) + Dy (%, 9,2) + Drcetps(X,7,2) < o5, . 2).
Moreover,
0s(x,¥,2) < s (x,¥,2), (x,y,2)eR® if 0<¢ <6,
and

li — (x+y+z).
im s(x, . 2) ¢
We apply properties (2.3) and (2.4) to obtain the estimate

d
— w2 ps(x, y, 2)dxdydz
dt R3

< ¢ f 3 u*ps(x, y, 2)dxdydz + % f u*0.p5(x, y, 2)dxdydz.
R

R3

In the case of u € C([0, T]; H*(R?)), there exists a positive constant ¢ such that
||l Lo 3y < .
Next, we consider the last term of (2.5). We write
[ i ougate v dxdsdz < Bl s, [ algsty.hddyz
R’ R

<c f w*@5(x, y, 2)dxdydz.
]R3

Inserting this estimate into (2.5), one has

d
- f u’ps(x,y, 2)dxdydz < c f W s(x,y, z2)dxdydz.
dt R3 R3

Using Gronwall’s lemma and integrating (2.6) in ¢ € [0, T'], we deduce that

sup f Mz(x’ YsZ, I)QO(S(X’ Y, Z)dXdde
R3

1€[0,T1]
= Cf u(z)(x’ v, 2)@s(x,y, 2)dxdydz
R3

SCf M%(X,y,Z)SOO(X,)’,Z)dXdde’
R3

where c is a constant.
Letting ¢ | 0O, this completes the proof of Lemma 2.2.

(2.4)

(2.5)

(2.6)

O
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3. Construction of weights

We multiply u¢y on both sides of (2.2). Then, for a fixed ¢ € [0, T], integrating over R* with x, y,
and z, and making use of integration by parts yields

d
yr f WP pndxdydz + f (Ou + 0,u)20ypndxdydz + f (O + D.u)*0,¢ndxdydz
R3 R3 R3
+ f (0510’ (30,py — Dy — O:pw)dxdydz + f (Db — dypn)dxdydz
R3 R3

+ f 0.1V (@uby — B.dw)dxdyd: 3.1
R3

R

= f u? (aiqu + Oyy@y + Orxeapy + a,¢N) dxdydz + % f u*d . pndxdydz.
R3 3

A sequence of the weights {¢x}y_, will be constructed, which plays an important role in the proof of
our main theorems.

Theorem 3.1. Given ay > 0, there exists a sequence {¢y}y_, of functions with
oy R¥x[0,00) > R

satisfying for any N € Z*:

(i) gy € CHR? X [0, 00)) with B1Pn(-, -, -, 1), Duyy@n (s, -, 1), OrredN (-, -, -, 1) having a jump discontinuity at
x+y+z=N.

(ii) pn(x,y,2, 1) > 0 for all (x,y,z,t) € R3 x [0, 00).

(iii) Oxdn(x,y,2,1) = Oypn(X, ¥, 2, 1) = O.9n(X,¥,2,1) > 0 for all (x,y,z,1) € R? X [0, ).

(iv) There exist constants cy = ¢(N) > 0 and ¢y = co(ag) > 0 such that

n(x, Y, 2,1) < excol(x +y +2)4 )%,
with

(x+y+2), =max{0;x +y + 2}, xX+y+2) =0+ &x+y+2H)"

(v) For T > 0, there is Ny € Z* such that
Oy (x,y,2,0) < O if NS N,

Also,

32
lim pn(x,y, z, 1) = e OEH+IT
N1eo N (x,y,2,1)

foranyt>0and x +y+z € (—00,0) N (1, 00), where

a,

a(t) = o
81 2
1+ Taot
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(vi) There exists a constant cy = co(ag) > 0 such that

at‘pN + ai(pN + axy}'¢N + a)czz¢N < CO¢Na (32)

for any (x,y,z,t) € R3 X [0, 00).
(vii) There exists a constant c¢; = c1(agy) > 0 such that

10,08 (%, 9,2, 0| < c1{x +y + 2 PPy (x, 3, 2,1), (3.3)
for any (x,v,z,1) € R? x [0, c0).
Proof. For N € Z*, given ay > 0, let us first define
e NPy —0o<x+y+z<1,
PN (X, Y, 2, 1) = § O+ I<x+y+z<N,
Py(x,y,2,0), x+y+z2=N,
where
alt) = ——— € (0,a],  t>0, (3.4)
1+ 84—1a(2)t

ay being the initial parameter.

e(x,y,2) = (1 —nx+y+2)x+y+2)3 +nx+y+2)(x +y +2)*7,

(x+y+2); =max{0; x +y+ z},

for x +y +z € (0o, 1] where n € C*(R*), n, =1, =1, > 0, and

0, X+y+z<1/2,

+Vv4+7) = 3.5
x+y+2) {1, xX+y+z>3/4, (3-5)

i.e., for each x + y + z € [0, 1], ¢(x,y,z) is a convex combination of (x + y + z)° and (x + y + z)*/2.
Py(x,y,z, 1) is a polynomial of order 2 in (x + y + z), which matches the value of e*?&*+9”* and its
partial derivatives up toorder 2 at x + y + z = N:

PN(X,)’,Z, t)

4 2

3 9 3 +y+z—N)*
=1+ EaN”z(x +y+z-N)+ (—azN + ZaN‘”Z) xry+z-N) ]e“N3/2,
with a = a(t) as in (3.4).
Thus, to prove Theorem 3.1, let us consider the regions x +y +z € (=00, 0], [0, 1], [1, N], and [N, c0),
respectively.

In the first region x + y + z < 0, we get

¢N(x’ y’ Z, t) = ea(t).o = 1a
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which clearly satisfies Theorem 3.1.
In the region x + y + z € [0, 1], we deduce that

dn(x,y,2,1) = ea(t)w(x,y,z)’
with
e(x,,2) = (1 =nx+y+ D@ +y+ 2> +nx+y+)x+y+2*? 20,  x+y+ze[0,1],
with 7 as in (3.5). Since in this region (x + y + 2)*/? > (x + y + 2)*, it follows that

3
Op(x,y,2) = (1 =np(x+y+2))3(x +y+2)> +nlx +y + DF(c+y+ 2)'?

- (x+y+2)

+0mx+y+2)((x+y+2)
3
>(1=nx+y+2)3x+y+2) +77(x+y+z)§(x+y+z)1/2 >0,
likewise

0yp(x,y,2) 2 0, 0.¢(x,y,2) 2 0,

with

O0vp(x,y,2) = Oyp(x,y,2) = 0,0(xX,,2), (3.6)

and there exists ¢ > 0 such that

0p(x,y,2), Oup(X,9,2), One(x,y,2), Op(x,y,2) <c,
Oexp(X,,2),  Oryp(X,¥,2),  Orzp(x,y,2) <c, x+y+2z€][0,1].

Note that for a’(¢) < 0, it is found that

a(t) <ag for t>0, 3.7

and it is deduced that
at¢N(x’ Y.z, t) = a’(t)go(x, Y, Z)¢N(x’ Y, 2, t) < 0.
Next, let us prove that there exists ¢y = co(ap) > 0 in this region such that

ai(ﬁzv + axyy‘pN + axzz¢N < codn-

Since
0N = ap,dy, a)'(]5N = a90y¢N’ 0.6 = ap.dn,

a)2c¢N = (a‘;oxx + (a‘px)z) ¢Na axy(pN = (a‘pxy + az‘px‘py) ¢N,
axZ¢N = (a‘pxz + az‘px‘pz) ¢N’ ai(ﬁN = (a‘ﬁoxxx + 3a2‘)0xx¢x + (a‘px)3) ¢N’
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Dy = (apryy +28° 00, + A0upyy + @0 57) b,
Oty = (apuc: + 207000, + Ao + 0, 07) Py
From (3.6), we derive that
0pn = Oypn = 0.y,
thus, forx+y+z~0(x+y+2>0),
O0pn = Oypy = 0.y ~ 3a(x +y + z)2¢N,

Pipy = Oy = Dt ~ (6a(x +y +2) + 92> (x +y + 2)*) b,
O3y = Doy = Doty ~ (60 + 54a(x +y +2)° + 27 (x + y +2)°) .

Hence, forx+y+z~00<x+y+z<1),

ai(pN(xa ¥, 2, t) < C((Z + a3)¢N’ axyy¢N(x5 ¥, %, t) < C(a + a3)¢Na
O (x,y,2,1) < c(a + a)py.

Using (3.7) (i.e., a(t) < ag for t > 0), it is easy to see that there exist 6 > 0 and a universal constant
¢ > 0 such that

Fpy + Opyby + Oy < c(ag + ag)py, for x€[0,6], t>0. (3.8)

In the region x + y + z € [1, 6], we conclude that (3.8) still holds (with a possible large ¢ > 0).
Applying the above estimates, it then follows that Theorem 3.1 holds in this region.
In the domain x + y + z € [1, N], we observe that

3/2
dn(x,y,z,1) = X OEHIT x+y+z€[l,N], t>0.

Then, a direct computation gives rise to
3 1/2
0.y = Ea(x +y+2) “¢py >0,
9 3
Oy = [Zaz(x +y+9+ galx+y+ z)‘”z] dn
19, 3 -1/2
Oy = 7Gxy ++ qalx+y+2)7 7 én,

Y8 (3.9)

9 3
00N = [Zaz(x +y+2)+ Za(x +y+ 212

27 27 , 3
Bgpw = [;as(x +y+27 + gaz - galety+ Z)—3/2] b,

27 27 , 3
Oupypn = [§a3(x +y+277+ §a2 - ga(x +y+ z)‘m] éw,

2 -3/2
)/

d.

27 27 3
Oy = [_03(35 +y+ 2)3/2 + —a - ga(x +y+z

8 8

Electronic Research Archive Volume 33, Issue 1, 447-470.



457

Hence, ¢y > 0 and

6Z¢N + ai¢N + axyy¢N + 6xzz¢N

81 3 81 9 3
=|ld(x+y+ z)% + §a3(x +y+2)?+ §a2 - ga(x +y+2) 2oy (3.10)

Taking advantage of
81
a(o+ §a3(t) =0,
we eliminate the terms with power 3/2 on the right-hand side of (3.10). Therefore,

a(t) = —2___ (3.11)

81 2
1+ TCIOI

‘We show that

al‘pN + ai(bN + axyy(ﬁN + a)czz(ZSN < CO¢N’
with ¢y = co(ap) > 0, and it is easy to find that for | < x+y+z < N,

81 9
§a2 - ga(x +y+ 272 < co,

since a(t) = a < ay, —%a(x +y+ z)‘% <0.
Next, it follows from (3.9) that
3
Oupy = sy = O:pn = Salx +y+2) gy < calx +y+2) g,
a)QCQSN = axy(pN = axz¢N < C(a(z) + a0)<x t+y+ Z>¢N’
6i¢N = 6xyy¢N = 0y < C(ag +ap){x +y + 2)dy.

Lastly, we remark that

L N3/2 3/2
Pn(x,y,z, 1) = DT < paol for t>0, x+y+ze[l,N],

which completes the proof of Theorem 3.1 in this region.
Finally, let us consider the last region x + y + z € [V, oo]. In this domain,

¢N(x,y,Z,t) = PN(xayaZat)
(x+y+z—N)2
2

N (3.12)

3 9 3
=1+ EaNl/z(x +y+z-N)+ (ZazN + ZaN‘”z)

with a = a(t) as in (3.11). Hence, we obtain that there exists ¢ > 0 such that for x + y +z > N,
PN(.X, y’ Za t)
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+y+z—N)?
Zc[l+aN1/2(x+y+z—N)+(a2N+aN_1/2)(x yre )]e“N”

2
> ce™ >0, (3.13)

which proves (ii) in Theorem 3.1 in this region. Furthermore, one gets
axPN(Xaya Z, t) = 0yPN(xaya 2 t) = azPN(xaya 2 t)

=
2

3 9
~aN'? + ZazN(x +y+z- N)] N > 0,

which proves (iii) in Theorem 3.1 in this domain, and
O PN(x.y.2.1) = A (DS y(x,y.2. 0™ +a (N2 Py(x.y,2.1),

where

3 9 3
Sn(x,y,2,1) = EN”Z(x +y+z—N)+ (ZaN + gN—”Z) (x+y+z-N)>?>0.

Next, we shall prove thatif x+y+2z > N,
Oipy + 0rdw + Ouyydy + Ourby < Codiy. (3.14)
Note that
Ovby = Oy = Ouapy = 0. Oipn(x.3.2.1) = ,Pn(x..2,1) < 0.

Combining the above estimates completes the proof of (3.14). Then, (3.13) yields (3.3) in this region
x+y+z>N.

In order to complete the proof, it is necessary to prove (v) in the region x + y + z € [N, o). Taking
advantage of (3.9) with ¢ = 0, we need only prove that for x + y+z > N,

n(x,7,2,0) = Py(x,3,2,0) < @, (3.15)
Let x + y + z = w to prove (3.15). We need to prove that
by (w,0) = Py(w,0) < e (3.16)

Considering Py(w,0) and e“o‘”i/z, and their derivatives up to the second order, which coincide at w = N,
to prove (3.16), it is sufficient to prove that

d2
0L Py(@.0) < ¢, for w2 N. (3.17)
w

For this purpose, we deduce from (3.12) that the constant value of 8> Py(w, 0) is given by

3 9 .
aiPN(U), 0) = (ZaoN_l/2 + Za(Z)N) eaoN”2
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and coincides at w = N with

Zapw 'F + Zajw
dw? 0

d_zea0w3/2 (3 -1/2 9 2 )ea0w3/2
4 4 '

Let us observe that

3
d ea0w3/2 ( 3 _3/2

=|—=apw
dw?

27 3 32| apw?
g e

2 2
+ gao + Zao + gao(l)

27 5 3p 1 1 312
= — - + +1]e™ >0,
g ‘0% 9aiw®  ayw’? ¢

ifw>Nand N > (9a(2))‘1/ 3 = No(ap). Therefore, if N > N, %6“00}3/2 is an increasing function with
regard to the variable w for w > N. According to this fact, we obtain (3.17). Hence, (3.16) and (3.15)
hold, which gives the proof of (v) in this region.

Thus, the proof of Theorem 3.1 has been completed. O

4. Decay of solutions

4.1. Proof of Theorem 1.1

By virtue of Lemma 2.2, we deduce that the solution u of IVP (1.1) satisfies
u € C([0, T]; H*(R*) N L*(#“"*9dxdydz)), for any pB>0. 4.1)

In general, if for some 8 > 0, £ £, 32 f € L2(R?), then £5H+9/25, f € L2(R?) since
f PG, ) dxdydz < B f P £ A xdydz + ‘ f P (52 fdxdydsz| . (4.2)
R3 R3 R3

To prove (4.2), one initially assumes that f € H*(R?) with compact support to obtain (4.2) by integration
by parts, and then the density of this class is employed to achieve the desired result.
Therefore, applying the last argument and (4.1), it follows that

Ou, du, dlu € C([0, T1; H*/(R) N L dxdydz)), j=0,1,2. 4.3)

In particular, for any k, u € C([0, T]; L>({x + y + z)*dxdydz)), we assume that u is sufficiently regular,
that is, u € C([0, T]; H*(R?)). Then, we derive energy estimates on u applying the weights {¢y} (since
¢y < c{x +y + 2)?). Thus, multiplying by u¢y on both sides of (2.2), and integrating the result in R
with x, y, z, we obtain

f Ouupndxdydz + f Biuu¢Ndxdydz+ f Oxyuudydxdydz
R3 R3 R3

+ f O uupydxdydz +y f u?duudydxdydz = 0.
R3 3

R
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Applying (3.1) and property (iii) in Theorem 3.1, it is inferred that

d
E f Ltz(bNd)Cdde < f M2(8t¢N + (9)3(¢N + (9xyy¢N + (9XZZ¢N)dxdde
R3 3

R
+ Y f u*d pydxdydz.
2 R3
From (3.2), it follows that
i 2 2 Y 4
u ¢pndxdydz < ¢ u pndxdydz + u' 0, ¢ndxdydz. 4.4)
dt R3 R3 2 R3

with Cy = C()(ao).
Let us estimate the second term on the right-hand side of (4.4). To bound the contribution of the
second term using (3.3), we write

0 < 0:pn(x,y,2,1) < cr{x +y + 20 2on(x,y,2,0) < (1 + ) pn(x, ¥, 2, 1),
hence

Lix
Lﬂmwmmmhsdwﬂﬂmmgwﬁwwgwgﬁﬂﬁmmmk

Combining the Sobolev embedding theorem and (4.3), one has

T
1 , 2
[ et e <

Inserting the above estimates into (4.4), for any N € Z*, we deduce that

d
- u(x,y, 2, Dn(x, v, 2, Ydxdydz < L(t) f u(x,y, 2, (X, y, 2, Ddxdydz,
R3 R3

with L(z) € L*([0,T]), where L(-) = L(ao; ||e%(x+y+z)u0||Lz(R3); lluoll g1 3))- In view of property (v) in
Theorem 3.1, and using Gronwall’s lemma, it follows that for 7 € [0, T'],
f u?(x, v, 2, Don(x, Y, z, )dxdydz
R3

<c ( f U (x, ¥, 2PN (X, ¥, 2, O)dxdydz) e Lt 4.5)
R3

1 B .Y
<c (ao; ||e4L10()C+y+Z)+ uO”LZ(Ra); “uO”H'(R3); T) f u(z)(.x, y, Z)eao(X+)+Z)+ dXdde
R3

We are now in a position to establish (4.5) for our less regular solution u € C([0, T]; H*(R?)). For
this purpose, let us consider IVP (1.1) with regularized initial data uy s := ps *u(- + 06, - + 9, - + 9, 0), where
0>0,p5 = 5%,0(3, 5 3),p € C*®(R?) is supported in (=1,1) x (=1,1) x (-1, 1), and fR3pd§d77d§ = 1.
Since

ups — ug  in H*R’ as 6—0, (4.6)
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for IVP (1.1) in H*(R?), according to the well-posedness result in [18], the corresponding solutions i
satisfy us(f) — u(¢) in H*(R?) uniformly for ¢ € [0, T] as § — 0. Furthermore, in terms of the Sobolev
embedding theorem, for fixed t,

us(x,y,z,t) = u(x,y,z,t) for all (x,y,2)€ R} as 6—0.
Meanwhile, by applying Minkowski’s integral inequality, we prove that
32 1 3/2
ez 0 g gll 2 ey < e g2z @.7)

Note that u; is sufficiently regular, and we obtain (4.5) with us and 1 s instead of u and u. For fixed ¢,
taking account of (4.6), (4.7) and using Fatou’s lemma, one can deduce that

f MZ(X, v, 2, Hon(x,y, 7, Ndxdydz
R3

1 32 32
<c (ao; ||e4ao(x+y+z)+ uollLZ(RS); ||u0||Hl(R3); T) f M(z)(x, y, Z)eao(x+y+z)+ d.Xdde
R3

Taking N T oo, and making use of Fatou’s lemma and the property (v) in Theorem 3.1, it follows that

3/2
sup f OO (x, v, 7, P dxdydz < ¢,
rel0.7] Jr3

which completes the proof of Theorem 1.1.

4.2. Proof of Theorem 1.2

Let us consider the difference of the two solutions to the equation
wx,y,2,1) = (1 = uz)(x,y,2, 1),
that is,
ow + 8)3(w + OyW + Oy W + 7(uf(')xw + (uy + u))wd,uy) = 0. (4.8)

Taking advantage of the argument developed in Theorem 1.1, we multiply (4.8) by w¢y, integrate the
result in R? with x, y, z, and formally use integration by parts to deduce that

1
f urd wwondxdydz = — f 0w dndxdydz — = f U0, pywdxdydz,
R3 R3 2 R3

where

f”laxu1W2¢NdXdde < ||ulaxu1||L°°(R3)f wpydxdyds.
R3 R3

Using (3.3), it follows that

f uf8X¢Nw2dxdydz
R3

< cf u%(x +y+ z>%w2¢Ndxa’ydz
R3
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1
<l (x + 3 + 2o es) f . w gndxdydz.
R

Altogether,

f Our(uy + uz)w2¢Ndxdydz
R3

< ||M13xbl2||L°°(R3) f3 W2¢NdXdde + ||M25xu2||L°°(R3) f3 W2¢NdXdde-
R R
Thus, combining the equality

f owwondxdydz + f FPwweydxdydz + f Oxyywwondxdydz
R3 R3 R3

+ f 0y wwondxdydz +y f (u%(?xw + (uy + u)wo up)\wondxdydz = 0,
R3 R3
and the above estimates, one has

d
— | w2y, 2, 0én(x, v, 2, Ndxdydz
dt R3

< f W20, 3, 2 D (v, 2, Ddxdydz + Yl Brity e, f Wpwdxdydz
R3 R3

1
+ eyl e +y + 25w ) f windxdydz + Y dnalliees f wi¢ndxdydz
R R

+ 7””26xu2”L°°(R3) f . W2¢NdXdde,
R
i.e.,
d
7 f w?(x,, 2, Ddn(x, y, 7, Ddxdydz < G(1) f w(x, Y, 2, (X, , 2, dxdydz,
R3 R3

where

L
G(®) = c(llu1dxurllp=@s) + llurdx +y + 2 # o gy + 10|l + U201l w3)),

with G(¢) € L*([0, T']). Therefore,

sup f wz(x, v, 2, )N (X, y, z, dxdydz
R3

t€[0,T]

S C (f Wz(-x’ y’ Z, 0)¢N(X, y’ Z, O)dxdydz eJ(')T G(l)d[,
R3

which completes the proof of Theorem 1.2.
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5. Proof of Theorem 1.3

Proof. We suppose ty = 0 and 0 < #; < T. First, let us consider @ € (0,1/2]. Forx+y+z>0,N € Z*,
and a > 0, we are in a position to define

[1+(x+y+z)4]%—1, x+y+ze€][0,N],

2 5.1
(2N)™, x+y+z> 10N,

Ona(X,y,2) = {

with oy (x,y,2) € C(x +y + 2 2 0), pno(x,3,2) = 0, and d,pne = Oypna = Opna = 0, and for
a € (0,1/2],

10x0N,0(X, Y, DI = 10yoNn.a(X, Y, D] = 10.0n,0(x,y, 2| £ C,
|a,3¢‘10N,a(xa Y, Z)l = |axyy90N,a(x, Y, Z)l = |axzz‘70N,a(X, Yy, Z)l < C,

where C is independent of N.
Let Oy, be defined as the following:

On(X, Y, 2), X+y+z>0,
Ona(X,y,2) = On(x,y,2) = (5.2)
— ONo(=X, =y, —2), x+y+z<0.

Note that

0.0n(x,9,2) = 0,0n(x,¥,2) = 0.0n(x,y,2) 20, V(x,,2) € R?,
Oy € C3(R3), 10n o3y = (ZN)ZQ-

Then, let (4o ) mez+ be a sequence in C (R?) such that
Uom — U in H*R® as m1 oo, (5.3)

and let u,, € C([0, T]; H*(R?)) be the solution of Eq (1.1) corresponding to the initial data u,,. We
have

Uy — U in C([0, T]; H*(RY)). (5.4)

From the continuous dependence of the solution upon the data (see Lemma 2.1), (5.3), and (5.4), there
exists T > 0 such that

@  sup () - up@llz = 0 as m T oo,
t€[0,T]
T
O [ WO - Ot 20 a5 mT e, (5.5)
0

Owing to u,, € C([0, T], H*(R?)) satisfying Eq (1.1), we multiply it by u,,6y. Then integrating the
result and formally using integration by parts (justified since 6y is bounded), we obtain

d
= f 12 Ondxdydz + f (Dtty, + Oyt 0, Ondxdydz + f (Ot + O.11,)20.Ondxdydz
R3 ]R3 R3
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+ f (D1t)* 30,0y — 0,60y — 0-0x)dxdydz + f (Byt)* (0,0 — D,0y)dxdydz
R3 R3

+ f (0,u)* (0,0 — 0,0x)dxdydz (5.6)
R3

= f Ul 0>0ydxdydz + f ui@xyyHNdxdydz+ f U2 0...0ndxdydz
3 3

R R R3

+ Y f Ul 0.0ndxdydsz.
2 R3

Notice that 8x9N = c')yHN = 6Z0N, 36x0N - (9y0N - GZHN > 0, (9x9N - ayHN = 0, and 8x9N - 6201\] =0. We
rewrite (5.6) as follows:

d
- u? Ondxdydz + f (O thy + Oyt)*0,Ondxdydz + f (Ot + O-t)*0.0ndxdydz
R3 R3 R3

< f Ul 0>0ydxdydz + f u,znaxyyHNdxdydz+ f U2 0...0ndxdydz 5.7
R3 R3 R3

+z f ufnaxﬁNdxdydz.
2 R3

For m large enough, thanks to the boundedness of the partial derivatives of 6, the L>*~norm conservation
law, and the convergence of the sequence {u,,}, we deduce that

(U)? 0> Ondxdydz

R3

f 3 (U )0,y Ondxdydz
R

2 2
< ClltonlPagesy < 2C ol e -

2 2
< Clltol s ey < 2C o] 5

(um)zaxzzeNdxdde

R3
fR 3<um>4ax0Ndxdydz‘ < Cllt IR e oy Mt 2o e

2 2
< 20t (O s 0l g

Integrating (5.7) with regard to ¢ in [0, #;] and using (5.8), it follows that

2 2
< C””O,m”Lz(Rz) < 2C||u0|lL2(R3)a (58)

11
f @t + 00" (5,3, 03,00, y, Dy
0 R

1]
b [ [ @t 00532008 .y
0 JRr?
2 2 2
< |, (200N 1 3y + ||uo,m9N||L1(R3) + Ctllluolle(Rg)
11
2 2
+ C”uO”LZ(R3) ﬁ ”um(t)”Loo(RS)dt’

where C represents a constant, and its value may change from line to line. Meanwhile, it does not
depend on the initial parameters of the problem. Setting m T co and making use of (5.5), Lemma 2.1,
(2.1), and the assumptions of Theorem 1.3, we deduce that

_ gl
lim f f (O,u,, + ayum)Z(x, ¥, 2, D)0,0n(x, y, 2)dxdydzdt
0 JR3

mToo
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R gl
+ lim f Dt + O;1)*(x,y, 2, D00y, y, 2)dxdydzdt
0 R3

mToo

2 2 2
< e (@)ON L 3y + Oyl sy + Crilluollyz gy

11
2 2
+ C”uO”LZ(RS)f ||u(t)||Lm(R3)dt S M7
0

(5.9)

withM =M (||(x +y + 2)%uoll2®3), IKx +y + z)“u(tl)lle(R3)). Next, we use (5.4) and (5.5) to conclude

that for any fixed N € Z* and N > 10N,
Oty — Out, Oy, — Oyu, O uy, — 0-u,

in L2 ([0.] X {x + y + z € [-N, N]}) as m 1 co.
Thanks to 0,6y and 9,6y having compact support, one has

1]
f f Ou + ayu)z(x, ¥, 2, D)0,0n(x,y, 2)dxdydzdt < M,
0 Jr3
1]
f f Ou + (9Zu)2(x, v,2,1)0,0y(x,y, 2)dxdydzdt < M.
0 Jr3

At last, notice that 0,6y = 0.6y > 0, and for x +y +z > 1,

2(x +y + 2)? 901
[1+(x+y+2)4"% AR A

6y0N = GZGN i
Using Fatou’s lemma in (5.11), we obtain
1]
f f (01 + Oyu)*(x,, 2, x + y + 2)** ' dxdydzdt < M,
0 |x+y+z|>1
1]
f f (Ostt + 0.)*(x, y, 2, 1){x + v + 2)** Ydxdydzdt < M.
0 [x+y+z|>1
From Lemma 2.1 and (2.1), it follows that
11
f f (0.u + Oyu)*(x,y, 2, dxdydzdt < M,
0 [x+y+z|<1
11
f f Oyt + O.u)*(x, y, 7, )dxdydzdt < M.
0 [x+y+z|<1
We derive that
1]
f f (Oyu + (9yu)2(x, VL, D{x+y+ z)Z"_ldxdydzdt <M,
0 JR3

1]
f f Oyt + O.u)*(x,y,2, ){x + y + 2)** 'dxdydzdt < M.
0 Jr3

(5.10)

(5.11)

(5.12)

(5.13)
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With (5.13), we reapply the above argument with ¥y ,(x,y,2) = ¥n(x,y, 2):

ONa(X,Y,2), xX+y+z2>0,

wN,a(x’y’ Z) = wN(x’y’ Z) = { (514)

ONa (=X, =y, —2), x+y+z<0.
Note that

10:n(x, 3, 2| = [0n (%, 3, 2| = 10w (x, 3, 2 < Clx + y + 277

In Eq (5.6) with yy(x, y, z) instead of 8y(x, y, z), similar computations to that in (5.8) lead us to

mToo

R g
im f f Ot + Dyt (5, 22 DOt (5, > Ddxydzdt
0 R3
1]
= [ [ @+ dgp 00,005y dnd,
0 R3
R 1
liTm f f (Ot + 021" (X, ¥, 2, DO N(X, y, 2)dxdydzdt
mteo Jo o Jro

11
= f (axu + azu)z(x’ y, Z’ t)azlvbN(x’ y’ Z)dXddedt’
0 JR3

and

1]
f f Ou + 6yu)2(x, Y, 2, DOWN(X, Y, z)dxdydzdt'
0 Jr3

11
< f f (Ou + 8},u)2(x, v, 2, (x + vy + 22 dxdydzdt < M,
0 Jr3

f:l L} Ou + 0.u)(x,y, 2, DO N(X, Y, z)dxdydzdt‘
< fotl ‘ng((?xu +0.u)(x, y, 2, O(x + y + 2)°* ' dxdydzdt < M.
Collecting all the above estimates and integrating in [0, ¢] C [0, #,] yields
(x+y+ 2)%u() € L*(RY) te0,#]. (5.15)
Taking advantage of (5.13), for ¢ € [0, #;], it is inferred that

(0.u(t) + Oyu(t)){x +y + 2)*'/* € LA(R?),
O,u(t) + du())x +y + 2)771? € L2(RY).

Hence, the desired result holds.
Next, let us consider the case a € (1/2, 1]. A direct computation gives rise to

axeN,a(x, Y, Z) + a)’9/\/,(1/(-)67 Y, Z) + 8ZQN,(I(X’ ) Z) + |axl//N,a/(x7 Yy, Z)l
+ 10N .a(X, Y, D] + 10Y o (X, 9, D + 1By o1 (X, 7, D] < C{x + y + 2),
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|ai0N,a'(x’ Y, Z)l = |axyy0N,a(x’ Y, Z)l = |GXZZHN,(L/(-X7 ) Z)l < C

As before, we deduce that
d
— f U2 Oy odxdydz + f (Ot + Oyt)*0, 6 odxdydz
dt R3 R3
+ f (Ot + 01> 0,0 odxdydz
R3
< f uiﬁi9N7(,dxdydz+ f uiﬁxnyN,adxdydz+ f ufn(')XZZHNﬂdxdydz
R3 R3 R3
+ Y f Ul 0.0y odxdydsz,
2 R3

with u,, € C([0, T]; H*(R?)).
In (5.16), we first utilize that

2 2
< C||u0,m||L2(R3) < 2C||u0|lL2(R3)’

f (Un)> 3Oy odxdydz
R3

2 2 2
f (um) axyyeN,adxdde < C”uO,m”LZ(RS) < 2C|Iu0“L2(R3)’
R3

\[Rs(um)zaxzzel\’,(ldxdydz‘ < Cll”O,mlliZ(R3) < 2C||u0||iZ(R3)-
Next, for the last term on the right-hand side of (5.16), it follows that

10:650(x, 3, 2)| = [8,6n0(x, 7, 2)| = |0.650(x, 7, 2)| < Clby o1 (x,7, 2P,

with C independent of N. Accordingly,

f uiaxeN,adxdydz
R3

2 2
< Cl|um(t)||Loo(R3)||um(t)0N,a—% ||L2(R3)'

For each fixed N, the 6y, ’s are bounded, and

sup [[(u — up)(Oll2@3y — 0 as mT oo,
t€[0,t1]
we conclude that
sup |[|(u — Mm)(f)QN,a_%lle(Ra) — 0 as m 7T oo.
t€[0,1]

Hence,
sup ||um(f)9N,a_%||L2(R3) <2 sup ||u(t)9N,a_%||L2(R3)
1€[0,t1] 1€[0,¢1]

1
<2 sup [Kx+y+22u@lper) < M,
t€[0,t1]

(5.16)

(5.17)

(5.18)

(5.19)
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with M = M(||<x + 3+ 2D Pugll2gay, KX +y + z)l/zu(tl)lle(Rs)) for m > 1.
Plugging the above estimates into (5.16) and applying the same argument in the previous case
a € (0,1/2], we obtain

]
f f (01, + Oyum)z(x, ¥, 2, D0,0n(x, y, 2)dxdydzdt < (1 + t;)M,
0 Jr?

1]
f f (Ot + O1) (%, Y, 2, DO (x, y, D)dxdydzdt < (1 + 1)) M, (5.20)
0 JR3

form > 1, and

11
f f (01 + ) (x,y, 2, (x + y + 2)** 'dxdydzdt < (1 + 1) M,
0 3

R

1]
f f (Ou + 0.u)*(x, y, 2, )X + y + 2)°* 'dxdydzdt < (1 + t)M, (5.21)
0 R3

where M = M (||<x +y + 20 Puoll 2wy, KX + y + Z>1/2M(tl)||L2(R3)>'

In the following, we use ¥y, instead of 6y,. Then we obtain the similar formulation to (5.16). From
(5.20) and (5.21), the desired result is valid.

For the case @ € (1,3/2] and higher a, we may apply a similar bootstrap technique to get the desired
result. O
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