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Abstract: As an emerging network architecture, software-defined networking (SDN) has the core 
concept of separating the control plane from the network hardware and unifying its management by a 
central controller. Since the centralized control of SDN is such that an attack on the controller can lead 
to the paralysis of the entire network, intrusion detection has become particularly significant for SDN. 
Currently, more and more intrusion detection systems based on machine learning and deep learning are 
being applied to SDN, but most have drawbacks such as complex models and low detection accuracy. This 
paper proposes an enhanced spider wasp optimizer (ESWO) algorithm for feature dimensionality 
reduction of intrusion detection datasets and constructs a new intrusion detection model (IDM), namely 
ESWO-IDM, for SDN. The ESWO algorithm integrates multiple strategies, including tent chaotic map 
strategy and elite opposition learning strategy to improve the diversity of the population, Lévy flight 
strategy to prevent the algorithm from falling into local optimum in the early stage, and dynamic 
adjustment strategy of control parameters to balance exploration and exploitation of the algorithm. 
ESWO was empirically evaluated using eight benchmark test functions and four UCI datasets to 
comprehensively demonstrate its advantages. Binary and multiclassification experiments were 
conducted using the InSDN dataset to analyze the ESWO-IDM performance and compare it with other 
IDMs. The experimental results show that the ESWO-IDM achieves the best performance in all the 
metrics in both binary classification and multiclassification and has the most prominent effect on the 
detection of normal, denial of service (DoS), distributed DoS, and Brute Force Attack types, which 
effectively improves SDN intrusion detection from the viewpoint of optimization. 
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1. Introduction 

Software-defined networking (SDN) is a new type of network architecture that can be structured 
into three layers: forwarding plane, control plane, and application plane. SDN separates the data plane 
from the control plane and becomes more flexible and programmable, which improves the flexibility, 
real-time, and scalability of the network, optimizes communication and management in the network, 
and improves the efficiency of the entire industrial automation system [1]. Since SDN integrates 
traditional network functions and simplifies network configuration operations, it is more vulnerable to 
network attacks, and intrusion detection is an effective means to address SDN security issues [2]. With 
the development of machine learning, researchers have begun to use traditional machine learning 
algorithms (such as decision trees, support vector machines, etc.) to build a more complex intrusion 
detection system (IDS), which improves the accuracy and efficiency of intrusion detection. For 
intrusion detection systems in traditional networks, researchers have proposed many intrusion 
detection models (IDM) with good results, and nowadays many researchers apply traditional network 
intrusion detection methods to intrusion detection in SDNs. Ali et al. [3] designed a lightweight 
distributed denial of service (DDoS) attack detection and mitigation system based on an improved 
decision tree, which employs impurity culling and error pruning strategies to detect DDoS attack 
streams in the traffic and incorporates a dynamic whitelisting mechanism to block the attack traffic 
from entering the SDN. Madathi et al. [4] used a feature subset of the attack traffic to train the K-
nearest neighbor (KNN) algorithm, which is then used to identify anomalous attacks by aggregating 
and classifying the attack traffic. Maheshwari et al. [5] proposed a novel optimized weighted voting 
integration model incorporating support vector machine (SVM), random forest (RF), and gradient boosting 
machine (GBM) for detecting DDoS attacks in SDN environments. Elsayed et al. [6] proposed a secured 
automatic two-level intrusion detection system (SATIDS) based on an improved long short-term 
memory (LSTM) network, which distinguishes between attacking and benign traffic and identifies 
the attack class. Al-Zewairi et al. [7] classified the attack types into type A and type B according 
to different characteristics and used shallow and deep artificial neural network (ANN) classifiers 
to detect these two types of unknown types; the results showed that it can effectively realize the 
problem of classifying the unknown attack types. Wang et al. [8] proposed an improved Naive 
Bayes (NB) model combined with the attribute addition algorithm, and the results show that the 
classification accuracy of the new model is significantly improved. 

However, both independent machine learning detection methods and joint detection methods are 
often ineffective as the feature data used relies on manual labor. In order to improve the detection 
efficiency, researchers usually combine feature selection techniques to select the optimal features. In 
network intrusion detection systems, feature selection is one of the key steps in data preprocessing, 
which directly affects the efficacy and accuracy of the classifier. Feature selection aims to identify and 
select the most useful subset of features from the original dataset to improve model performance and 
reduce the risk of overfitting. 

Cui et al. [9] proposed a feature selection method for high-dimensional data of SDN network data 
traffic to extract positive features that are effective for model decision-making and constructed a 
multiclass intrusion detection model based on multiple output nodes, which improved the accuracy of 
the model for emerging intrusion detection. Wang et al. [10] used RF information gain to select the 
optimal feature subset and a support vector machine for classification to construct a detection model 
with a high detection rate for DDoS. Sarica and Angin [11] proposed a solution for real-time intrusion 
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detection and mitigation in SDN based on automatic flow feature extraction and flow classification, 
while using a random forest classifier at the SDN application layer; experimental results showed that 
the proposed security method has broad prospects in the implementation of SDN-managed IoT 
networks. Zhang and Wang [12] proposed a network intrusion detection system (NIDS) based on 
feature selection and deep learning; the model uses methods such as filtering both non-IPv4-type data 
packets and consecutive identical packet-in messages and recovering missing information to remove a 
large number of redundant features and improve the detection accuracy. It is deployed in the SDN 
network for detecting abnormal traffic. However, the above-proposed methods have disadvantages 
such as large models, complex algorithms, low detection accuracy, and data that do not reflect the 
characteristics of the SDN environment. 

Our prior work [13,14] involves the integration of classical metaheuristic optimization algorithms 
for feature selection. However, traditional meta-heuristic algorithms suffer from issues such as low 
search efficiency. Our prior work [15,16] also applies some new heuristic algorithms that integrate 
multiple strategies to intrusion detection and SDN networks, which effectively improves the 
performance of feature selection models and the efficiency of intrusion detection. Our prior work has 
focused on traditional network intrusion detection, and only preliminary experimental tests have been 
conducted for SDN intrusion detection. 

Spider wasp optimizer (SWO) [17] is an emerging metaheuristic algorithm proposed by Abdel-
Basset et al. in 2023. The SWO algorithm has several unique update strategies for a wide range of 
optimization problems with different exploration and exploitation needs. The SWO algorithm has been 
successfully applied to real-world optimization problems, one class being constrained engineering 
design problems such as WBD and pressure vessel design. The second class is to estimate the unknown 
parameters of the PV models including SDM, dual diode model (DDM), and triple diode model (TDM). 
In addition, Shtayat et al. [18] proposed an improved binary spider wasp optimization algorithm 
(IBSWO), which was experimentally verified to have a significant advantage over traditional heuristic 
algorithms in terms of performance and was applied to IIoT-IDS. The IBSWO primarily converts 
continuous SWO algorithms into binary SWO algorithms. IBSWO only improves the flat crossover in 
the SWO algorithm and does not optimize the SWO algorithm for its shortcomings in exploitation and 
exploration. Mohamed et al. [19] proposed an enhanced binary spider wasp algorithm (BSWO) and 
used it for high-dimensional feature selection, which effectively reduces the redundant structure of the 
data and improves the classification accuracy. Compared to SWO, the BSWO has higher time 
complexity and increases the time overhead. Although the SWO algorithm has strong global search 
and local exploitation capabilities, it suffers from the problems of unbalanced exploitation, slow 
convergence at later stages, and the possibility of getting stuck in local optimality. In order to overcome 
the problems of SWO mentioned above, to solve the challenges brought by facing high-dimensional 
data, and to improve the detection efficiency for anomalous traffic, in this paper, we propose a 
multi-strategy enhanced ESWO algorithm for feature selection and construct the intrusion 
detection model, which optimizes SDN intrusion detection. Tent chaotic map and elite opposition 
learning strategy increase the diversity and expand the search range of the population. The Levy 
flight strategy was introduced to avoid the algorithm falling into local optima early in the iteration. 
The dynamic parameter adjustment strategy balances the exploration and exploitation of the algorithm. 
The ESWO algorithm is applied to feature selection in intrusion detection to select the optimal subset, 
reduce data redundancy, and improve the detection efficiency of SDN intrusion detection. 
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The main contributions of this paper are as follows: 
a) In order to improve the limitations of the SWO algorithm when applying intrusion detection 

for SDN, enhanced strategies are introduced for the ESWO algorithm. 
b) An intrusion detection model based on ESWO for SDN is proposed, which uses the ESWO 

algorithm to solve the problem of data set feature redundancy in intrusion detection and improves the 
detection efficiency for abnormal attacks. 

c) Since the ESWO algorithm is used to feature selection for intrusion detection, the binary 
version of ESWO is utilized to search for the optimal subset, and the intrusion detection model based 
on the ESWO algorithm is compared with other algorithms to verify the superiority of the proposed 
model in detecting abnormal attacks for SDN. 

The remainder of this paper is organized as follows: Section 2 introduces the basic algorithm. 
Section 3 presents enhanced strategies based on the SWO algorithm. Section 4 presents the intrusion 
detection model based on the ESWO algorithm. Section 5 provides experiments and results. Section 6 
summarizes the research results and future development directions of this paper. 

2. Basic algorithm 

The SWO algorithm mainly simulates the behaviors of female spider wasps, such as hunting, 
nesting, and laying an egg on the abdomen of the spider for parasitism, and uses mathematical models 
to simulate this behavior in various scenarios. 

2.1. Initialization phase 

In the SWO algorithm, each spider wasp (female) represents a solution of the current generation, 
and the mathematical expression is described as follows: 

 𝑆𝑊ሬሬሬሬሬሬ⃗ ൌ ሾ𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … , 𝑥஽ሿ  (1) 

 𝑆𝑊ሬሬሬሬሬሬ⃗ ௜
௧ ൌ 𝐿ሬ⃗ ൅ 𝑟 ൈ ൫𝐻ሬሬ⃗ െ 𝐿ሬ⃗ ൯  (2) 

where t denotes the generation index, i indicates the population index (i = 1, 2, …, N), 𝑟 is a vector 
of D-dimension randomly initialized numbers between 0 and 1, 𝐻ሬሬ⃗  is the upper bound of the pre-set 
parameter,  𝐿ሬሬ⃗  is the lower bound of the pre-set parameter, and 𝑆𝑊ሬሬሬሬሬሬ⃗ ௜

௧ represents the ith spider wasp 
in the t-th round of iteration. 

2.2. Hunting and nesting behavior 

2.2.1. Searching stage 

In the initial stage, the female spider wasp randomly explores the search space with a constant 
step length to search for spider prey suitable for their offspring. In the t + 1 iteration of this stage, the 
position 𝑆𝑊ሬሬሬሬሬሬ⃗ ௜

௧ of the ith spider wasp mathematical expression is described as follows: 

 𝑆𝑊ሬሬሬሬሬሬ⃗ ௜
௧ାଵ ൌ 𝑆𝑊ሬሬሬሬሬሬ⃗ ௜

௧ ൅ 𝜇ଵ ∗ ൫𝑆𝑊ሬሬሬሬሬሬ⃗௔௧ െ 𝑆𝑊ሬሬሬሬሬሬ⃗ ௕
௧൯  (3) 
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where a and b are two indices selected at random from the population to determine the exploration direction, 
and 𝜇ଵ is the coefficient vector using the following formula: 

 𝜇ଵ ൌ |𝑟𝑛| ∗ 𝑟ଵ  (4) 

where 𝑟ଵ is a number randomly generated at the interval of zero and one, and 𝑟𝑛 is also a random 
number but generated using the normal distribution. 

Spider wasps sometimes search the entire area around where the spider has fallen, with 
mathematical expressions as follows: 

 𝑆𝑊ሬሬሬሬሬሬ⃗ ௜
௧ାଵ ൌ 𝑆𝑊ሬሬሬሬሬሬ⃗௖௧ ൅ 𝜇ଶ ∗ ቀ𝐿ሬ⃗ ൅ 𝑟ଶሬሬሬ⃗ ∗ ൫𝐻ሬሬ⃗ െ 𝐿ሬ⃗ ൯ቁ  (5) 

 𝜇ଶ ൌ 𝐵 ∗ 𝑐𝑜𝑠ሺ2𝜋𝑙ሻ  (6) 

 𝐵 ൌ ଵ

ଵା௘೗
  (7) 

where c is an index randomly selected from the population, and l is a number randomly generated 
between 1 and –2. 

The mathematical expression of the position update of the spider wasp at this stage is as follows: 

 𝑆𝑊ሬሬሬሬሬሬ⃗ ௜
௧ାଵ ൌ ൜

𝐸𝑞 ሺ3ሻ          𝑟ଷ ൏ 𝑟ସ
𝐸𝑞 ሺ5ሻ   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (8) 

where 𝑟ଷ and 𝑟ସ are two random numbers in [0, 1]. 

2.2.2. Following and escaping stage 

After the spider wasp catches the target spider, sometimes the spider will escape, and the spider 
wasp will hunt. At first, the distance between the spider wasp and the spider is very small, and then it 
will increase or decrease according to the speed of the two. The expression of this behavior is as follows: 

 𝑆𝑊ሬሬሬሬሬሬ⃗ ௜
௧ାଵ ൌ 𝑆𝑊ሬሬሬሬሬሬ⃗ ௜

௧ ൅ 𝐶 ∗ ห2 ∗ 𝑟ହሬሬሬ⃗ ∗ 𝑆𝑊ሬሬሬሬሬሬ⃗௔௧ െ 𝑆𝑊ሬሬሬሬሬሬ⃗ ௜
௧ห  (9) 

 𝐶 ൌ ቆ2 െ 2 ∗ ቀ ௧

௧೘ೌೣ
ቁቇ ∗ 𝑟଺  (10) 

where a is an index randomly selected from the population, t and 𝑡௠௔௫  indicate the current and 
maximum evaluation, respectively, 𝑟ହሬሬሬ⃗  is a vector that represents the values randomly generated in the 
interval [0,1], and 𝑟଺ is a random number in the interval [0,1]. 

When the spider escapes the hunt of the spider wasp, the distance between the spider and the 
spider wasp gradually increases. The expression of this behavior is as follows: 

 𝑆𝑊ሬሬሬሬሬሬ⃗ ௜
௧ାଵ ൌ 𝑆𝑊ሬሬሬሬሬሬ⃗ ௜

௧ ∗ 𝑣𝑐ሬሬሬሬ⃗   (11) 

 𝑘 ൌ 1 െ ቀ ௧

௧೘ೌೣ
ቁ  (12) 
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where 𝑣𝑐ሬሬሬሬ⃗  is a vector generated between k and −k according to the normal distribution. 
The two behaviors above are performed randomly with the expression as follows: 

 𝑆𝑊ሬሬሬሬሬሬ⃗ ௜
௧ାଵ ൌ ൜

𝐸𝑞 ሺ9ሻ          𝑟ଷ ൏ 𝑟ସ
𝐸𝑞 ሺ11ሻ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (13) 

At the start of the optimization process, the spider wasp performs a global search for the 
optimization problem in the search phase, and the algorithm explores and exploits the areas around the 
current wasps during the subsequent iteration, The expression for adjusting the two stages is as follows: 

 𝑆𝑊ሬሬሬሬሬሬ⃗ ௜
௧ାଵ ൌ ൜

𝐸𝑞 ሺ8ሻ          𝑝 ൏ 𝑘
𝐸𝑞 ሺ13ሻ𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (14) 

where p is a random number in [0,1]. 

2.2.3. Nesting behavior 

After the spider wasp catches the target prey, it will drag the prey into the preprepared nest. The 
spider wasp has different nesting behaviors. The expressions are as follows: 

 𝑆𝑊ሬሬሬሬሬሬ⃗ ௜
௧ାଵ ൌ 𝑆𝑊ሬሬሬሬሬሬ⃗ ∗ ൅ 𝑐𝑜𝑠ሺ2𝜋𝑙ሻ ∗ ൫𝑆𝑊ሬሬሬሬሬሬ⃗ ∗ െ 𝑆𝑊ሬሬሬሬሬሬ⃗ ௜

௧൯  (15) 

 𝑆𝑊ሬሬሬሬሬሬ⃗ ௜
௧ାଵ ൌ 𝑆𝑊ሬሬሬሬሬሬ⃗௔௧ ൅ 𝑟ଷ ∗ |𝛾| ∗ ൫𝑆𝑊ሬሬሬሬሬሬ⃗௔௧ െ 𝑆𝑊ሬሬሬሬሬሬ⃗ ௜

௧൯ ൅ ሺ1 െ 𝑟ଷሻ ∗ 𝑈ሬሬ⃗ ∗ ൫𝑆𝑊ሬሬሬሬሬሬ⃗ ௕
௧ െ 𝑆𝑊ሬሬሬሬሬሬ⃗௖௧൯  (16) 

 𝑈ሬሬ⃗ ൌ ൜1        𝑟ସሬሬሬ⃗ ൐ 𝑟ହሬሬሬ⃗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (17) 

 𝑆𝑊ሬሬሬሬሬሬ⃗ ௜
௧ାଵ ൌ ൜

𝐸𝑞 ሺ15ሻ          𝑟ଷ ൏ 𝑟ସ
𝐸𝑞 ሺ16ሻ  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (18) 

where 𝑆𝑊ሬሬሬሬሬሬ⃗ ∗  represents the best-so-far solution, 𝑟ଷ  and 𝑟ସ  is a random number created in the 
interval [0,1], 𝛾 is a number generated according to the Lévy flight, a, b, and c are indices of three 
solutions randomly selected from the population, 𝑈ሬሬ⃗  is a binary vector used to determine when a step 
size is applied to avert building two nests at the same position, and 𝑟ସሬሬሬ⃗  and 𝑟ହሬሬሬ⃗  are two vectors that 
represent the random values in the interval [0,1]; if an element of 𝑟ସሬሬሬ⃗  is larger than the corresponding 
element of 𝑟ହሬሬሬ⃗ , the value of the element corresponding to 𝑈ሬሬ⃗  is 1, otherwise the value is 0. 

 

Figure 1. Flowchart of the hunting and nesting behaviors in the SWO algorithm. 
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The flowchart of the hunting and nesting behavior is shown in Figure 1. In summary, the 
expression of the whole behavior is as follows: 

 𝑆𝑊ሬሬሬሬሬሬ⃗ ௜
௧ାଵ ൌ ൜

𝐸𝑞 ሺ14ሻ          𝑖 ൏ 𝑁 ∗ 𝑘
𝐸𝑞 ሺ18ሻ      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (19) 

2.3. Mating behavior 

One of the main characteristics of spider wasps is their ability to determine gender. Gender is 
determined based on the size of the host in which an egg is laid. In this algorithm, each spider wasp is 
the solution of the current generation, and the wasp egg represents the potential solution. The 
expressions for generating the wasp egg are as follows. 

 𝑆𝑊ሬሬሬሬሬሬ⃗ ௜
௧ାଵ ൌ 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟൫𝑆𝑊ሬሬሬሬሬሬ⃗ ௜

௧ , 𝑆𝑊ሬሬሬሬሬሬ⃗௠௧ ,𝐶𝑅൯  (20) 

 𝑆𝑊ሬሬሬሬሬሬ⃗௠௧ାଵ ൌ 𝑆𝑊ሬሬሬሬሬሬ⃗ ௜
௧ ൅ 𝑒௟ ∗ |𝛽| ∗ 𝑣ଵሬሬሬሬ⃗ ൅ ሺ1 െ 𝑒௟ሻ ∗ |𝛽ଵ| ∗ 𝑣ଶሬሬሬሬ⃗   (21) 

 𝑣ଵሬሬሬሬ⃗ ൌ ൜
𝑥௔ሬሬሬሬ⃗ െ 𝑥పሬሬሬ⃗     𝑓ሺ𝑥௔ሬሬሬሬ⃗ ሻ ൏ 𝑓ሺ𝑥పሬሬሬ⃗ ሻ
𝑥పሬሬሬ⃗ െ 𝑥௔ሬሬሬሬ⃗         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (22) 

 𝑣ଶሬሬሬሬ⃗ ൌ ൜
𝑥௕ሬሬሬሬ⃗ െ 𝑥௖ሬሬሬ⃗     𝑓ሺ𝑥௕ሬሬሬሬ⃗ ሻ ൏ 𝑓ሺ𝑥௖ሬሬሬ⃗ ሻ
𝑥௖ሬሬሬ⃗ െ 𝑥௕ሬሬሬሬ⃗           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (23) 

where Crossover indicates the uniform crossover operator that is applied between solutions 𝑆𝑊ሬሬሬሬሬሬ⃗ ௜
௧ and 

𝑆𝑊ሬሬሬሬሬሬ⃗௠௧   with a probability known as crossover rate (CR), and 𝑆𝑊ሬሬሬሬሬሬ⃗௠௧   and 𝑆𝑊ሬሬሬሬሬሬ⃗ ௜
௧  are two vectors that 

represent the male and female spider wasps, respectively. 𝛽  and 𝛽ଵ  are two numbers randomly 
generated according to the normal distribution, e is the exponential constant, and a, b, and c are indices 
of three solutions randomly selected from the population; a, b, c and i are all different. 

2.4. Population reduction and memory saving 

When the spider wasp lays eggs in the host, the nest will be closed, which also indicates that the 
role of the spider wasp in the optimization process has been completed. In the remaining optimization 
process, the evaluation of their functions will be handed over to other spider wasps, which is conducive 
to better results. The number of new populations is updated by the following formula. 

 𝑁 ൌ 𝑁௠௜௡ ൅ ሺ𝑁 െ 𝑁௠௜௡ሻ ൈ 𝑘  (24) 

where 𝑁௠௜௡ indicates the minimum number of the population employed to avoid being stuck into 
local minima within the different stages of the optimization process. 
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3. Enhanced strategies 

The SWO algorithm has multiple unique exploration strategies and is characterized by fast search 
speed and high solution accuracy. However, due to its multiple random exploration strategies, the late 
convergence of the algorithm is slow and can lead to falling into the local optimum. Therefore, in this 
paper, a tent chaotic map is introduced in the initialization stage, which makes the initialized population 
more widely distributed and expands the search range. At the beginning of each round of iteration, an 
elite reverse learning strategy is introduced, which allows the quality of the population to be enhanced 
throughout the iteration by retaining the better individuals. In the capture and escape phase of the 
algorithm, the Lévy flight strategy is strengthened to prevent the algorithm from falling into a local 
optimum in the early stages. The control parameters in the algorithm are also adjusted to enhance the 
overall optimization ability of the algorithm. 

3.1. Tent chaotic map strategy 

Chaos has randomness and ergodicity, which can accelerate the convergence of the algorithm [20]. 
The chaotic sequence is generated by a tent map, so that the initial solution is evenly distributed in the 
search space. The expression of the tent map is shown as follows: 

 𝑋௜ାଵ ൌ ቐ

௑೔
௔

                             𝑋௜ ൏ 𝑎

ሺ1 െ 𝑋௜ሻ
ሺ1 െ 𝑎ሻ൘    𝑋௜ ൒ 𝑎  

  (25) 

where i is the number of iterations, 𝑎 ∈ ሺ0,1ሻ. 

3.2. Elite opposition learning strategy 

In the population, elite individuals have more effective information than ordinary individuals, and the 
generation of elite individuals can increase the diversity of the population. The strategy first performs 
reverse learning on each individual 𝑋௜ in the population to obtain the reverse solution 𝑂𝑃௜ [21]. The 
formula for generating the reverse solution is as follows: 

 𝑂𝑃௜ ൌ 𝑘 ∗ ሺ𝑢𝑏 െ 𝑙𝑏ሻ െ 𝑋௜  (26) 

where 𝑘 ∈ ሺ0,1ሻ and lb and ub are the lower and upper bounds of search space, respectively. By 
comparing the fitness value of 𝑋௜ and its reverse solution 𝑂𝑃௜, the elite individuals are obtained by 
retaining the smaller fitness value. The formula is as follows: 

 𝑋௜ ൌ ൜
𝑋௜     𝑓𝑖𝑡𝑛𝑒𝑠𝑠ሺ𝑋௜ሻ ൏ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠ሺ𝑂𝑃௜ሻ
𝑂𝑃௜                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (27) 

3.3. Strengthened Lévy flight strategy 

In the early stage of the pursuit and escape phase of the SWO algorithm, due to the large control 
factor C of the speed, the algorithm will perform local exploration. As the number of iterations 
increases, the control factor C gradually decreases, and the algorithm will be transformed into a global 
exploration at this stage. Therefore, the Lévy flight strategy is also introduced at this stage. The Lévy 
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flight strategy [22] will enhance the spatial search ability of the algorithm and prevent it from falling 
into a local optimum in the early stages. The mathematical expressions after the introduction of Lévy 
flight are as follows: 

 𝑆𝑊ሬሬሬሬሬሬ⃗ ௜
௧ାଵ ൌ 𝑆𝑊ሬሬሬሬሬሬ⃗ ௜

௧ ൅ 𝐶 ∗ ห2 ∗ 𝑙𝑒𝑣𝑦ሺ𝛼ሻ ∗ 𝑆𝑊ሬሬሬሬሬሬ⃗௔௧ െ 𝑆𝑊ሬሬሬሬሬሬ⃗ ௜
௧ห  (28) 

 𝑙𝑒𝑣𝑦ሺ𝛼ሻ ൌ 0.05 ∗ ௨

|௩|భ ഁ⁄   (29) 

 𝑢~𝑁ሺ0,𝜎௨ଶሻ  (30) 

 𝑣~𝑁ሺ0,𝜎௩ଶሻ  (31) 

 𝜎௨ ൌ ቊ
୻ሺଵାఉሻ௦௜௡ቀഏൈഁ

మ
ቁ

୻ሺଵାఉሻൈఉൈଶ
ഁషభ
మ

ቋ

భ
ഁ

,𝜎௩ ൌ 1  (32) 

where 𝑙𝑒𝑣𝑦ሺ𝛼ሻ is the step length, u and v follow the normal distribution with mean of 0 and variance 
of 𝜎௨ଶ and 𝜎௩ଶ, and the value of β is generally 1.5. 

3.4. Dynamic adjustment strategy of control parameters 

The basic algorithm has two important control parameters TR and CR. TR controls the 
occurrence of hunting and nesting behavior and mating behavior. According to the sensitivity 
measurement results of TR, it can be seen that increasing TR can improve the performance of the 
single-peak test function, and the optimal range of parameters is 0.3–0.5. Reducing TR can improve 
the performance of multi-modal test functions, and the optimal range of parameters is 0.1–0.3, so 
the TR value of the basic algorithm is 0.3. In order to improve the comprehensive performance of 
the algorithm, TR is changed to a dynamic parameter that changes with the number of iterations [23]. 
The expression is as follows: 

 𝑇𝑅 ൌ 0.3 ∗ ቀ1 െ ௧

௧೘ೌೣ
ቁ ൅ 0.2  (33) 

3.5. ESWO algorithm pseudocode 

The ESWO algorithm is constructed based on the SWO algorithm and consists of four main 
sections. In the initiation phase of the algorithm, the tent chaotic map strategy is introduced to increase 
the diversity of the population. The algorithm’s global search capability is improved by utilizing an 
elite opposition learning strategy at the beginning of each iteration of the algorithm. The inclusion of 
the Lévy flight strategy in the pursuit and escape phase prevents the algorithm from converging at 
an early stage. Finally, the dynamic adjustment strategy of control parameters balances the 
exploration and exploitation of algorithms. The pseudo-code of the ESWO algorithm is shown in 
Algorithm 1. 
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Algorithm 1. Pseudo-code of the ESWO 
Input：𝑁,𝑁௠௜௡, 𝑡௠௔௫ 

Output：𝑆𝑊ሬሬሬሬሬሬ⃗ ∗ 

1 Initialize N female wasp 𝑆𝑊ሬሬሬሬሬሬ⃗ ௜
௧ሺ𝑖 ൌ 1,2, … ,𝑁ሻ,using Eq (2) 

2 Evaluate each 𝑆𝑊ሬሬሬሬሬሬ⃗ ௜
௧ and finding the onewith the best fitness in 𝑆𝑊ሬሬሬሬሬሬ⃗ ∗ 

3 t=1 

4 whileሺ𝑡 ൏ 𝑡௠௔௫ሻ 

5    Updating population using Eqs (26) and (27) 

6    Updating TR using Eq (33)  

7    𝑟଺:generating a random number between 0 and 1 

8    Ifሺ𝑟𝟔 ൏ 𝑇𝑅ሻ 

9      for i=1:N do 

10         if i < N*k then 

11           if p < 𝑘 then 

12             if 𝑟ଷ ൏ 𝑟ସ then 

13               Applying Eq (3) 

14             else 

15               Applying Eq (5) 

16             end if 

17           else 

18              if 𝑟ଷ ൏ 𝑟ସ then 

19               Applying Eq (28) 

20             else 

21               Applying Eq (11) 

22           end if 

23         else 

24           if 𝑟ଷ ൏ 𝑟ସ then 

25              Applying Eq (15) 

26           else 

27              Applying Eq (16) 

28           end if 

29         end if 

30        Compute 𝑓൫𝑆𝑊పሬሬሬሬሬሬሬ⃗ ൯ 

31        t=t+1; 

32      End for 

33    Else  

34      for i=1:N 

35         Applying Eq (20)  

36         t=t+1; 

37      End for 

38    End if 

39    Applying Memory Saving and updating N using Eq (24) 

40 End while 
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3.6. Time complexity 

Time complexity is a critical performance metric that measures the operation efficiency of an 
algorithm. Time complexity is crucial for the timely detection of attacks in intrusion detection [24]. 
The computing speed of the algorithm affects the detection efficiency of the whole intrusion detection 
system. Therefore, enhancing the performance of the algorithms is also required to minimize the 
increase in time complexity. The time complexity of the ESWO algorithm is determined by the 
population size N, the maximum function evaluation 𝑡௠௔௫, and the number of dimensions D. The time 
complex of the SWO is as follows: 

 𝑇ሺ𝑆𝑊𝑂ሻ ൌ 𝑂ሺ𝐻𝑢𝑛𝑡𝑖𝑛𝑔 𝑎𝑛𝑑 𝑛𝑒𝑠𝑡𝑖𝑛𝑔 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑠ሻ ൅ 𝑂ሺ𝑀𝑎𝑡𝑖𝑛𝑔 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑠ሻ  (34) 

 𝑇ሺ𝑆𝑊𝑂ሻ ൌ 𝑂ሺ𝑡௠௔௫𝐷𝑁ሻ ൅ 𝑂ሺ𝑡௠௔௫𝐷𝑁ሻ ൌ 𝑂ሺ𝑡௠௔௫𝐷𝑁ሻ  (35) 

Compared to SWO, the extra time overhead of the ESWO algorithm is concentrated in the elite 
opposition learning strategy. The time complex of the ESWO is as follows: 

𝑇ሺ𝑆𝑊𝑂ሻ ൌ 𝑂ሺ𝐸𝑙𝑖𝑡𝑒 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦ሻ ൅ 𝑂ሺ𝐻𝑢𝑛𝑡𝑖𝑛𝑔 𝑎𝑛𝑑 𝑛𝑒𝑠𝑡𝑖𝑛𝑔 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑠ሻ ൅ 𝑂ሺ𝑀𝑎𝑡𝑖𝑛𝑔 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑠ሻ (36) 

 𝑇ሺ𝑆𝑊𝑂ሻ ൌ 𝑂ሺ𝑡௠௔௫𝐷𝑁ሻ ൅ 𝑂ሺ𝑡௠௔௫𝐷𝑁ሻ ൅ 𝑂ሺ𝑡௠௔௫𝐷𝑁ሻ ൌ 𝑂ሺ𝑡௠௔௫𝐷𝑁ሻ  (37) 

As mentioned above, the proposed ESWO algorithm has the same time complexity as the SWO 
algorithm. The time complexity of the PSO algorithm used in the subsequent experimental section 
is  𝑂ሺ𝑡௠௔௫𝐷𝑁ሻ [25]. Similarly, the time complexity of the WOA algorithm is 𝑂ሺ𝑡௠௔௫𝐷𝑁ሻ. The 
population size 𝑁௉ௌை and 𝑁ௐை஺ is constant during the iteration process, whereas the population size 
𝑁ௌௐை and 𝑁ாௌௐை becomes progressively smaller during the iteration process due to the population 
reduction and memory saving. So, the overall time complexity of ESWO and SWO is less than PSO 
and WOA. 

4. Proposed intrusion detection model 

This section discusses the proposed IDM to detect the attack in SDN. In this paper, the ESWO 
algorithm is used to perform feature selection on the data to select the optimal subset of features and 
construct the intrusion detection model namely ESWO-IDM for SDN. The construction of the 
intrusion detection model can be divided into four phases: data preprocessing phase, feature 
selection phase, training phase, and classification phase. The intrusion detection model 
construction is shown in Figure 2. 

1) Data preprocessing phase 
Generally, datasets contain a large number of redundant features, and each data entry contains 

attributes that represent all the fields of the complete data package. These attributes are available in 
various forms, such as character types, numeric types, etc. Therefore, it is necessary to transform the 
unprocessed data into useful information. The data preprocessing stage mainly includes data cleaning, 
label encoding, and normalization. After the data is preprocessed, the processed data is divided into a 
training set and a test set in a ratio of 7:3. 

Data cleaning: Data cleaning is the process of eliminating or correcting inaccurate, duplicate, or 
incomplete records and filling in missing values in the data set provided, which is used to improve the 
accuracy of predictions. 
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Label encoding: The dataset usually contains categorical variables, and such variations cannot be 
recognized by machine learning algorithms, so categorical variables need to be transformed into 
numerical variables. 

Normalization: In the original dataset, attributes differed in scale, which resulted in significant 
differences in the magnitude of attribute values. Normalization scales all attribute values in the dataset 
to a range of 0 to 1 and mitigate the adverse effects of value differences on model training. 

 

Figure 2. Proposed ESWO-IDM for SDN. 

2) Feature selection phase 
After grabbing datasets from the web and cleaning the data, simple data filtering has taken shape 

to some extent. However, since network data is usually very large, there are still many redundant 
features that are not visible to the naked eye. Feature selection allows further processing of the dataset 
before intrusion detection. This can effectively reduce redundant features and the amount of data and 
improve detection accuracy.  

In this phase, feature selection is performed on the preprocessed dataset using an intelligent 
optimization algorithm. Spider wasps are constantly engaged in hunting, nesting, and mating behaviors. 
When the iteration ends, an optimal subset is finally obtained. The specific flowchart of the ESWO 
algorithm for feature selection is shown in Figure 3. 

3) Training phase 
In the training phase, a suitable classifier needs to be chosen. In [26], authors measured the 

performance of many classifiers, such as SVM, KNN, XGBoost, and RF. The KNN algorithm has the 
advantages of high accuracy, insensitivity to outliers, and a fast computation time. So, in this paper, 



243 

Electronic Research Archive  Volume 33, Issue 1, 231–254. 

KNN is selected to establish the classification model. The training set is used as input to the model that 
trains the optimized KNN model. 

4) Classification phase 
Based on the results of the training phase, the final trained model is used to predict the test 

set and identify the benign types and various attack types. Finally, the results related to SDN 
intrusion detection are outputted. 

 

Figure 3. Feature selection flowchart of ESWO algorithm. 

5. Experiments and results 

5.1. Benchmark function testing 

The experimental test is carried out in a single environment to ensure the objectivity and fairness of 
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the experiment. An Intel Core i7-13650HX CPU @ 3.00 GHz processor type, Windows 11 operating 
system, and MATLAB 2022b programming language were used in the experimental settings. In this 
experiment, eight common benchmark functions were selected, including four unimodal functions (F1–F4) 
and four multimodal functions (F5–F8). The experiment involves a certain degree of randomness. The test 
function in the experiment runs independently 30 times. The benchmark test function is shown in Table 1. 

Table 1. Test functions. 

Function expressions Dimension Range Min 

𝐹ଵሺ𝑋ሻ ൌ෍ ሺ෍ 𝑋௝
௜

௝ୀଵ
ሻଶ

௡

௜ୀଵ
 30 ሾ100,100ሿ  0 

𝐹ଶሺ𝑋ሻ ൌ max ሼ𝑋௜|,1 ≪ 𝑖 ≪ 𝑛ሽ 30 ሾെ100,100ሿ  0 

𝐹ଷሺ𝑋ሻ ൌ෍ ቂ100൫𝑥௜ାଵ െ 𝑥௜
ଶ൯

ଶ
൅ ሺ𝑥௜ െ 1ሻଶቃ

௡ିଵ

௜ୀଵ
 30 ሾെ30,30ሿ  0 

𝐹ସሺ𝑋ሻ ൌ෍ ሺሾ𝑥௜ ൅ 0.5ሿሻଶ
௡

௜ୀଵ
 30 ሾെ100,100ሿ  0 

𝐹ହሺ𝑋ሻ ൌ ൣ𝑥௜
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ଵ

௡
∑ 𝑥௜

ଶ௡
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ଵ

௡
∑ 𝑐𝑜𝑠ሺ2𝜋𝑥௜ሻ
௡
௜ୀଵ ቁ ൅ 20 ൅ 𝑒  30 ሾെ32,32ሿ  0 

𝐹଻ሺ𝑋ሻ ൌ
1

4000
෍ 𝑥௜

ଶ
௡

௜ୀଵ
െෑ 𝑐𝑜𝑠 ൬

𝑥௜
√𝑖
൰

௡

௜ୀଵ
൅ 1 30 ሾെ600,600ሿ  0 

𝐹 ሺ𝑋ሻ ൌ
𝜋
𝑛
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௡

௜ୀଵ
 

𝑦௜ ൌ 1 ൅
ଵ

ସ
ሺ𝑋௜ ൅ 1ሻ  
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𝑘ሺ𝑋௜ െ 𝑎ሻ௠,𝑋௜ ൐ 𝑎
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𝑘ሺെ𝑋௜ െ 𝑎ሻ௠,𝑋௜ ൏ െ𝑎

  

30 ሾെ50,50ሿ  0 

In this paper, the ESWO algorithm is compared with the basic SWO algorithm, WOA, and PSO. 
In order to compare different algorithms, the original iteration number in SWO and ESWO is changed 
from individual iteration to population iteration. The population number is set to 30, and the number 
of iterations is 1000 times, which are tested in single-peak and multi-peak functions. The final test 
results are shown in Figure 4 and Table 2. 

The experimental results show that the adaptation change curve of ESWO is progressively 
optimized, which avoids falling into local optimum as occurs with PSO and WOA. According to the 
detailed data in Table 2, the standard deviation of ESWO in the functions F5–F7 is 0, which indicates 
that ESWO has strong stability. The optimization effect of ESWO is also significantly higher than that 
of other algorithms in the other functions. By combining all eight functions, ESWO achieves 
comprehensive optimization in performance. Compared with the original algorithm, the optimization 
accuracy improves a lot. 

In summary, experiments of benchmark function testing show that ESWO optimizes the 
exploration ability of the algorithm compared to SWO and overcomes the disadvantage of slow 
convergence at the later stages of SWO iterations, as well as further improving the optimization 
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seeking ability of the algorithm. 

  

F1 F2 

  

F3 F4 

  

F5 F6 

  

F7 F8 

Figure 4. Convergence curve of fitness. 
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Table 2. Benchmark function results. 

Function Type PSO WOA SWO ESWO 
F1 Min 3.39 × 10+02 3.87 × 10+03 8.47 × 10–140 3.77 × 10–160 
 Ave 3.13 × 10+03 1.97 × 10+04 1.52 × 10–76 1.87 × 10–106 
 Std 5.53 × 10+03 9.55 × 10+03 8.30 × 10–76 1.02 × 10–105 
F2 Min 6.45 × 10+00 1.37 × 10+00 8.41 × 10–70 2.70 × 10–88 
 Ave 1.49 × 10+01 3.71 × 10+01 1.62 × 10–42 2.55 × 10–58 
 Std 4.38 × 10+00 2.47 × 10+01 8.86 × 10–42 1.40 × 10–57 
F3 Min 2.13 × 10+03 2.64 × 10+01 2.31 × 10+01 2.27 × 10+01 
 Ave 3.67 × 10+04 2.71 × 10+01 2.39 × 10+01 2.35 × 10+01 
 Std 3.80 × 10+04 5.91 × 10–01 4.33 × 10–01 4.14 × 10–01 
F4 Min 1.46 × 10+02 5.17 × 10–03 3.98 × 10–08 5.50 × 10–08 
 Ave 5.84 × 10+02 6.08 × 10–02 8.32 × 10–07 1.70 × 10–06 
 Std 2.90 × 10+02 5.85 × 10–02 7.91 × 10–07 2.17 × 10–06 
F5 Min 6.89 × 10+01 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 
 Ave 1.14 × 10+02 7.58 × 10–15 0.00 × 10+00 0.00 × 10+00 
 Std 2.40 × 10+01 2.47 × 10–14 0.00 × 10+00 0.00 × 10+00 
F6 Min 5.60 × 10+00 4.44 × 10–16 4.44 × 10–16 4.44 × 10–16 
 Ave 8.49 × 10+00 3.52 × 10–15 4.44 × 10–16 4.44 × 10–16 
 Std 1.42 × 10+00 2.42 × 10–15 0.00 × 10+00 0.00 × 10+00 
F7 Min 2.35 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 
 Ave 5.80 × 10+00 6.64 × 10–03 0.00 × 10+00 0.00 × 10+00 
 Std 2.83 × 10+00 2.05 × 10–02 0.00 × 10+00 0.00 × 10+00 
F8 Min 3.06 × 10+00 5.40 × 10–04 2.08 × 10–09 1.21 × 10–09 
 Ave 1.26 × 10+01 7.15 × 10–03 4.07 × 10–08 2.18 × 10–08 
 Std 7.37 × 10+00 6.45 × 10–03 4.14 × 10–07 1.06 × 10–08 

5.2. Feature selection fitness function 

The number of features selected in feature selection and the classification error rate determine the 
ability of the feature subset. Therefore, the fitness function expression is as follows: 

 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ൌ  𝛼 ∙ 𝑒𝑟𝑟𝑜𝑟 ൅ 𝛽 ∙
|ே௙|

்
  (38) 

where 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 represents the best value of individual viable solutions of the population, 𝑒𝑟𝑟𝑜𝑟 
indicates the classification error rate, 𝑁𝑓 expresses the feature number, 𝑇 denotes the max iterations, 
and 𝛼 and 𝛽 are two parameters in which 𝛼 = 0.99 and 𝛽 = 0.01. 

The SWO algorithm is supposed to address continuous optimization problems. In the space of 
feature selection, the feature is binary in nature, and it will only appear in two cases: selected and 
unselected. So, we use the sigmoid function to convert the original solution into a binary solution. Each 
individual spider wasp is denoted as 𝑆𝑊௜ ൌ ሼ𝑥௜ଵ, 𝑥௜ଶ, … , 𝑥௜஽ሽ, where D is the feature dimension and d 
is a random number in [0,D]. When 𝑥௜ௗ ൌ 1, the feature is selected. Otherwise, the feature is not 
selected. The sigmoid formula is as follows: 

 𝑠𝑖𝑔𝑚𝑜𝑖𝑑ሺ𝑥௜ௗሻ ൌ  ଵ

ଵା௘షೣ೔೏
  (39) 



247 

Electronic Research Archive  Volume 33, Issue 1, 231–254. 

 𝑥௜ௗ ൌ  ൜
1,   𝑟𝑎𝑛𝑑 ൐ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑ሺ𝑥௜ௗሻ
0,   𝑟𝑎𝑛𝑑 ൏ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑ሺ𝑥௜ௗሻ

  (40) 

The classifier is KNN. The evaluation indexes of classification detection are accuracy, recall, 
precision, and F1-score, with unit %. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ ்௉ା்ே

்௉ା்ேାி௉ାிே
  (41) 

 𝑅𝑒𝑐𝑎𝑙𝑙 ൌ ்௉

்௉ାிே
  (42) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ ்௉

்௉ାி௉
  (43) 

 𝐹1 െ 𝑠𝑐𝑜𝑟𝑒 ൌ ଶ∗்௉

ଶ∗்௉ାி௉ାிே
  (44) 

5.3. UCI datasets 

In this paper, UCI datasets are used to evaluate the effectiveness of ESWO in dimensionality 
reduction. In this section, four datasets are selected, namely Ionosphere, WDBC, Heartstatlog, and 
Sonar. The measurement results of the four datasets are shown in Table 3. 

Table 3. Test result of the UCI datasets. 

Algorithms Metrics Ionosphere WDBC Heartstatlog Sonar 
PSO Accuracy (%) 92.381 97.647 83.951 88.710 
 Recall (%) 96.807 95.238 86.667 93.103 
 Precision (%) 90.411 98.361 84.783 84.375 
 F1-score (%) 94.286 96.774 85.714 88.525 
 Computational time (s) 9.124 10.934 12.013 10.730 
WOA Accuracy (%) 90.476 97.647 85.185 88.710 
 Recall (%) 95.522 96.825 86.667 82.759 
 Precision (%) 90.141 96.825 84.783 92.308 
 F1-score (%) 92.754 96.825 85.714 87.273 
 Computational time (s) 4.278 5.343 5.892 4.942 
SWO Accuracy (%) 92.381 97.647 83.951 90.323 
 Recall (%) 95.522 95.238 88.889 96.552 
 Precision (%) 92.754 98.361 83.333 84.848 
 F1-score (%) 94.118 96.774 86.022 90.323 
 Computational time (s) 3.318 3.959 4.149 3.612 
ESWO Accuracy (%) 93.333 99.412 87.654 96.774 
 Recall (%) 98.507 98.413 91.111 93.103 
 Precision (%) 91.667 1 87.234 1 
 F1-score (%) 94.964 99.20 89.130 96.429 
 Computational time (s) 3.342 4.307 4.543 3.967 
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Based on the measurement results of four datasets, ESWO is superior to the other algorithms in 
four evaluation indicators in the WDBC and Heartstatlog datasets. In the Ionosphere dataset, accuracy, 
recall, and F1-score of the ESWO algorithm are higher than those of the other algorithms. Although 
precision is lower than for SWO, it is still 1% higher than that of PSO and WOA. In a comprehensive 
comparison, the ESWO is still the best of the four algorithms. For the Sonar dataset, the recall of 
ESWO is 3% lower than that of SWO, but other indicators are much higher, and the effect is more 
than 5% higher. In addition, according to the computation time results, the SWO algorithm is faster 
than PSO and WOA on the four datasets. The computation time of the ESWO algorithm increased but 
is still faster than PSO and WOA. 

In summary, the ESWO algorithm has the best comprehensive performance in the four datasets, 
and the accuracy and F1-score values are higher than other algorithms, indicating that ESWO can 
accurately classify the samples and has better classification performance. 

5.4. InSDN dataset 

The InSDN dataset is a public dataset specifically for SDN intrusion detection, which aims to 
improve the performance evaluation and research of IDS in the SDN environment [27,28]. The InSDN 
dataset not only contains data on different attack types but also covers various key parts of the SDN 
platform, making the dataset a comprehensive assessment of IDS performance. 

This section uses the intrusion detection model based on the ESWO algorithm to perform binary 
and multiclassification experiments on InSDN. The InSDN dataset contains three files, one of which 
contains normal data and one other contains attack-type data. In [27], the author selected a subset of 48 
features from InSDN for intrusion detection, which are important for detecting attacks. So, we selected 
the same 48 features for feature selection. The binary classification experiment was performed first. 
Initially, some redundant feature columns are deleted, the label “normal” is assigned to 0, and the label 
of other attack-type data is assigned to 1. Then, the data is normalized, and more than 10,000 data 
entries are randomly selected from the dataset for experimental testing. 

Table 4 provides the binary classification results for the InSDN dataset. Results reveal that the 
ESWO-IDM outperforms other IDMs with 98.833% accuracy, 98.976% precision, and 98.946% F1-
score. Accuracy and precision are optimized by 0.2–0.3% over other algorithms, and F1 values are 
improved by 0.1–0.25%. The four indicators of the ESWO show that the four algorithms are optimal, 
and the ESWO has the least number of features, which effectively reduces redundant features and 
workload and improves detection efficiency. Table 4 shows the computational time (CT) of binary 
classification. Due to the multiple strategies incorporated into the ESWO algorithm, the computation 
time is slightly improved compared to SWO, 70 seconds faster than PSO, and 13 seconds faster than 
WOA. Therefore, ESWO-IDM has a faster operation speed. Table 5 shows the construction and 
prediction time of different models with different data volumes after the feature selection phase. Due 
to feature selection, which eliminates many redundant features, ESWO-IDM has the fastest 
prediction time. As the amount of data increases, the overall time savings also increases. The 
experimental results show the advantages of the ESWO algorithm for feature selection, while the 
ESWO-IDM improves detection efficiency of intrusion detection. 
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Table 4. Binary classification results of the InSDN dataset. 

Metrics PSO WOA SWO ESWO 
Accuracy (%) 98.667 98.567 98.683 98.833 
Recall (%) 99.037 98.916 98.856 98.916 
Precision (%) 98.562 98.501 98.767 98.976 
F1-score (%) 98.799 98.708 98.811 98.946 
Number of features 11 10 8 6 
Computational time (sec) 106.687 49.561 34.579 36.296 

Table 5. Construction and prediction times of different models (s). 

Data volumes PSO WOA SWO ESWO 
3000 0.03269 0.01511 0.01302 0.01079 
6000 0.05890 0.27954 0.02319 0.01976 
10,000 0.15484 0.03281 0.03551 0.03002 

Figures 5–7 show experimental results in the InSDN dataset. Although the ROC curve and the 
AUC result of the four algorithms are extremely similar and all close to excellent, the ESWO 
algorithms are still slightly better than the others, reflecting the authenticity of the detection method. 
The fitness curve is also gradually increasing, showing excellent ability to find the best value. Even in 
the later stage of iteration, the new optimal value will still be found, and the optimal value is the best 
of the four algorithms. WOA, PSO, and SWO algorithms fall into the local optimum in the later stage 
of iteration, which indicates a better optimization ability of the ESWO algorithm. 

 

Figure 5. ROC curve of the InSDN dataset. 
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Figure 6. AUC result of the InSDN dataset. 

 

Figure 7. Fitness curve of the InSDN dataset. 

For multiclassification experiments on the InSDN dataset, the labels normal, DoS, DDoS, probe, 
Brute Force Attack (BFA), web-attack, Botnet, and U2R are replaced with 0, 1, 2, 3, 4, 5, 6, and 7, 
respectively. The InSDN multiclassification results are shown in Table 6. Since there are fewer data 
labels of BFA, web-attack, Botnet, U2R in the dataset, all are selected for experimental testing. Other labels 
are randomly selected by percentage, and 10,000 instances are selected for the experiment. Table 6 shows 
the results of the InSDN multiclassification experiments. Among the four categories (Normal, DoS, 
DDoS, and BFA), ESWO-IDM shows optimal results in recall. Compared with the other models, the 
results are optimized by 0.2–0.5%. ESWO-IDM ranks first in performance in recall metrics and has the 
best results in DoS, DDoS, and BFA categories in precision. The results are optimized by 0.3–0.8%. SWO-
IDS is superior in other categories; in precision metrics, ESWO-IDM as a whole is close to SWO-IDM, 
both outperforming the other models. ESWO-IDM has the best effect in the categories normal, DoS, 
DDoS, and BFA in F1-score; the effect is optimized by 0.3–0.4%. In the F1-score metric, the overall 
results are also optimal for the four models. For the accuracy metric, the ESWO-IDM result is 96.759%, 
which is 0.15% higher than the second-ranked SWO-IDM. Table 7 shows the CT of the four IDMs. 
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SWO-IDM has the shortest CT, followed by ESWO-IDM, with a close running time. The CT is much 
higher for PSO-IDM and WOA-IDM. The ESWO-IDM improves overall performance at the cost of a 
slight increase in CT. 

In summary, the IDM constructed by the ESWO algorithm is optimized in all four metrics, with 
significant optimization in accuracy, recall, and F1-score metrics, which shows that ESWO has better 
performance in multiclassification problems, with fewer classification errors and more accurate 
predictions. For the normal, DoS, and DDoS categories, the original dataset has a large amount of data, 
while ESWO-IDM shows optimal accuracy, recall, and precision, demonstrating its advantages in 
detecting abnormal attacks. For BFA, web-attack, and Botnet categories, the original dataset has less 
data volume, which requires a higher F1-score and recall, and ESWO-IDM presents higher values than 
the other algorithmic models in these two metrics. ESWO-IDM improves overall accuracy. For DoS, 
DDoS, and probe attacks with more instances, ESWO-IDM further improves detection accuracy. 
ESWO-IDM can also accurately detect BFA and Botnet attacks with fewer instances and more complex 
features. Compared with other models, the optimization effect is obvious, which effectively improves 
the efficiency of intrusion detection in SDN. 

Table 6. Multiclassification results of the InSDN dataset. 

  Normal DoS DDoS Probe BFA Web- BOTNET U2R 
 PSO 98.241 96.013 99.344 93.352 91.395 76.744 96.0 0 
Recall (%) WOA 97.918 96.013 99.558 93.37 91.608 76.744 96.0 0 
 SWO 97.99 97.651 99.559 93.407 92.217 78.571 96.0 0 
 ESWO 98.308 97.987 99.78 93.132 92.272 76.744 96.0 0 
 PSO 98.562 95.695 99.342 91.576 95.157 60.0 100 NaN 
Precision WOA 98.366 95.695 98.684 91.848 95.157 60.0 100 NaN 
 SWO 98.758 96.358 99.123 92.391 94.673 60.0 100 NaN 
 ESWO 98.758 96.689 99.561 92.12 95.4 60.0 100 NaN 
 PSO 98.401 95.854 99.670 92.455 93.238 67.347 97.959 NaN 
F1-score (%) WOA 98.142 95.854 99.119 92.603 93.349 67.347 97.959 NaN 
 SWO 98.372 97.0 99.341 92.896 93.429 68.041 97.959 NaN 
 ESWO 98.533 97.333 99.671 92.623 93.810 67.347 97.959 NaN 
 PSO    96.476     
Accuracy WOA    96.287     
 SWO    96.602     
 ESWO    96.759     

Table 7. CT outcome of multiclassification. 

Methods PSO WOA SWO ESWO 
Computational time (s) 87.980 46.033 26.758 30.253 

6. Conclusions 

In order to improve the detection efficiency of intrusion detection in SDN networks, this paper 
proposes an ESWO algorithm that incorporates multiple strategies for feature selection to pick the 
optimal subset of features and constructs the ESWO-IDM for SDN intrusion detection. First, the global 
search ability of ESWO is verified using the benchmark test functions. Subsequently, the superior 
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classification ability of the ESWO algorithm in feature selection is verified using the UCI datasets. 
Finally, the constructed ESWO-IDM is subjected to binary and multiclassification experiments using 
the InSDN dataset, in which it is compared with other intrusion detection models based on SWO, PSO, 
and WOA. In the binary classification experiments, the proposed ESWO-IDM has 98.833, 98.976, 
and 98.946% accuracy, precision, and F1-score metrics, respectively, which are higher than those of 
the other compared IDMs. In the multiclassification experiments, the results of the ESWO-IDM are 
higher than those of other IDMs in normal, DoS, DDoS, and BFA categories; the comprehensive 
detection ability of the ESWO-IDM is optimal. The experimental results indicate that the proposed 
ESWO-IDM optimizes SDN intrusion detection. As the InSDN dataset is relatively small in quantity, 
further research and improvement are needed in subsequent work. Future work will conduct 
experimental simulations using the SDN environment to further test and improve the detection 
capability of the proposed ESWO-IDM for SDN. 
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