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Abstract: The concept of F-manifold algebras is an algebraic expression of F-manifolds. In this paper,
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tion of an F-manifold algebra. We develop the representation theory of an F-manifold color algebra and
show that F-manifold color algebras admitting non-degenerate symmetric bilinear forms are coherence
F-manifold color algebras. The concept of pre-F-manifold color algebras is also presented, and using
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1. Introduction

Dubrovin [1] invented the notion of Frobenius manifolds in order to give geometrical expressions
associated with WDVV equations. In 1999, Hertling and Manin [2] introduced the concept of F-
manifolds as a relaxation of the conditions of Frobenius manifolds. Inspired by the investigation of
describing F-manifolds algebraically, Dotsenko [3] defined F-manifold algebras in 2019 to relate op-
erad F-manifold algebras to operad pre-Lie algebras. By definition, an F-manifold algebra is a triple
(F, ·, [, ]) satisfying the following Hertling–Manin relation:

Hx1·x2(x3, x4) = x1 · Hx2(x3, x4) + x2 · Hx1(x3, x4), ∀x1, x2, x3, x4 ∈ F,
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where (F, ·) is a commutative associative algebra, (F, [, ]) is a Lie algebra, and Hx1(x2, x3) = [x1, x2 ·

x3] − [x1, x2] · x3 − x2 · [x1, x3].
A vector space F admitting a linear map · is called a pre-Lie algebra if the following holds:

(x1 · x2) · x3 − x1 · (x2 · x3) = (x2 · x1) · x3 − x2 · (x1 · x3), ∀x1, x2, x3 ∈ F.

In recent years, pre-Lie algebras have attracted a great deal of attention in many areas of mathematics
and physics (see [4–7] and so on).

Liu et al. [8] introduced the concept of pre-F-manifold algebras. Note that these algebras allow
us to construct F-manifold algebras. They also studied representations of F-manifold algebras and
constructed many other examples of these algebras. The definition of super F-manifold algebras and
related categories was stated by Cruz Morales et al. [9]. Chen et al. [10] discussed the classification
of three-dimensional F-manifold algebras over the complex field C, which was based on the results
of the classifications of low-dimensional commutative associative algebras and low-dimensional Lie
algebras. Recently, the concept of Hom-F-manifold algebras and their properties have been given by
Ben Hassine et al. [11].

In this paper, we provide the concepts of an F-manifold color algebra and a pre-F-manifold color
algebra, respectively. We extend some properties of F-manifold algebras that were obtained in [8] to the
color case. In Section 2, we summarize some concepts of Lie color algebras, pre-Lie color algebras,
and representations of χ-commutative associative algebras and Lie color algebras, respectively. In
Section 3, we provide the concept of an F-manifold color algebra and then study its representation.
The concept of a coherence F-manifold color algebra is also introduced, and it follows that an F-
manifold color algebra admitting a non-degenerate symmetric bilinear form is a coherence F-manifold
color algebra. The concept of pre-F-manifold color algebras is defined in Section 4, and using these
algebras, one can construct F-manifold color algebras.

Throughout this paper, we assume that k is a field with char k = 0 and all vector spaces are finite
dimensional over k.

A preprint of this paper was posted on arXiv [12].

2. Lie color algebras and relative algebraic structures

The concept of a Lie color algebra was introduced in [13] and systematically studied in [14]. Since
then, Lie color algebras have been studied from different aspects: Lie color ideals [15], generalized
derivations [16], representations [17, 18], T ∗-extensions of Lie color algebras [19, 20] and hom-Lie
color algebras [21], cohomology groups [22] and the color left-symmetric structures on Lie color
algebras [23]. In this section, we collect some basic definitions that will be needed in the remainder of
the paper. In the following, we assume that G is an abelian group and denote k\{0} by k∗.

Definition 2.1. A skew-symmetric bicharacter is a map χ : G ×G → k∗ satisfying

(i) χ(g1, g2) = χ(g2, g1)−1,

(ii) χ(g1, g2)χ(g1, g3) = χ(g1, g2 + g3),

(iii) χ(g1, g3)χ(g2, g3) = χ(g1 + g2, g3),

for all g1, g2, g3 ∈ G.
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By the definition, it is obvious that for any a ∈ G, we have χ(a, 0) = χ(0, a) = 1 and χ(a, a) = ±1.

Definition 2.2. A pre-Lie color algebra is the G-graded vector space

F =
⊕
g∈G

Fg

with a bilinear multiplication operation · satisfying

1) Fg1 · Fg2 ⊆ Fg1+g2 ,

2) (x1 · x2) · x3 − x1 · (x2 · x3) = χ(g1, g2)((x2 · x1) · x3 − x2 · (x1 · x3)),

for all x1 ∈ Fg1 , x2 ∈ Fg2 , x3 ∈ Fg3 , and g1, g2, g3 ∈ G.

Definition 2.3. A Lie color algebra is the G-graded vector space

F =
⊕
g∈G

Fg

with a bilinear multiplication [, ] satisfying

(i) [Fg1 , Fg2] ⊆ Fg1+g2 ,

(ii) [x1, x2] = −χ(g1, g2)[x2, x1],

(iii) χ(g3, g1)[x1, [x2, x3]] + χ(g1, g2)[x2, [x3, x1]] + χ(g2, g3)[x3, [x1, x2]] = 0,

for all x1 ∈ Fg1 , x2 ∈ Fg2 , x3 ∈ Fg3 , and g1, g2, g3 ∈ G.

Remark Given a pre-Lie algebra (F, ·), if we define the bracket [x1, x2] = x1 · x2 − x2 · x1, then (F, [, ])
becomes a Lie algebra. Similarly, one has a pre-Lie color algebra’s version, that is to say, a pre-Lie
color algebra (A, ·, χ) with the bracket [x1, x2] = x1 · x2 − χ(x1, x2)x2 · x1 becomes a Lie color algebra.

Let the vector space F be G-graded. An element x ∈ F is called homogeneous with degree g ∈ G
if x ∈ Fg. In the rest of this paper, for any x1 ∈ Fg1 , x2 ∈ Fg2 , x3 ∈ Fg3 , we will write χ(x1, x2)
instead of χ(g1, g2), χ(x1 + x2, x3) instead of χ(g1 + g2, g3), and so on. Furthermore, when we write
the skew-symmetric bicharacter χ(x1, x2), it is always assumed that the elements x1 and x2 are both
homogeneous.

For a χ-commutative associative algebra (F, ·, χ), we mean that (F, ·) is a G-graded associative
algebra with the following χ-commutativity:

x1 · x2 = χ(x1, x2)x2 · x1

for all x1 ∈ Fg1 and x2 ∈ Fg2 .

Now, we assume that the vector space V is G-graded. A representation (V, µ) of the algebra (F, ·, χ)
is a linear map µ : F −→ Endk(V)G :=

⊕
g∈G Endk(V)g satisfying

µ(x2)v ∈ Vg1+g2 , µ(x2 · x3) = µ(x2) ◦ µ(x3)

for all v ∈ Vg1 , x2 ∈ Fg2 , x3 ∈ Fg3 , where Endk(V)g := { f ∈ Endk(V)| f (Vh) ⊆ Vh+g}. Given a Lie color
algebra (F, [, ], χ), its representation (V, ρ) is a linear map ρ : F −→ Endk(V)G satisfying

ρ(x2)v ∈ Vg1+g2 , ρ([x2, x3]) = ρ(x2) ◦ ρ(x3) − χ(x2, x3)ρ(x3) ◦ ρ(x2)
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for all v ∈ Vg1 , x2 ∈ Fg2 , x3 ∈ Fg3 .

The dual space V∗ =
⊕

g∈G V∗g is also G-graded, where

V∗g1
= {ξ ∈ V∗|ξ(x) = 0, g2 , −g1,∀x ∈ Vg2 , g2 ∈ G}.

Define a linear map µ∗ : F −→ Endk(V∗)G satisfying

µ∗(x1)ξ ∈ V∗g1+g3
, ⟨µ∗(x1)ξ, v⟩ = −χ(x1, ξ)⟨ξ, µ(x1)v⟩

for all x1 ∈ Fg1 , v ∈ Vg2 , ξ ∈ V∗g3
.

It is easy to see that
1) If (V, µ) is one representation of the algebra (F, ·, χ), then (V∗,−µ∗) is also its representation;
2) If (V, µ) is one representation of the algebra (F, [, ], χ), then (V∗, µ∗) is also its representation.

3. F-manifold color algebras and representations

The concept of F-manifold color algebras is presented, and some results in [8] to the color case are
established.

Definition 3.1. Let (F, [, ], χ) be a Lie color algebra and (F, ·, χ) be a χ-commutative associative al-
gebra. A quadruple (F, ·, [, ], χ) is called an F-manifold color algebra if the following holds for any
homogeneous element x1, x2, x3, x4 ∈ F,

Hx1·x2(x3, x4) = x1 · Hx2(x3, x4) + χ(x1, x2)x2 · Hx1(x3, x4), (3.1)

where Hx1(x2, x3) is the color Leibnizator given by

Hx1(x2, x3) = [x1, x2 · x3] − [x1, x2] · x3 − χ(x1, x2)x2 · [x1, x3]. (3.2)

Remark It is noticed that if we set G = {0} and χ(0, 0) = 1, then (F, ·, [, ], χ) is exactly an F-manifold
algebra.

Definition 3.2. Let (F, ·, [, ], χ) be an F-manifold color algebra, (V, µ) be a representation of the algebra
(F, ·, χ), and (V, ρ) be a representation of the algebra (F, [, ], χ). A representation of (F, ·, [, ], χ) is a
triple (V, ρ, µ) if the following holds for any homogeneous element x1, x2, x3 ∈ F,

M1(x1 · x2, x3) = µ(x1)M1(x2, x3) + χ(x1, x2)µ(x2)M1(x1, x3),
µ(Hx1(x2, x3)) = χ(x1, x2 + x3)M2(x2, x3)µ(x1) − µ(x1)M2(x2, x3),

where the linear maps M1 and M2 from F ⊗ F to Endk(V)G are given by

M1(x1, x2) = ρ(x1)µ(x2) − χ(x1, x2)µ(x2)ρ(x1) − µ([x1, x2]), (3.3)
M2(x1, x2) = µ(x1)ρ(x2) + χ(x1, x2)µ(x2)ρ(x1) − ρ(x1 · x2). (3.4)

Example 3.1. Let (F, ·, [, ], χ) be an F-manifold color algebra. We have that (F, ad,L) is a representa-
tion of (F, ·, [, ], χ), where ad : F −→ Endk(F)G is given by

adx1 x2 = [x1, x2]
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and the left multiplication operator L : F −→ Endk(F)G is given by

Lx1 x2 = x1 · x2

for any homogeneous element x1, x2 ∈ F.

Proof. Note that (F,L) is a representation of the algebra (F, ·, χ) and (F, ad) is a representation of the
algebra (F, [, ], χ).

Now, for any homogeneous element x1, x2, x3, x4 ∈ F, we obtain

M1(x1, x2)x3 = (adx1Lx2 − χ(x1, x2)Lx2adx1 − L[x1,x2])x3

= [x1, x2 · x3] − χ(x1, x2)x2 · [x1, x3] − [x1, x2] · x3

= Hx1(x2, x3).

Thus

Hx1·x2(x3, x4) = x1 · Hx2(x3, x4) + χ(x1, x2)x2 · Hx1(x3, x4)

implies the equation

M1(x1 · x2, x3)x4 = Lx1 M1(x2, x3)x4 + χ(x1, x2)Lx2 M1(x1, x3)x4.

On the other hand, we obtain

M2(x2, x3)x4 = (Lx2adx3 + χ(x2, x3)Lx3adx2 − adx2·x3)x4

= x2 · [x3, x4] + χ(x2, x3)x3 · [x2, x4] − [x2 · x3, x4]
= −χ(x3, x4)x2 · [x4, x3] − χ(x2, x4)χ(x3, x4)[x4, x2] · x3 + χ(x2 + x3, x4)[x4, x2 · x3]
= χ(x2 + x3, x4)([x4, x2 · x3] − [x4, x2] · x3 − χ(x4, x2)x2 · [x4, x3])
= χ(x2 + x3, x4)Hx4(x2, x3).

Thus

χ(x1, x2 + x3)M2(x2, x3)Lx1 x4 − Lx1 M2(x2, x3)x4

= χ(x1, x2 + x3)M2(x2, x3)(x1 · x4) − x · M2(x2, x3)x4

= χ(x1, x2 + x3)χ(x2 + x3, x1 + x4)Hx1·x4(x2, x3) − χ(x2 + x3, x4)x1 · Hx4(x2, x3)
= χ(x2 + x3, x4){Hx1·x4(x2, x3) − x · Hx4(x2, x3)}
= χ(x2 + x3, x4)χ(x1, x4)x4 · Hx1(x2, x3)
= χ(x1 + x2 + x3, x4)x4 · Hx1(x2, x3)
= Hx1(x2, x3) · x4.

Hence, the proof is completed. □

Let (V, ρ, µ) be a representation of the F-manifold color algebra (F, ·, [, ], χ). Note that F ⊕ V is a
G-graded vector space. In the following, if we write x + v ∈ F ⊕ V as a homogeneous element for
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x ∈ F, v ∈ V , it means that x and v are of the same degree as x+ v. Now assume that x1 + v1 and x2 + v2

are both homogeneous elements in F ⊕ V . Define

[x1 + v1, x2 + v2]ρ = [x1, x2] + ρ(x1)v2 − χ(x1, x2)ρ(x2)v1.

Then we obtain that (F ⊕ V, [, ]ρ, χ) is a Lie color algebra. Moreover, define

(x1 + v1) ·µ (x2 + v2) = x1 · x2 + µ(x1)v2 + χ(x1, x2)µ(x2)v1.

It is easy to see that (F ⊕ V, ·µ, χ) is a χ-commutative associative algebra. In fact, we have

Proposition 3.2. With the above notations, (F ⊕ V, ·µ, [, ]ρ, χ) is an F-manifold color algebra.

Proof. It is sufficient to check that the relation in Definition 3.1 holds.
For any homogeneous element x1 + v1, x2 + v2, x3 + v3 ∈ F ⊕ V , we have

Hx1+v1(x2 + v2, x3 + v3)
= [x1 + v1, (x2 + v2) ·µ (x3 + v3)]ρ − [x1 + v1, x2 + v2]ρ ·µ (x3 + v3)
−χ(x1, x2)(x2 + v2) ·µ [x1 + v1, x3 + v3]ρ

= [x1, x2 · x3] + ρ(x1){µ(x2)v3 + χ(x2, x3)µ(x3)v2} − χ(x1, x2 + x3)ρ(x2 · x3)v1 − I − II.

where

I = {[x1, x2] + ρ(x1)v3 − χ(x1, x2)ρ(x2)v1} ·µ (x3 + v3)
= [x1, x2] · x3 + µ([x1, x2])v3 + χ(x1 + x2, x3)µ(x3){ρ(x1)v2 − χ(x1, x2)ρ(x2)v1},

and

II = χ(x1, x2)(x2 + v2) ·µ {[x1, x3] + ρ(x1)v3 − χ(x1, x3)ρ(x3)v1}

= χ(x1, x2){x2 · [x1, x3] + µ(x2)(ρ(x1)v3 − χ(x1, x3)ρ(x3)v1)
+χ(x2, x1 + x3)µ([x1, x3])v2}.

Thus

Hx1+v1(x2 + v2, x3 + v3)
= Hx1(x2, x3) + {ρ(x1)µ(x2) − µ([x1, x2]) − χ(x1, x2)µ(x2)ρ(x1)}v3

+{χ(x2, x3)ρ(x1)µ(x3) − χ(x1 + x2, x3)µ(x3)ρ(x1)
−χ(x1, x2)χ(x2, x1 + x3)µ([x1, x3])}v2 + {−χ(x1, x2 + x3)ρ(x2 · x3)
+χ(x1 + x2, x3)χ(x1, x2)µ(x3)ρ(x2) + χ(x1, x2)χ(x1, x3)µ(x2)ρ(x3)}v1

= Hx1(x2, x3) + M1(x1, x2)v3 + χ(x2, x3)M1(x1, x3)v2 + χ(x1, x2 + x3)M2(x2, x3)v1.

Hence, for any homogeneous element x4 + v4 ∈ F ⊕ V , we have

H(x1+v1)·µ(x2+v2)(x3 + v3, x4 + v4)
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= Hx1·x2+µ(x1)v2+χ(x1,x2)µ(x2)v1(x3 + v3, x4 + v4)
= Hx1·x2(x3, x4) + M1(x1 · x2, x3)v4 + χ(x3, x4)M1(x1 · x2, x4)v3

+χ(x1 + x2, x3 + x4)M2(x3, x4)(µ(x1)v2 + χ(x1, x2)µ(x2)v1).

On the other hand

(x1 + v1) ·µ Hx2+v2(x3 + v3, x4 + v4)
= (x1 + v1) ·µ {Hx2(x3, x4) + M1(x2, x3)v4 + χ(x3, x4)M1(x2, x4)v3 + χ(x2, x3 + x4)M2(x3, x4)v2}

= x1 · Hx2(x3, x4) + µ(x1){M1(x2, x3)v4 + χ(x3, x4)M1(x2, x4)v3 + χ(x2, x3 + x4)M2(x3, x4)v2}

+χ(x1, x2 + x3 + x4)µ(Hx2(x3, x4))v1,

and

χ(x1, x2)(x2 + v2) ·µ Hx1+v1(x3 + v3, x4 + v4)
= χ(x1, x2){x2 · Hx1(x3, x4) + µ(x2){M1(x1, x3)v4 + χ(x3, x4)M1(x1, x4)v3

+χ(x1, x3 + x4)M2(x3, x4)v1} + χ(x2, x1 + x3 + x4)µ(Hx1(x3, x4))v2}.

Thus

(x1 + v1) ·µ Hx2+v2(x3 + v3, x4 + v4) + χ(x1, x2)(x2 + v2) ·µ Hx1+v1(x3 + v3, x4 + v4)
= x1 · Hx2(x3, x4) + χ(x1, x2)x2 · Hx1(x3, x4)
+{µ(x1)M1(x2, x3) + χ(x1, x2)µ(x2)(M1(x1, x3))}v4

+{χ(x3, x4)µ(x1)M1(x2, x4) + χ(x1, x2)χ(x3, x4)µ(x2)M1(x1, x4)}v3

+{χ(x2, x3 + x4)µ(x1)M2(x3, x4) + χ(x1, x2)χ(x2, x1 + x3 + x4)µ(Hx1(x3, x4))}v2

+χ(x1, x2 + x3 + x4){µ(x2)M2(x3, x4) + µ(Hx2(x3, x4))}v1

= H(x1+v1)·µ(x2+v2)(x3 + v3, x4 + v4),

which satisfies the relation in Definition 3.1. Hence, the conclusion follows immediately. □

It is noticed that, given a representation (V, ρ, µ) of an F-manifold algebra, Liu, Sheng, and Bai [8]
asserted that (V∗, ρ∗,−µ∗) may not be its representation. Now, assume that (F, ·, [, ], χ) is an F-manifold
color algebra, together with a representation (V, µ) of the algebra (F, ·, χ) and a representation (V, ρ) of
the algebra (F, [, ], χ). In order to prove the following proposition associated with an F-manifold color
algebra, we need to define the linear map M3 from F ⊗ F to Endk(V)G by

M3(x1, x2) = −χ(x1, x2)ρ(x2)µ(x1) − ρ(x1)µ(x2) + ρ(x1 · x2),

and the linear maps M∗1,M
∗
2 from F ⊗ F to Endk(V∗)G by

M∗1(x1, x2) = −ρ∗(x1)µ∗(x2) + χ(x1, x2)µ∗(x2)ρ∗(x1) + µ∗([x1, x2]),
M∗2(x1, x2) = −µ∗(x1)ρ∗(x2) − χ(x1, x2)µ∗(x2)ρ∗(x1) − ρ∗(x1 · x2)

for any homogeneous element x1, x2 ∈ F.
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Proposition 3.3. With the above notations, assume that for any homogeneous element x1, x2, x3 ∈ F,
the following holds:

M1(x1 · x2, x3) = χ(x1, x2 + x3)M1(x2, x3)µ(x1) + χ(x2, x3)M1(x1, x3)µ(x2),
µ(Hx1(x2, x3)) = −χ(x1, x2 + x3)M3(x2, x3)µ(x1) + µ(x1)M3(x2, x3).

Then (V∗, ρ∗,−µ∗) is a representation of (F, ·, [, ], χ).

Proof. Suppose that x1, x2, x3 ∈ F, v ∈ V, ξ ∈ V∗ are all homogeneous elements. First, we claim the
following two identities:

⟨M∗1(x1, x2)(ξ), v⟩ = ⟨ξ, χ(x1 + x2, ξ)M1(x1, x2)v⟩;
⟨M∗2(x1, x2)(ξ), v⟩ = ⟨ξ, χ(x1 + x2, ξ)M3(x1, x2)v⟩.

The claims follow from some direct calculations, respectively:

⟨M∗1(x1, x2)(ξ), v⟩
= ⟨(−ρ∗(x1)µ∗(x2) + χ(x1, x2)µ∗(x2)ρ∗(x1) + µ∗([x1, x2]))ξ, v⟩
= χ(x1, x2 + ξ)⟨µ∗(x2)ξ, ρ(x1)v⟩ − χ(x1, x2)χ(x2, x1 + ξ)⟨(ρ∗(x1)ξ, µ(x2)v⟩
−χ(x1 + x2, ξ)⟨ξ, µ([x1, x2])v⟩

= −χ(x1, x2)χ(x1 + x2, ξ)⟨ξ, µ(x2)ρ(x1)v⟩ + χ(x2, ξ)χ(x1, ξ)⟨ξ, ρ(x1)µ(x2)v⟩
−χ(x1 + x2, ξ)⟨ξ, µ([x1, x2])v⟩

= ⟨ξ, χ(x1 + x2, ξ){−χ(x1, x2)µ(x2)ρ(x1) + ρ(x1)µ(x2) − µ([x1, x2])}v⟩
= ⟨ξ, χ(x1 + x2, ξ)M1(x1, x2)v⟩,

and

⟨M∗2(x1, x2)(ξ), v⟩
= ⟨{−µ∗(x1)ρ∗(x2) − χ(x1, x2)µ∗(x2)ρ∗(x1) − ρ∗(x1 · x2)}ξ, v⟩
= −χ(x1, x2 + ξ)χ(x2, ξ)⟨ξ, ρ(x2)µ(x1)v⟩ − χ(x2, ξ)χ(x1, ξ)⟨ξ, ρ(x1)µ(x2)v⟩
+χ(x1 + x2, ξ)⟨ξ, ρ(x1 · x2)v⟩

= ⟨ξ, χ(x1 + x2, ξ){−χ(x1, x2)ρ(x2)µ(x1) − ρ(x1)µ(x2) + ρ(x1 · x2)}v⟩
= ⟨ξ, χ(x1 + x2, ξ)M3(x1, x2)v⟩.

With the above identities, we have

⟨{M∗1(x1 · x2, x3) + µ∗(x1)M∗1(x2, x3) + χ(x1, x2)µ∗(x2)M∗1(x1, x3)}ξ, v⟩
= ⟨ξ, χ(x1 + x2 + x3, ξ)M1(x1 · x2, x3)v⟩ − χ(x1, x2 + x3 + ξ)χ(x2 + x3, ξ)⟨ξ,M1(x2, x3)µ(x1)v⟩
−χ(x1 + x3, ξ)χ(x2, x3 + ξ)⟨ξ,M1(x1, x3)µ(x2)v⟩

= χ(x1 + x2 + x3, ξ)⟨ξ, {M1(x1 · x2, x3) − χ(x1, x2 + x3)M1(x2, x3)µ(x1) − χ(x2, x3)M1(x1, x3)µ(x2)}v⟩
= 0,

and

⟨{−µ∗(Hx1(x2, x3)) + χ(x1, x2 + x3)M∗2(x2, x3)µ∗(x1) − µ∗(x1)M∗2(x2, x3)}ξ, v⟩
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= χ(x1 + x2 + x3, ξ)⟨ξ, µ(Hx1(x2, x3))v⟩ + χ(x1, x2 + z)χ(x2 + x3, x1 + ξ)⟨µ∗(x1)ξ,M3(x2, x3)v⟩
+χ(x1, x2 + x3 + ξ)⟨M∗2(x2, x3)ξ, µ(x1)v⟩

= χ(x1 + x2 + x3, ξ)⟨ξ, µ(Hx1(x2, x3))v⟩ − χ(x2 + x3, ξ)χ(x, ξ)⟨ξ, µ(x1)M3(x2, x3)v⟩
+χ(x, x2 + x3 + ξ)χ(x2 + x3, ξ)⟨ξ,M3(x2, x3)µ(x1)v⟩

= χ(x1 + x2 + x3, ξ)⟨ξ, {µ(Hx1(x2, x3)) − µ(x1)M3(x2, x3) + χ(x1, x2 + x3)M3(x2, x3)µ(x1)}v⟩
= 0.

Therefore, the conclusion follows immediately from the hypothesis and Definition 3.2. □

Given an F-manifold color algebra (F, ·, [, ], χ), we define the linear map T from F ⊗ F to Endk(F)G

by
T (x1, x2)(x3) = −χ(x1, x2)[x2, x1 · x3] − [x1, x2 · x3] + [x1 · x2, x3]

for any homogeneous elements x1, x2, x3 ∈ F.

Definition 3.3. An F-manifold color algebra (F, ·, [, ], χ) is called a coherence one if for any homoge-
neous elements x1, x2, x3, x4 ∈ F, the following hold:

Hx1·x2(x3, x4) = χ(x1, x2 + x3)Hx2(x3, x1 · x4) + χ(x2, x3)Hx1(x3, x2 · x4),
Hx1(x2, x3)x4 = −χ(x1, x2 + x3)T (x2, x3)(x1 · x4) + x1T (x2, x3)(x4).

Proposition 3.4. Assume that (, ) is a non-degenerate symmetric bilinear form on the F-manifold color
algebra (F, ·, [, ], χ) satisfying

(x1 · x2, x3) = (x1, x2 · x3) and ([x1, x2], x3) = (x1, [x2, x3])

for any homogeneous elements x1, x2, x3 ∈ F. Then (F, ·, [, ], χ) is a coherence F-manifold color alge-
bra.

Proof. First, we prove that

(Hx1(x2, x3), x4) = χ(x1 + x2, x3)(x3,Hx1(x2, x4))

for any homogeneous elements x1, x2, x3, x4 ∈ F.
In fact, we obtain

(Hx1(x2, x3), x4)
= ([x1, x2 · x3] − [x1, x2] · x3 − χ(x1, x2)x2 · [x1, x3], x4)
= −χ(x1, x2 + x3)([x2 · x3, x1], x4) − χ(x1 + x2, x3)(x3, [x1, x2] · x4)
−χ(x1, x2)χ(x2, x1 + x3)([x1, x3], x2 · x4)

= −χ(x1, x2 + x3)(x2 · x3, [x1, x4]) − χ(x1 + x2, x3)(x3, [x1, x2] · x4) + χ(x2, x3)χ(x1, x3)(x3, [x1, x2 · x4])
= −χ(x1, x2 + x3)χ(x2, x3)(x3, x2 · [x1, x4]) − χ(x1 + x2, x3)(x3, [x1, x2] · x4)
+χ(x1 + x2, x3)(x3, [x1, x2 · x4])

= χ(x1 + x2, x3)(x3,−χ(x1, x2)x2 · [x1, x4] − [x1, x2] · x4 + [x1, x2 · x4])
= χ(x1 + x2, x3)(x3,Hx1(x2, x4)).
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By the above relation, for every homogeneous element x1, x2, x3,w1,w2 ∈ F, we have

(Hx1·x2(x3,w1) − χ(x1, x2 + x3)Hx2(x3, x1 · w1) − χ(x2, x3)Hx1(x3, x2 · w1),w2)
= χ(x1 + x2 + x3,w1)(w1,Hx1·x2(x3,w2)) − χ(x1, x2 + x3)χ(x2 + x3, x1 + w1)(x1 · w1,Hx2(x3,w2))
−χ(x2, x3)χ(x1 + x3, x2 + w1)(x2 · w1,Hx1(x3,w2))

= χ(x1 + x2 + x3,w1)(w1,Hx1·x2(x3,w2)) − χ(x1, x2 + x3)χ(x2 + x3, x1 + w1)χ(x1,w1)
(w1, x1 · Hx2(x3,w2)) − χ(x2, x3)χ(x1 + x3, x2 + w1)χ(x2,w1)(w1, x2 · Hx1(x3,w2))

= χ(x1 + x2 + x3,w1)(w1,Hx1·x2(x3,w2)) − χ(x1 + x2 + x3,w1)(w1, x1 · Hx2(x3,w2))
−χ(x2, x3)χ(x1 + x3, x2)χ(x1 + x2 + x3,w1)(w1, x2 · Hx1(x3,w2))

= χ(x1 + x2 + x3,w1)(w1,Hx1·x2(x3,w2)) − χ(x1 + x2 + x3,w1)(w1, x1 · Hx2(x3,w2))
−χ(x1, x2)χ(x1 + x2 + x3,w1)(w1, x2 · Hx1(x3,w2))

= χ(x1 + x2 + x3,w1)(w1,Hx1·x2(x3,w2) − x1 · Hx2(x3,w2) − χ(x1, x2)x2 · Hx1(x3,w2))
= 0.

We claim the following identity:

(T (x2, x3)(w1),w2) = χ(x2 + x3,w1 + w2)(w1,Hw2(x2, x3)).

In fact, we have

(T (x2, x3)(w1),w2)
= (−χ(x2, x3)[x3, x2 · w1] − [x2, x3 · w1] + [x2 · x3,w1],w2)
= χ(x2, x3)χ(x3, x2 + w1)(x2 · w1, [x3,w2]) + χ(x2, x3 + w1)(x3 · w1, [x2,w2])
−χ(x2 + x3,w1)(w1, [x2 · x3,w2])

= χ(x3,w1)χ(x2,w1)(w1, x2 · [x3,w2]) + χ(x2, x3 + w1)χ(x3,w1)(w1, x3 · [x2,w2])
−χ(x2 + x3,w1)(w1, [x2 · x3,w2])

= χ(x2 + x3,w1)(w1, x2 · [x3,w2]) + χ(x2 + x3,w1)χ(x2, x3)(w1, x3 · [x2,w2])
−χ(x2 + x3,w1)(w1, [x2 · x3,w2])

= χ(x2 + x3,w1)(w1, x2 · [x3,w2] + χ(x2, x3)x3 · [x2,w2] − [x2 · x3,w2])
= χ(x2 + x3,w1)(w1, χ(x2 + x3,w2)Hw2(x2, x3))
= χ(x2 + x3,w1 + w2)(w1,Hw2(x2, x3)).

With the above identity, we have

(Hx1(x2, x3) · w1 + χ(x1, x2 + x3)T (x2, x3)(x1 · w1) − x1 · T (x2, x3)(w1),w2)
= χ(x1 + x2 + x3,w1)(w1,Hx1(x2, x3)w2) + χ(x1, x2 + x3)χ(x2 + x3, x1 + w1 + w2)

(x1 · w1,Hw2(x2, x3)) − χ(x1, x2 + x3 + w1)(T (x2, x3)w1, x1 · w2)
= χ(x1 + x2 + x3,w1)(w1,Hx1(x2, x3)w2) + χ(x1,w1)χ(x2 + x3,w1 + w2)(w1, x1 · Hw2(x2, x3))
−χ(x1, x2 + x3 + w1)χ(x2 + x3, x + w1 + w2)(w1,Hx1·w2(x2, x3))

Electronic Research Archive Volume 33, Issue 1, 87–101.



97

= χ(x1 + x2 + x3,w1)(w1,Hx1(x2, x3)w2) + χ(x1,w1)χ(x2 + x3,w1 + w2)(w1, x1 · Hw2(x2, x3))
−χ(x1,w1)χ(x2 + x3,w1 + w2)(w1,Hx1·w2(x2, x3))

= χ(x1 + x2 + x3,w1)(w1,Hx1(x2, x3)w2 + χ(x2 + x3,w2)x1 · Hw2(x2, x3)
−χ(x2 + x3,w2)Hx1·w2(x2, x3))

= χ(x1 + x2 + x3,w1)(w1,Hx1(x2, x3)w2 + χ(x2 + x3,w2)x1 · Hw2(x2, x3)
−(Hx1(x2, x3)w2 + χ(x2 + x3,w2)x1 · Hw2(x2, x3)))

= 0.

Then, according to the assumption that the symmetric bilinear form (, ) is non-degenerate, the con-
clusion is obtained. □

4. Pre-F-manifold color algebras

The concept of pre-F-manifold color algebras is presented in this section, and using these algebras
we construct F-manifold color algebras.

Definition 4.1. Let the vector space F be G-graded and • be a bilinear multiplication operator on F.
A triple (F, •, χ) is called a Zinbiel color algebra if the following hold:

(i) Fg1 • Fg2 ⊆ Fg1+g2 ,

(ii) x1 • (x2 • x3) = (x1 • x2) • x3 + χ(x1, x2)(x2 • x1) • x3,

for any homogeneous elements x1 ∈ Fg1 , x2 ∈ Fg2 , x3 ∈ Fg3 , and g1, g2, g3 ∈ G.

Given a Zinbiel color algebra (F, •, χ), define

x1 · x2 = x1 • x2 + χ(x1, x2)x2 • x1, (4.1)

for any homogeneous elements x1, x2 ∈ F. Then it is not difficult to see that the algebra (F, ·, χ) is both
χ-commutative and associative.

Define a linear map L : F −→ Endk(F)G by

Lx1 x2 = x1 • x2, (4.2)

for any homogeneous elements x1, x2 ∈ F. Then one has the following result.

Lemma 4.1. With the above notations, (F,L) is a representation of (F, ·, χ).

Proof. According to the definition of L, we get

Lx1·x2 x3 = (x1 · x2) • x3 = (x1 • x2 + χ(x1, x2)(x2 • x1)) • x3 = x1 • (x2 • x3) = Lx1Lx2 x3.

Thus, the proof follows. □

Let (F, •, χ) be a Zinbiel color algebra and (F, ∗, χ) be a pre-Lie color algebra. For any homogeneous
elements x1, x2, x3 ∈ F, define two linear maps Q1,Q2 : F ⊗ F ⊗ F −→ F by

Q1(x1, x2, x3) = x1 ∗ (x2 • x3) − χ(x1, x2)x2 • (x1 ∗ x3) − [x1, x2] • x3,
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Q2(x1, x2, x3) = x1 • (x2 ∗ x3) + χ(x1, x2)x2 • (x1 ∗ x3) − (x1 · x2) ∗ x3,

where the operation · is given by (4.1) and the bracket [, ] is given by

[x1, x2] = x1 ∗ x2 − χ(x1, x2)x2 ∗ x1. (4.3)

Definition 4.2. With the above notations, (F, •, ∗, χ) is called a pre-F-manifold color algebra if the
following hold

(Q1(x1, x2, x3) + χ(x2, x3)Q1(x1, x3, x2) + χ(x1, x2 + x3)Q2(x2, x3, x1)) • x4

= χ(x1, x2 + x3)Q2(x2, x3, x1 • x4) − x1 • Q2(x2, x3, x4),

Q1(x1 · x2, x3, x4) = x1 • Q1(x2, x3, x4) + χ(x1, x2)x2 • Q1(x1, x3, x4)

for any homogeneous elements x1, x2, x3, x4 ∈ F.

Since (F, [, ], χ) is a Lie color algebra, it is known that (F, L) is a representation of (F, [, ], χ) if one
defines the linear map L : F −→ Endk(F)G by

Lx1 x2 = x1 ∗ x2, (4.4)

for any homogeneous elements x1, x2 ∈ F.

Theorem 4.2. Suppose that (F, •, ∗, χ) is a pre-F-manifold color algebra; then

(1) (F, ·, [, ], χ) is an F-manifold color algebra, where the operation · is given by (4.1) and the bracket
[, ] is given by (4.3);

(2) (F; L,L) is a representation of (F, ·, [, ], χ), where the map L is given by (4.4) and the map L is
given by (4.2).

Proof. (1) It is known that (F, [, ], χ) is a Lie color algebra and (F, ·, χ) is a χ-commutative associative
algebra. Thus, we only need to prove that the relation in Definition 3.1 is satisfied.

Assume that x1, x2, x3, x4 ∈ F are all homogeneous elements. We claim the following identity:

Hx1(x2, x3) = Q1(x1, x2, x3) + χ(x2, x3)Q1(x1, x3, x2) + χ(x1, x2 + x3)Q2(x2, x3, x1). (4.5)

In fact, we have

Hx1(x2, x3) = [x1, x2 · x3] − [x1, x2] · x3 − χ(x1, x2)x2 · [x1, x3]
= x1 ∗ (x2 · x3) − χ(x1, x2 + x3)(x2 · x3) ∗ x1 − [x1, x2] • x3 − χ(x + x2, x3)x3 • [x1, x2]
−χ(x1, x2){x2 • [x1, x3] + χ(x2, x1 + x3)[x1, x3] • x2}

= x1 ∗ (x2 • x3) − χ(x1, x2)x2 • (x1 ∗ x3) − [x1, x2] • x3

+χ(x2, x3){x1 ∗ (x3 • x2) − χ(x1, x3)x3 • (x1 ∗ x2) − [x1, x3] • x2}

+χ(x1, x2 + x3){x2 • (x3 ∗ x1) + χ(x2, x3)x3 • (x2 ∗ x1) − (x2 · x3) ∗ x1}

= Q1(x1, x2, x3) + χ(x2, x3)Q1(x1, x3, x2) + χ(x1, x2 + x3)Q2(x2, x3, x1).

With the above identity, we obtain

Hx1·x2(x3, x4) − x1 · Hx2(x3, x4) − χ(x1, x2)x2 · Hx1(x3, x4)
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= Q1(x1 · x2, x3, x4) + χ(x3, x4)Q1(x1 · x2, x4, x3) + χ(x1 + x2, x3 + x4)Q2(x3, x4, x1 · x2)
−x1 · {Q1(x2, x3, x4) + χ(x3, x4)Q1(x2, x4, x3) + χ(x2, x3 + x4)Q2(x3, x4, x2)}
−χ(x1, x2)x2 · {Q1(x1, x3, x4) + χ(x3, x4)Q1(x1, x4, x3) + χ(x1, x3 + x4)Q2(x3, x4, x1)}

=
{
Q1(x1 · x2, x3, x4) − x1 • Q1(x2, x3, x4) − χ(x1, x2)x2 • Q1(x1, x3, x4)

}
+
{
χ(x3, x4)Q1(x1 · x2, x4, x3) − χ(x3, x4)x1 • Q1(x2, x4, x3) − χ(x1, x2)χ(x3, x4)x2 • Q1(x1, x4, x3)

}
+
{
χ(x1 + x2, x3 + x4)Q2(x3, x4, x1 • x2) − χ(x1, x2)χ(x2, x1 + x3 + x4)Q1(x1, x3, x4) • x2

−χ(x1, x2)χ(x3, x4)χ(x2, x1 + x3 + x4)Q1(x1, x4, x3) • x2

−χ(x1, x2)χ(x1, x3 + x4)χ(x2, x1 + x3 + x4)Q2(x3, x4, x1) • x2

−χ(x2, x3 + x4)x1 • Q2(x3, x4, x2)
}
+
{
χ(x1 + x2, x3 + x4)χ(x1, x2)Q2(x3, x4, x2 • x1)

−χ(x1, x2 + x3 + x4)Q1(x2, x3, x4) • x1 − χ(x3, x4)χ(x1, x2 + x3 + x4)Q1(x2, x4, x3) • x1

−χ(x2, x3 + x4)χ(x1, x3 + x4 + x2)Q2(x3, x4, x2) • x1 − χ(x1, x2)χ(x1, x3 + x4)x2 • Q2(x3, x4, x1)
}

= χ(x1 + x2, x3 + x4)
{
Q2(x3, x4, x1 • x2) − χ(x3 + x4, x1)Q1(x1, x3, x4) • x2

−χ(x3, x4)χ(x3 + x4, x1)Q1(x1, x4, x3) • x2 − Q2(x3, x4, x1) • x2 − χ(x3 + x4, x1)x1 • Q2(x3, x4, x2)
}

+χ(x1, x2 + x3 + x4)
{
χ(x2, x3 + x4)Q2(x3, x4, x2 • x1) − Q1(x2, x3, x4) • x1

−χ(x3, x4)Q1(x2, x4, x3) • x1 − χ(x2, x3 + x4)Q2(x3, x4, x2) • x1 − x2 • Q2(x3, x4, x1)
}

= χ(x2, x3 + x4)
{
χ(x1, x3 + x4)Q2(x3, x4, x1 • x2) − Q1(x1, x3, x4) • x2

−χ(x3, x4)Q1(x1, x4, x3) • x2 − χ(x1, x3 + x4)Q2(x3, x4, x1) • x2 − x1 • Q2(x3, x4, x2)
}

= 0.

Hence, (F, ·, [, ], χ) is an F-manifold color algebra.
(2) It is known that (F, L) is a representation of the Lie color algebra (F, [, ], χ). According to Lemma

4.1, (F,L) is a representation of the χ-commutative associative algebra (F, ·, χ). Define the linear map
M4 from F ⊗ F to Endk(F)G by

M4(x1, x2) = Lx1Lx2 − χ(x1, x2)Lx2 Lx1 − L[x1,x2].

Thus Q1(x1, x2, x3) = M4(x1, x2)(x3), and the equation

Q1(x1 · x2, x3, x4) = x1 • Q1(x2, x3, x4) + χ(x1, x2)x2 • Q1(x1, x3, x4)

implies
M4(x1 · x2, x3) = Lx1 M4(x2, x3) + χ(x1, x2)Lx2 M4(x1, x3).

On the other hand, define the linear map M5 from F ⊗ F to Endk(F)G by

M5(x1, x2) = Lx1 Lx2 + χ(x1, x2)Lx2 Lx1 − Lx1·x2 .

Thus Q2(x1, x2, x3) = M5(x1, x2)(x3). Combining (4.5), the equation

(Q1(x1, x2, x3) + χ(x2, x3)Q1(x1, x3, x2) + χ(x1, x2 + x3)Q2(x2, x3, x1)) • x4

= χ(x1, x2 + x3)Q2(x2, x3, x1 • x4) − x1 • Q2(x2, x3, x4)

implies
LHx1 (x2,x3) = χ(x1, x2 + x3)M5(x2, x3)Lx1 − Lx1 M5(x2, x3).

Hence, the proof is completed. □
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5. Conclusions

An F-manifold is “locally” an F-manifold algebra. We generalize the definition of an F-manifold
algebra by introducing an F-manifold color algebra and study its representation theory. Then we pro-
vide the concept of a coherence F-manifold color algebra and obtain that an F-manifold color algebra
admitting a non-degenerate symmetric bilinear form is a coherence F-manifold color algebra. The
concept of a pre-F-manifold color algebra is also defined, and with the help of these algebras, one can
construct F-manifold color algebras.
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