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Abstract: We establish an Lp
loc-existence theorem for the ∂∂-equation on a half-space of Cn. The result

is achieved for forms of class Lp
loc as well as for those forms in the scale of W1,p

loc -Sobolev spaces and
admitting distributional boundary values. Some isomorphisms and regularity results in relation to de
Rham, Bott–Chern, and Aeppli cohomology groups are moreover obtained.
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1. Introduction

Solving ∂∂ follows from the pluripotential theory, which can be traced back to the 1940s [1, 2] and
still has a lot of attention. There are many interesting contributions concerning the ∂∂-problem, among
which are [3–7]. More precisely, Nikitina [5] considered the ∂∂-equation on positive (1, 1)-closed
currents on complex manifolds. To build functional calculus for forms f on a positive current T , it
requires an auxiliary (1, 1)-Kähler form ω > 0. With respect to this form, one can equip a metric on
T and hence obtain the induced norm ∥ f ∥ω,T of f on T . The differential operators ∂ and ∂ also act on
positive currents. A current T is closed if dT = 0. For a closed current T , we say that a form u ∈ L2

r,s(T )
is a solution to the induced equation

∂∂ωu = f on T (1.1)

if
∂∂ω(u ∧ T ) = f ∧ T, f ∈ L2

r+1,s+1(T )

in the sense of currents (see Definition 4 in [5]), where the subscript ω indicates that the exterior
calculus is done w. r. t. the ω-metric. For simplicity, the subscript ω may be omitted from the
notations when there is no danger of confusion. The main result in [5] reads as follows: if T is a
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positive (1, 1)-closed current in a pseudoconvex domain in Cn, then there is a solution u ∈ L2
n−r−1,s−1(T )

to Eq (1.1) for every f ∈ L2
n−r,s(T ) ∩ ker(∂), s − r − 1 ≥ 1. The case of currents of higher bidegree is

also discussed. It is noteworthy that the ∂∂-approach adopted in [5] is totally different from this one
applied in the current paper, where we are concerned with the ∂∂-problem for classes of differential
forms having boundary traces in the currents sense. The ingredients of our approach include regularity
results for both d-and ∂-equations in the W1,p

loc -Sobolev spaces.
Let us now recall those results that are more related to ours. In [8], Lojasiewicz and Tomassini

proved that if f is a differential form on a bounded domain in Cn and has a boundary value, in the sense
of currents, then f is an extensible current. This result helped Sambou et al, to study the ∂∂-equation
for extensible currents and for differential forms with boundary values, in the sense of currents, in a
series of papers. To be more precise, Sambou proved in [9] that if T is a ∂-closed extensible current
of bidegree (n, n− s) on a completely strictly q-convex domain with C∞-boundary in an n-dimensional
complex manifold, 0 ≤ q ≤ n − 1, 1 ≤ n − q ≤ s ≤ n, then there is an extensible current S of bidegree
(n, n − s + 1) such that ∂S = T . As a corollary, he proved also that if f is a ∂-closed (0, 1)-form
of class C∞ on a completely strictly pseudoconvex domain and has a boundary value, in the sense of
currents, then there is a function u of class C∞, having a boundary value, in the sense of distributions,
and solving the equation ∂u = f .

In [10], Sambou and Sané generalized the corollary by Sambou [9] to the case of (0, s)-forms,
where they proved that if f is a ∂-closed (0, s)-form, 1 ≤ s ≤ n, of class C∞ on a smooth, strictly
pseudoconvex domain, and admitting a boundary value, in the sense of currents, then there exists a
(0, s − 1)-form g of class C∞ with boundary value, in the sense of currents, such that ∂g = f .

Let D be a pseudoconvex domain with C∞-boundary ∂D in Cn such that Hi(D) = 0, i ≥ 1, and
H j(∂D) = 0, 1 ≤ j ≤ 2n−2, where Hk(D) (respectively, Hk(∂D)) is the de Rham cohomology group of
smooth k-forms on D (respectively, on ∂D). Then, by using the ∂-solving result from [10], Souhaibou
et al. proved in [6] that for every d-closed (r, s)-form f of class C∞(D) (1 ≤ r, s ≤ n) with a boundary
trace, in the currents sense, there is a (r − 1, s − 1)-form g of class C∞(D) with a boundary trace, in the
sense of currents, such that ∂∂g = f .

For the case of unbounded domains, Bodian et al. showed in [7] that the ∂∂-problem is solvable for
extensible currents on a half-space in Cn. This allowed Souhaibou et al. [11] to extend the result of [6]
to the half-space case for the same class of differential forms. Their proof is achieved by inspiring
some results from Brinkschulte [12].

Motivated by the aforementioned results, the following question was raised: If f is a d-closed (r, s)-
form with Lp

loc-coefficients, does there exist a (r − 1, s − 1)-form u with Lp
loc-coefficients and satisfies

the equation ∂∂u = f ?
Positive answer to this question is introduced in Section 3 for Lp

loc-forms on the half-complex space

Ω = {z = (z1, . . . , zn) ∈ Cn : Im(zn) > 0}

which is an example of an unbounded pseudoconvex domain as well as its complement.
We notice that there is an essential difference between Lp

loc(Ω) and W1,p
loc (Ω): Roughly speaking,

functions in Lp
loc(Ω) do not admit traces on ∂Ω, while functions in W1,p

loc (Ω) have boundary traces be-

longing to W
1− 1

p ,p

loc (∂Ω) (cf. [13, Theorem 1.4.46] or [14, pp. 315]). Luckily, this viewpoint allows us to
address the ∂∂-problem for differential forms with W1,p

loc (Ω)-coefficients and having boundary traces in
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the currents sense; see Section 4 below for more details.
Now, we briefly return to the ∂∂-cohomologies. For compact Kähler manifolds Z one has that the

Bott–Chern cohomology H•,•BC(Z) is naturally isomorphic to the Dolbeault cohomology H•,•(Z); see [15,
Lemma 5.15, Remark 5.16, 5.21, Lemma 5.11]. Furthermore, the Hodge⋆-operator associated with
any Hermitian metric on X induces an isomorphism between Bott–Chern and Aeppli cohomologies,
i.e.,

Hr,s
BC(Z) ≃ Hn−s,n−r

A (Z), ∀ r, s ∈ N.

In general, for compact non-Kähler manifolds, the natural maps

H•,•BC(Z)→ H•,•(Z) and H•,•BC(Z)→ H•(Z,C)

induced by the identity are neither injective nor surjective; see the example given in [16, Section 1.c].
We refer to the monograph [17] by Angella for results concerning the characterization of compact
complex manifolds by means of their Bott–Chern and Aeppli cohomologies. Certain isomorphisms
and regularity results related to de Rham, Bott–Chern, and Aeppli cohomologies are introduced in
Section 5.

Let us now present the main Lp
loc(Ω)-existence theorem.

Theorem 1.1. Let Ω = {z = (z1, . . . , zn) ∈ Cn : Im(zn) > 0}. For all r, s ∈ [1, n], we have the following
assertions.

(i) If f ∈ Lp
r,s(Ω, loc)∩ker(d), 1 ≤ p ≤ ∞, then there is a form u ∈ Lp

r−1,s−1(Ω, loc) satisfying ∂∂u = f .
(ii) If f ∈ W1,p

r,s (Ω, loc) ∩ ker(d), 1 ≤ p < ∞, is a form admitting a boundary value, in the sense of
currents, then there exists a form g ∈ W1,p

r−1,s−1(Ω, loc) admitting a boundary value, in the sense of
currents, such that ∂∂g = f .

The proof of assertion (i) depends on pushing out a bumping technique, while the proof of (ii) is
twofold, namely, we solve respectively the equations du = f and ∂u = f with regularity in the Sobolev
spaces W1,p

∗ (Ω, loc), hence the ∂∂-solution becomes a combination of the resulting d- and ∂-solutions.
The key issue to prove (ii) is to construct suitable Lp

loc-regularizing operators for d- and ∂-complexes,
respectively.

2. Function spaces

We list here the basic spaces of functions and distributions that will be used throughout the paper.
Let M be an open set in a differentiable manifold X of dimension N. For de Rham calculus we recall
the needed basic function spaces (cf. [13]).

C∞(M) : the space of C∞-smooth functions on M with its classical Fréchet topology.

C∞(M) : the subspace of C∞-smooth functions up to the boundary of M; this is the space of the
restrictions to M of functions in C∞(X). We endow C∞(M) with the Fréchet topology induced by
C∞(X).

D(M) : the space of smooth; compactly supported functions on M, which is a topological vector space
with the standard inductive limit topology.
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Ek(M) : the Fréchet space of k-forms of class C∞ on M, where k is a finite integer ≥ 0.

Dk(M) : the space of forms in Ek(M) with compact supports in M.

D
′k(M) : the space of k-currents on M, the topological dual of the space DN−k(M), endowed with the

topology of uniform convergence on bounded subsets ofDN−k(M). In particular, a distribution is
a 0-current.

Ď′k(M) : the space of all extensible k-currents T on M. Such currents T are defined as restrictions to
M of currents T̃ on X. The associated de Rham cohomology group is denoted by Ȟk(M).

Lp(M) : the Banach space of measurable functions such that

∥ f ∥Lp(M) :=
( ∫

M
| f |pdµ

) 1
p
< ∞, 1 ≤ p < ∞,

where dµ is the Lebesgue measure on X. If p = ∞, we set

∥ f ∥L∞(M) = ess. sup
M
| f | < ∞.

Lp
k (M) : the class of k-forms whose coefficients are in Lp(M), 1 ≤ p ≤ ∞.

Lp
loc(M) : the Fréchet space of p-locally integrable functions on M endowed with the topology of

Lp-convergence on compact subsets of M.

Lp
k,loc(M) : the space of k-forms on M with coefficients in Lp

loc(M).

The formula
⟨ f , ϕ⟩ =

∫
M

f ∧ ϕ, f ∈ Lp
k,loc(M), ϕ ∈ Dk(M)

gives an embedding Lp
k,loc(M) ⊂ D′k(M).

A differentiable form f ∈ Lp
k,loc(M) is called the weak d-exterior derivative (the d-derivative in the

sense of currents) of a form θ ∈ Lp
k−1,loc(M), and we write dθ = f if, for each ϕ ∈ DN−k(M), we

have ∫
M

f ∧ ϕ = (−1)k
∫

M
θ ∧ dϕ.

Lp
k,c(M) : the subspace of Lp

k,loc(M) consisting of forms with compact supports in M. This subspace is
provided with the inductive limit topology.

Wm,p
loc (M),m ∈ N ∪ {0}, p ∈ [1,∞) : the Sobolev space of functions f defined on M such that f and its

distributional derivatives ∂α f of order |α| ≤ m are in Lp
loc(M). The topology on Wm,p

loc (M) is defined
by the semi-norms:

| f |Wm,p
loc (M) =

∑
|α|≤m

( ∫
M
|∂α f |pdµ

) 1
p
. (2.1)

Topologized in this way, Wm,p
loc (M) is a Fréchet space. For p ∈ [1,∞), we denote by p′ the

conjugate exponent to p, i.e., p−1 + p′−1 = 1. The space W−m,p′

loc (M) is defined as the topological
dual of the completion ofD(M) under the semi-norm (2.1); see e.g., [18, Theorem 3.9]. Wm,p

k,loc(M)
stands for the Sobolev space of k-forms whose coefficients belong to Wm,p

loc (M).

Electronic Research Archive Volume 33, Issue 1, 68–86.



72

W̌m,p
k,loc(M) : the Wm,p

loc -Sobolev space of extensible k-currents on M. The corresponding de Rham coho-
mology group is denoted by Ȟk

Wm,p
loc

(M).

We turn now to the complex case. If M is a domain in a complex manifold X of complex dimen-
sion n. Let 0 ≤ r ≤ n and 1 ≤ s ≤ n. As in [19], we denote by:

Er,s(M) : the Fréchet space of (r, s)-forms of class C∞ on M endowed with the topology of uniform
convergence of the forms and all their derivatives on compact subsets of M. For every k ∈
{0, 1, . . . , 2n}, we have

Ek(M) =
⊕
r+s=k

Er,s(M).

The complex structure of M splits the exterior differential operator

d : Ek(M)→ Ek+1(M)

uniquely into
d = ∂ + ∂

and the ∂∂̄-operator is defined as

∂∂̄ : Er,s(M)→ Er+1,s+1(M).

Dr,s(M) : the space of (r, s)-forms of class C∞ and compactly supported in M.

D′r,s(M) : the space of currents of bidegree (r, s) on M. D′r,s(X) is, by definition, the topological dual
space to the spaceDn−r,n−s(X) with the C∞-topology.

Ď′r,s(M) : the space of extensible currents of bidegree (r, s) on M. The associated Dolbeault cohomol-
ogy group is denoted by Ȟr,s(M).

Lp
r,s(M, loc) : the space of (r, s)-forms on M whose coefficients belong to Lp

loc(M).

Wm,p
r,s (M, loc) : the Sobolev space of (r, s)-forms with Wm,p

loc (M)-coefficients.

W̌m,p
r,s (M, loc) : the Wm,p

r,s (M, loc)-Sobolev space of extensible (r, s)-currents on M. The corresponding
Dolbeault cohomology group is denoted by Ȟr,s

Wm,p
loc

(M).

Taking the restriction of the ∂̄-operator to Lp
r,s(M, loc), in the sense of currents, we get an unbounded

operator whose domain of definition is the set of forms f with Lp
loc(M)-coefficients such that ∂̄ f

has also Lp
loc(M)-coefficients; moreover, since ∂̄2 = 0, we get a complex of unbounded operators(

Lp
r,s(M, loc), ∂̄

)
; see e.g., [20].

3. Lp-existence theorem for ∂∂ on a half-space

In [21], Tarkhanov adapted the Norguet’s integral formulas (see [22]) for solving the d-equation in
Lp-scales on q-convex domains in Rn. By using the Lp-solutions to the d-equation and pushing out the
bumping technique by Kerzman [23], we conclude the following theorem.
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Theorem 3.1. Let Ω = {x = (x1, . . . , xn+1) ∈ Rn+1| xn+1 > 0} be the upper half-space in Rn+1. For every
f ∈ Lp

k,loc(Ω) ∩ ker(d), there exists a form u ∈ Lp
k−1,loc(Ω) that satisfies du = f .

Proof. Denote by Br := {x ∈ Rn+1 : ∥x∥ < r} the Euclidean ball of center 0 and radius r in Rn+1 and set
B− = Br ∩Ω and B+ = Br ∩Ω

c. Define

f̃ =
{

f , B−;
0, B+.

Then f̃ ∈ Lp
k (Br) ∩ ker(d); see e.g., [24, Section 2.1]. Since Br is convex, there exists a form

g ∈ Lp
k−1(Br) such that dg = f̃ in Br (see [21]) and dg = 0 in B+. Put

g̃ =
{

g, B+;
0, B−.

It is clear that dg̃ = 0 in Br and g̃ ∈ Lp
k−1(Br). If k = 1, we can take g ≡ 0 on B+, so g has a support in

B+. If k > 1, ∃ h ∈ Lp
k−2(Br) such that dh = g̃.

Set
ĝ = g − dh.

Then ĝ ∈ Lp
k−1(Br), ĝ = 0 on B+, and dĝ = f in B−. Exhausting Rn+1 by a sequence of open balls

{Bδ}δ∈N∪{0} each of radius δ and center 0. On each Bδ, we can find gδ ∈ Lp
k−1(Bδ) such that

dgδ = f in B−δ ,

gδ = 0 in B+δ .

Indeed, since dgδ+2 = f in Bδ+2, dgδ+1 = f in Bδ+1, and Bδ ⊂⊂ Bδ+1, then d(gδ+2 − gδ+1) = 0 in Bδ+1,
(gδ+2 − gδ+1) ∈ Lp

k−1(Bδ+1), and gδ+2 − gδ+1 = 0 in B+δ+1. Thus, there exists uδ+1 ∈ Lp
k−2(Bδ+1) satisfying

duδ+1 = (gδ+2 − gδ+1) in B−δ+1 and uδ+1 ≡ 0 in B+δ+1. Choose a cut-off function χ ∈ D(Bδ+2) such that
0 ≤ χ(x) ≤ 1 and χ ≡ 1 in Bδ+1. Therefore,

gδ+2 − d(1 − χ)uδ+1 = gδ+1 + d(χuδ+1) on Bδ+1.

Setting
ψδ+2 = gδ+2 − d(1 − χ)uδ+1,

We have dψδ+2 = f in Bδ+2, ψδ+2 = gδ+1 in Bδ+1, and ψδ+2 ≡ 0 in B+δ+2. Thus, we can find a sequence
{vδ}δ, vδ ∈ Lp

k−1,loc(Bδ), satisfying dvδ = f in Bδ, vδ+1 = vδ in Bδ, vδ ≡ 0 in B+δ . Setting v = lim
δ→∞

vδ, then

v ∈ Lp
k−1,loc(R

n+1), v ≡ 0 in Ωc, and solving dv = f in Ω. Hence u = v|Ω ∈ Lp
k−1,loc(Ω) is the desired

form.

Solving the ∂-equation is an important question in the theory of several complex variables. For
Lp-solutions to ∂u = f on q-convex domains in Cn, we refer to [25] and the references therein. Despite
of a great deal of the material for ∂ is strictly analogous to corresponding material for d, the formalism
above works in the complex case, where

Ω = {z = (z1, . . . , zn) ∈ Cn; Im(zn) > 0}

and f is a ∂-closed (r, s)-form. Therefore, we can immediately obtain:
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Theorem 3.2. Let Ω = {z = (z1, . . . , zn) ∈ Cn : Im(zn) > 0}. Let α ∈ Lp
r,s(Ω, loc), ∂α = 0. Then, there

exists a form β ∈ Lp
r,s−1(Ω, loc) such that ∂β = α.

Theorems 3.1 and 3.2 enable us to prove assertion (i) of Theorem 1.1 as follows.

Proof of Theorem 1.1 (i). Let f ∈ Lp
r,s(Ω, loc)∩ker(d). Due to Theorem 3.1, there is a (r+ s−1)-form

g with coefficients belonging to Lp
loc(Ω) and solving the equation dg = f . Without loss of generality,

we can decompose g into a (r − 1, s)-form g1 and a (r, s − 1)-form g2 whose coefficients are in Lp
loc(Ω).

We then have
dg = d(g1 + g2) = dg1 + dg2 = f .

As d = ∂ + ∂̄, by the bidegree reasons, we have

∂̄g1 = 0 and ∂g2 = 0.

Then
∂g1 + ∂̄g2 = f . (3.1)

By Theorem 3.2, there are two forms h1, h2 ∈ Lp
r−1,s−1(Ω, loc) such that

∂̄h1 = g1 and ∂h2 = g2.

Equation (3.1) then becomes
∂∂̄h1 + ∂̄∂h2 = f ,

but ∂∂̄ = −∂̄∂, and hence
∂∂̄h1 − ∂∂̄h2 = ∂∂̄(h1 − h2) = f .

Setting u = h1 − h2. It is obvious that u ∈ Lp
r−1,s−1(Ω, loc) with ∂∂u = f .

4. W1,p
loc -regularity to ∂∂ for forms with distributional boundary values

Now we are in a position to prove part (ii) of Theorem 1.1. To this end, we need to prove W1,p
loc -

regularity results for both d- and ∂-equations. Let us begin with the real case.

4.1. The d-equation

There are many books on distribution theory each of them contains the basic definitions and prop-
erties of distributions; see, e.g., [13], [24], and [26]. Following [13, Chapter 9], we recall the following
definitions.

Definition 4.1. Let X be a differentiable manifold and Ω ⊂ X be a C∞-smooth domain of defining
function ρ. Let Ωε = {x ∈ Ω | ρ(x) < −ε}. A function f ∈ C∞(Ω) is said to have a distributional
boundary value, if there is a distribution Tb defined on ∂Ω such that for any function φ ∈ D(∂Ω), we
have:

⟨Tb, φ⟩ = lim
ε→0

∫
∂Ωε

fφεdσ (4.1)

where φε = i∗εφ̃ with φ̃ being an extension of φ to Ω, iε : ∂Ωε → X being the canonical injection, and
dσ denotes the volume element.

A differential form of class C∞ on Ω is said to have a boundary value in the sense of currents if its
coefficients have distributional boundary values.
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As an example, it follows from Eq (4.1) that any holomorphic function f that can be extended
continuously to ∂Ω admits a distributional boundary trace Tb = f ∧ [∂Ω]0,1, where [∂Ω]0,1 is the
bidegree (0, 1)-part of the integration current on ∂Ω. Recently, it was shown in [19] that extensible
smooth functions on bounded smooth domains admit distributional boundary traces.

Definition 4.2. A function f ∈ C∞(Ω) is said to have polynomial growth of finite order γ > 0, if there
is a constant C > 0 such that for each x ∈ Ω we have

| f (x)| ≤ Cdist(x, ∂Ω)−γ

where dist(x, ∂Ω) := inf
{
|x − y|; y ∈ ∂Ω

}
.

To demonstrate this phenomenon, we point out that smooth functions with polynomial growth on
piecewise smooth domains have distributional boundary values; see [10]. It is interesting to mention
also that harmonic functions defined on bounded smooth domains admit distributional boundary values
if and only if they have polynomial growth of finite order near the boundary; see [27].

Proposition 4.3. Let D be an open set in a C∞-differentiable manifold X of dimension n. Then, the
natural mapping

ı : Ȟk
W1,p

loc
(D) −→ Ȟk(D), k ≥ 1, p ≥ 1,

is an isomorphism.

Proof. We start with recalling the Lp-adapted properties of the de Rham operators presented in [28].
Namely, it was proved that there are linear regularizing operators Rε and homotopy operators Aε de-
pending on a parameter ε > 0 such that

Rε : D′k(X) −→ Ek(X), Aε : D′k(X) −→ D′k−1(X)

and enjoying the following properties:

(i) For all T ∈ D′k(X),
T − RεT = dAεT + AεdT (4.2)

(ii) If T ∈ W1,p
k,loc(X), then RεT ∈ W1,p

k,loc(X), AεT ∈ W1,p
k−1,loc(X),

(iii) RεdT = dRεT ,
(iv) If T ∈ W1,p

k,loc(X), then RεT → T , RεdT → dT , and AεT → 0 as ε→ 0 in W1,p
k,loc(X).

(v) The supports of RεT and AεT are contained in the ε-neighborhood of the support of T .
(vi) Aε does not increase the singular support of T .

(vii) The regularity of AεT is 1 − 0 better than that of T in an ε-neighborhood of any open set U in X.

To finish the proof, we show that the mapping ı is bijective as follows.

Injectivity: Let T ∈ Ȟk
W1,p

loc

(D) such that ı([T ]) = 0 in Ȟk(D). Then there exists a current S ∈ Ď′k−1(D)

so that dS = T . Suppose that T̃ and S̃ are extensions of T and S with supports in D, so that dS̃ = T̃ .
Applying (4.2) to S̃ , we get

dS̃ = d(RεS̃ + AεT̃ ) = T̃ ,

and hence
T = T̃ |D = d(RεS̃ + AεT̃ )|D.
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Since AεT̃ has regularity better than that of T̃ in an ε-neighborhood of D and each of Rε and Aε is
continuous on W1,p

∗,loc(D), then (RεS̃ + AεT̃ )|D ∈ W1,p
k−1,loc(D). This means that [T ] = 0 in Ȟk

W1,p
loc

(D). The

map ı is injective.

Surjectivity: Let T ∈ Ď′k(D) ∩ ker(d). Let T̃ be an extension of T to X with support in D. Then

T̃ = RεT̃ + AεdT̃ + dAεT̃ , dT̃ |D = 0.

Thus
T = T̃ |D = (RεT̃ + AεdT̃ )|D + dAεT̃ |D.

The supports of RεT̃ |D and AεdT̃ |D are contained in some ε-neighborhood of D; then they are exten-
sible currents. As the regularity of AεdT̃ |D is better than the regularity of dT̃ |D, and Aε is continuous
on W1,p

∗,loc(D), then AεdT̃ |D ∈ W̌1,p
k,loc(D). In addition, RεT̃ |D ∈ Ek(D). Hence [T ] = [(RεT̃ + AεdT̃ )|D] in

Ȟk(D). The map ı is surjective.

Theorem 4.4. Let Ω be as in Theorem 3.1. Then, we have Ȟk
W1,p

loc

(Ω) = 0.

Proof. Due to [7], we have Ȟk(Ω) = 0. By Proposition 4.3, we immediately get Ȟk
W1,p

loc

(Ω) = 0.

Theorem 4.5. Let Ω be as in Theorem 3.1. For 1 ≤ p < ∞, 1 ≤ k ≤ n, let f ∈ W1,p
k,loc(Ω) be a d-closed

form with a boundary value in the sense of currents. Then there exists a form u in W1,p
k−1,loc(Ω) with

boundary value, in the currents sense, such that du = f .

Proof. Since f ∈ W1,p
k,loc(Ω)∩ ker(d), then [ f ] is an extensible current and hence, by Theorem 4.4, there

is a current Φ ∈ W̌1,p
k−1,loc(Ω) such that

dΦ = f (4.3)

Let S be an extension of Φ to Rn+1 with support in Ω. Consider a current F defined by F = dS
which is an extension of f to Rn+1. Applying Eq (4.2) to S , we see that

dS = d(RεS + AεF) = F.

This shows that (RεS + AεF)|Ω is another solution to Eq (4.3). Since RεS ∈ Ek−1(Ω), it has a
distributional boundary value on ∂Ω. However, the operator Aε does not increase the singular support;
continuous on W1,p

k,loc(Ω), and F|Ω ∈ W1,p
k,loc(Ω), then AεF|Ω ∈ W1,p

k−1,loc(Ω). Therefore,

(RεS + AεF)|Ω ∈ W1,p
k−1,loc(Ω).

We claim now that AεF|Ω admits a distributional boundary value on ∂Ω. SinceΩ is unbounded, take
a closed ball Br ⊂ R

n+1 of center 0 and radius r such that Br ∩ Ω , ∅. Hence F|Br∩Ω
is an extensible

current of finite order. Now, AεF|Br∩Ω
behaves like ⟨F,N(x − y)⟩, whereN(x) = cm|x|2−m, m ≥ 3, is the

Newtonian potential or the fundamental solution of convolution type for the Laplacian ∆ in Rm \ {0}
(see e.g., [29, Section 2.4]). Set

ω(x) = ⟨F,N(x − y)⟩, x ∈ Br ∩Ω.
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As N(x) is locally integrable, we introduce a suitable cut-off function. Let x ∈ Br ∩ Ω be fixed
and denote by dx the distance of x to ∂(Br ∩ Ω). Choose a cut-off function ρ ∈ D(Bdx/2(x)) such that
0 ≤ ρ(x) ≤ 1 and ρ(x)|Bdx/4(x) = 1. Then, decompose the kernel N(x) into two kernels

N1(x) = cn
ρ(x)
|x|n−1 , N2(x) = cn

(1 − ρ(x))
|x|n−1 ,

and hence ω(x) can be written as
ω(x) = ω1(x) + ω2(x),

with
ω1(x) = ⟨F,N1(x − y)⟩ =

∫
Br∩Ω

f (y)N1(x − y)dy

and

ω2(x) = ⟨F,N2(x − y)⟩ =
∫

Br∩Ω

f (y)N2(x − y)dy

=

∫
(Br∩Ω)\Bdx/4(x)

f (y)N2(x − y)dy.

SinceN1(x) is compactly supported and f is locally integrable, then ω1(x) is a C∞-differential form
on Br∩Ω, cf. [24, Lemma 2.9], and hence it admits a boundary trace in the sense of currents on Br∩∂Ω.
Going further, observe that |N2(x − y)| = O(|x − y|1−n), i.e., the kernels decay like |x − y|1−n for large
|x − y|, and note also that |x − y| ≥ dx/4 for points y ∈ (Br ∩ Ω) \ Bdx/4(x) near to the boundary. Based
on these observations, we estimate |ω2| as follows:∣∣∣ω2(x)

∣∣∣ = ∣∣∣ ∫
(Br∩Ω)\Bdx/4(x)

f (y)N2(x − y)dy
∣∣∣

≤

∫
(Br∩Ω)\Bdx/4(x)

|(1 − ρ(y)) f (y)|
|x − y|n−1 |dy|

≤
4

dn−1
x

∫
(Br∩Ω)\Bdx/4(x)

| f (y)||dy|

≤ c(n)d1−n
x ∥ f ∥L1(Br∩Ω)\Bdx/4(x)) ≤ C(n)d1−n

x .

Thus, ω2 has polynomial growth of finite order; it follows then from [10, Proposition 3.1] that ω2

admits a distributional boundary trace on Br ∩ ∂Ω.
Pick a family of balls {Bℓ}ℓ∈N in Rn+1 such that Bℓ ∩ ∂Ω , ∅ and ∂Ω ⊂

⋃
ℓ∈N Bℓ. On each Bℓ ∩ Ω,

RεS + AεF admits a distributional boundary trace Vℓ on Bℓ ∩ ∂Ω. Further, on Bℓ+1 ∩ ∂Ω, it admits a
distributional boundary trace Vℓ+1. Therefore, d(Vℓ+1 − Vℓ) = 0 on Bℓ ∩ ∂Ω. Since Bℓ ∩ ∂Ω is a convex
domain in Rn, for each ℓ, there exists a (k − 2)-current hℓ on Bℓ ∩ ∂Ω such that

dhℓ = Vℓ+1 − Vℓ. (4.4)

Let χ be a C∞-function on ∂Ω such that χ(x) = 1 for x ∈ Bℓ−1 ∩ ∂Ω and has a compact support in
Bℓ+1 ∩ ∂Ω. Rewrite Eq (4.4) as

Vℓ+1 − d(1 − χ)hℓ = Vℓ + d(χhℓ) on Bℓ ∩ ∂Ω,
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and set
Tℓ+1 = Vℓ+1 − d(1 − χ)hℓ, Tℓ = Vℓ + d(χhℓ).

Then
T = lim

ℓ→∞
Tℓ

is a distributional boundary value of (RεS + AεF)|Ω on ∂Ω. The form u defined by

u := (RεS + AεF)|Ω

belongs to W1,p
k−1,loc(Ω), admits a boundary trace, in the sense of currents, on ∂Ω, and solves the equation

du = f in Ω.

4.2. The ∂-version

Let X be an n-dimensional complex manifold. Following [30], for each ε > 0, 0 ≤ r ≤ n, 1 ≤ s ≤ n,
there exist linear operators

R̃ε : D′r,s(X)→ Er,s(X), Ãε : D′r,s(X)→ D′r,s−1(X)

such that the operator Ãε, modulo a smooth term, is the Martinelli–Bochner operator, and hence con-
tinuous from Lp

r,s(X, loc) to Lp
r,s−1(X, loc), p ≥ 1 and from Er,s(X) to Er,s−1(X). Moreover, for any

T ∈ D′r,s(X), we have the ∂-homotopy relation

T = R̃εT + Ãε∂̄T + ∂̄ÃεT. (4.5)

Using Eq (4.5) and proceeding as in the proof of Proposition 4.3, we obtain a version for ∂-
cohomologies.

Proposition 4.6. Let D ⊂ X be an open set. Then, the natural mapping

ȷ : Ȟr,s
W1,p

loc

(D) −→ Ȟr,s(D)

is an isomorphism.

Theorem 4.7. Let Ω = {z = (z1, . . . , zn) ∈ Cn : Im(zn) > 0}. Let f ∈ W1,p
r,s (Ω, loc) be a ∂-closed form

with a boundary value in the sense of currents. Then there exists a form α ∈ W1,p
r,s−1(Ω, loc) having a

boundary value in the sense of currents such that ∂α = f .

Proof. Let f ∈ W1,p
r,s (Ω, loc) ∩ ker(∂) with boundary value in the sense of currents. According to [8],

f ∈ Ďr,s(Ω). Therefore, by Proposition 4.6 and Theorem 43 in [7], we have

Ȟr,s
W1,p

loc

(Ω) = 0.

Then there exists an extensible (r, s−1)-current u with coefficients in W1,p
loc (Ω) such that ∂̄u = f . Let

ψ be a W1,p
loc -extension with support in Ω of u to Cn, and consider a current Γ defined by Γ = ∂̄ψ which

is an extension of f to Cn. Thanks to Eq (4.5), we obtain

ψ = R̃εψ + Ãε∂̄ψ + ∂̄Aεψ,

Electronic Research Archive Volume 33, Issue 1, 68–86.



79

i.e.,
ψ = R̃εψ + ÃεΓ + ∂̄Ãεψ.

Apply ∂ to both sides, we obtain

∂̄ψ = ∂̄(R̃εψ + ÃεΓ) = Γ.

Thus (R̃εψ+ÃεΓ)|Ω is also a solution to the equation ∂̄u = f . Since R̃εψ ∈ E
r,s−1(Ω), it has a boundary

value in the sense of currents on ∂Ω. As the operator Ãε does not increase the singular support and
is continuous on Lp

∗ (Ω, loc) ⊃ W1,p
∗ (Ω, loc), and Γ|Ω ∈ W1,p

r,s (Ω, loc), then ÃεΓ|Ω ∈ W1,p
r,s−1(Ω, loc). This

shows that
(R̃εS + ÃεΓ)|Ω ∈ W1,p

r,s−1(Ω, loc).

The next step is to show that ÃεΓ|Ω has a distributional boundary trace. Recall first that the ∂-
Laplacian is defined by ⊓⊔ = ∂̄∂̄∗ + ∂̄∗∂̄ and maps Er,s(Cn) into itself as an elliptic differential operator
of order 2, where ∂̄∗ is the formal adjoint of ∂. As the Euclidean metric is Kähler, then ⊓⊔ = 1

2∆, so
the application of ⊓⊔ to forms is equivalent to the application of ∆ in R2n to each of their coefficients
with accuracy up to a nonessential factor −1/4. Therefore, K(x) = c2n|z|2−2n, n ≥ 2, is the Newtonian
potential on Cn or the elementary solution of convolution type for the complex Laplacian ⊓⊔. Since Ω

is unbounded; consider a compact set K in Cn such that
◦

K , ∅ and
◦

K ∩ ∂Ω , ∅, then Γ|K∩Ω is an
extensible current of finite order, and ÃεΓ|K∩Ω has the same nature as ⟨Γ,K(z − ζ)⟩. Thus, proceeding

as in the real case, we can show that ÃεΓ|K∩Ω admits a distributional boundary vale on
◦

K ∩ ∂Ω.
Exhaust Cn by a sequence of compact sets {K j} j∈N, i.e.,

Cn =
⋃
j∈N

K j, K j ⊂
◦

K j+1,

so that
◦

K j ∩ ∂Ω , ∅ and ∂Ω ⊂
⋃

j∈N K j. On each
◦

K j ∩ Ω, R̃εψ + ÃεΓ admits a distributional boundary

trace U j on
◦

K j∩∂Ω. On
◦

K j+1∩∂Ω, it has a distributional boundary trace U j+1. Thus, ∂b(U j+1−U j) = 0

on
◦

K j ∩ ∂Ω. Since the boundary is Levi flat, then there exists a (r, s − 2)-current h j on
◦

K j ∩ ∂Ω such
that

∂bh j = U j+1 − U j.

Let χ be a function of class C∞ on ∂Ω such that χ ≡ 1 on
◦

K j−1 ∩ ∂Ω and with compact support in
◦

K j+1 ∩ ∂Ω. We see that

U j+1 − ∂b(1 − χ)h j = U j + ∂b(χh j) on
◦

K j ∩ ∂Ω.

Set
T j+1 = V j+1 − ∂b(1 − χ)h j, T j = U j + ∂b(χh j).

Then
T = lim

j→∞
T j
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represents a boundary trace of (R̃εψ + ÃεΓ)|Ω on ∂Ω in the sense of currents. Then the form

α := (R̃εψ + ÃεΓ)|Ω

belongs to W1,p
r,s−1(Ω, loc), admits a boundary trace, in the sense of currents, on ∂Ω, and solves the

equation ∂α = f in Ω.

4.3. Proof of Theorem 1.1 (ii)

Let f ∈ W1,p
r,s (Ω, loc) be a d-closed form admitting boundary value in the sense of currents. Accord-

ing to Theorem 4.5, there is a form u ∈ W1,p
r+s−1(Ω, loc) with boundary value, in the sense of currents,

such that
du = f .

Without loss of generality, we can split u into two forms u1 ∈ W1,p
r−1,s(Ω, loc) and u2 ∈ W1,p

r,s−1(Ω, loc)
such that each of u1 and u2 admits a boundary value in the sense of currents. We then have

du = du1 + du2 = f .

Since d = ∂ + ∂, by the bidegree reasons, one has

∂u1 = 0 and ∂u2 = 0.

From Theorem 4.7, we can find two forms h1, h2 ∈ (W1,p
r−1,s−1(Ω, loc) with boundary values, in the

sense of currents, such that
∂h1 = u1 and ∂h2 = u2.

Therefore, we have

f = ∂u1 + ∂u2

= ∂∂h1 + ∂∂h2

= ∂∂(h1 − h2).

The form g := (h1 − h2) ∈ W1,p
r−1,s−1(Ω, loc), has a boundary value in the sense of currents, and

satisfies the equation ∂∂g = f . This proves assertion (ii) in Theorem 1.1.

5. Isomorphisms and regularity results

In this section, we introduce some isomorphisms and regularity results in relation to de Rham coho-
mology groups and the ∂∂-cohomology groups. Let X be a C∞-differentiable manifold. As usual, the
spaces Hk

Lp(X) and Hk
curr(X) denote the de Rham cohomology groups for k-forms with Lp-coefficients

and for k-currents, respectively. Corresponding cohomologies for compactly supported datum are de-
noted respectively by Hk

c,Lp(X) and Hk
c,curr(X).

Lemma 5.1. Keeping the notations as above, the natural mappings

j : Hk
c,Lp(X)→ Hk

c,curr(X) and i : Hk
c(X)→ Hk

c,Lp(X)

are isomorphisms.
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Proof. Let us prove the first isomorphism. To this end, as in [31] or [32], we show that the natural map
j is bijective as follows:

Injectivity: As in the proof of Proposition 4.3, there are Lp-regularizing operators Rε and homotopy
operators Aε, ε > 0, with properties similar to (i)–(vii); see [28] or [33].

Consider a class [ f ] in Hk
c,Lp(X) such that i[ f ] = [0] in Hk

c,cur(X). This means that there is a (k − 1)-
current S with compact support such that dS = f in X. By Eq (4.2), we obtain f = d(RεS + Aε f ).
Since Aε f has regularity better than that of f , and since the operators Rε and Aε are continuous on
Lp
∗ (X) and have, by property (v), compact supports contained in some ε-neighborhood of the support

of f , therefore (RεS + Aε f ) ∈ Lp
k−1,c(X). Thus [ f ] = [0] in Hk

c,Lp(X). This shows the injectivity of j.
Surjectivity: Let [ f ] ∈ Hk

c,cur(X) such that d f = 0. From Eq (4.2), we have f = Rε f + dAε f . Thanks
to the properties (v) and (vii), we have Rε f ∈ Dk−1(X) ⊂ Lp

k−1(X), Aε f ∈ Lp
k−1,c(X). Then [ f ] = [Rε f ]

in Hk
c,cur(X). Thus the mapping j is surjective. The second isomorphism is proved by proceeding with

the same arguments.

Using the Lp
loc-de Rham regularizing operators, we can moreover show that the natural mappings

I : Hk(X) −→ Hk
Lp

loc
(X), Ψ : Hk

Lp
loc

(X) −→ Hk
curr(X)

are isomorphisms.

Corollary 5.2. Let X be a differentiable manifold of class C∞. For every f ∈ Lp
k,loc(X) ∩ ker(d) and

any neighborhood U of the support of f , there is a form g ∈ Lp
k−1,loc(X) with support in U such that

f − dg ∈ Ek(X).

Proof. Choose a neighborhood V of the support of f such that V ⊂ U and let χ0, χ1 ∈ C
∞(X) such

that χ0 = 1 on a neighborhood of X \ V and vanishes in a neighborhood of the support of f , χ1 = 1
in a neighborhood of X \ U and vanishes on a neighborhood of V . Since f is d-closed and the map
I is surjective, then there is a form g0 ∈ Lp

k−1,loc(X) such that u = f − dg0 ∈ E
k(X). So, u = −dg0 on

X \ supp f . Since I is injective, there exists a form v of class C∞ on X \ supp f such that u = dv on
X \ supp f . We thus have d(g0 +χ0v) = 0 on X \V and then there exists a form g1 ∈ Lp

k−1,loc(X \V) such
that g0+χ0v−dg1 = w ∈ Ek(X \V). The (k−1)-form g = g0+χ0v−χ1w−d(χ1g1) with Lp

loc-coefficients
and a support in U, moreover,

f − dg = f − d(g0 + χ0v − χ1w − d(χ1g1)) = u − d(χ0v − χ1w)

is of class C∞(X).

Let X be a complex manifold of complex dimension n. For every p, q ∈ {1, . . . , n}, the Bott–Chern
cohomology group of smooth (p, q)-forms on X is defined in [34] as

Hp,q
BC (X) =

ker(∂ : Ep,q(X)→ Ep+1,q(X)) ∩ ker(∂̄ : Ep,q(X)→ Ep,q+1(X))
Im(∂∂̄ : Ep−1,q−1(X)→ Ep,q(X))

Case of either p = 0 or q = 0. For example, if q = 0, then the (p, 0)-Bott–Chern cohomology group
is given, from definition, by

Hp,0
BC (M) = { f ∈ Γ(M,Ωp

M)| ∂ f = 0},
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whereΩp
M is the sheaf of holomorphic p-forms on M. Thanks to the symmetric property of Bott–Chern

cohomology, we have H0,q
BC(M) = Hq,0

BC(M). The Bott–Chern cohomology group of smooth (p, q)-forms
with compact support in X is defined similarly and is denoted by Hp,q

BC,c(X). We recall also that the
Aeppli cohomology group is defined in [35] by

Hp,q
A (X) =

ker(∂∂ : Ep,q(X)→ Ep+1,q+1(X))

Im(∂ : Ep−1,q(X)→ Ep,q(X)) + Im (∂ : Ep,q−1(X)→ Ep,q(X))
.

In particular, if p = q = 0, then

H0,0
A (X) =

ker(∂∂ : E0,0(X))→ E1,1(X)

Ω0
X + Ω

0
X

,

where Ω0
X (resp. Ω

0
X) is the sheaf of holomorphic (resp. anti-holomorphic) functions on X. The Aeppli

cohomology group of smooth (p, q)-forms with compact support in X is defined analogously and is
denoted by Hp,q

A,c(X). Finally, H̃p,q
BC (X) and H̃p,q

A (X) refer, respectively, to the Bott–Chern and Aeppli
cohomology groups of currents of bidegree (p, q).

For compact Hermitian manifolds X, by using certain resolutions of the sheaf of germs of ∂∂-closed
forms, Bigolin proved in [36] that the algebraic isomorphisms:

Hp,q
BC (X) ≃ H̃p,q

BC (X), Hp,q
A (X) ≃ H̃p,q

A (X),
Hp,q

BC,c(X) ≃ H̃p,q
BC,c(X), Hp,q

A,c(X) ≃ H̃p,q
A,c(X)

hold true for all integers p, q ∈ {1, · · · , n}. We introduce below an alternative proof depending on the
∂∂-Hodge decomposition formulas for (p, q)-forms on compact complex manifolds.

Lemma 5.3. Let X be a compact Hermitian complex manifold of complex dimension n. Then, the
natural map

j : Hp,q
BC (X)→ H̃p,q

BC (X)

is isomorphism.

Proof. The Hodge theory for elliptic complexes (see [16, Proposition 2.1]) asserts the existence of
linear operators

H : D′p,q(X)→ Ep,q(X), J : D′p,q(X)→ Dp−1,q−1(X),

M : D′p+1,q(X)→ D′p,q(X), N : D′p,q+1(X)→ D′p,q(X)

such that any (p, q)-current T admits the ∂∂-homotopy formula:

T = HT + ∂∂JT + M∂T − N∂T, (5.1)

where 
H = H∗ = H2,

∂H = ∂H = H∂∂ = 0,
ker(I − H) = Im(H) =

{
f ∈ Ep,q(X) | ∂ f = ∂ f = (∂∂)∗ f = 0

}
.
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Injectivity: Let [T ] ∈ Hp,q
BC (X) so that [T ] = 0 in H̃p,q

BC (X), namely T = ∂∂S for some (p − 1, q − 1)-
current S on X. Then, in view of Eq (5.1), we have S = JT . Thus, if T = f is a C∞ (p, q)-form on X,
then f = ∂∂J f with J f a C∞ (p − 1, q − 1)-form on X. Hence [T ] = 0 in Hp,q

BC (X). Thus the map j is
injective.

Surjectivity: Let T ∈ D′p,q(X) ∩ ker(d). As ∂T = 0, ∂T = 0, hence (5.1) becomes

T = HT + ∂∂JT.

Since HT is a C∞ d-closed (p, q)-form and JT ∈ Im∂∂, therefore we deduce that the map j is
surjective.

Lemma 5.4. Let X be a compact Hermitian complex manifold of complex dimension n. Then, the
natural map

i : Hp,q
A (X)→ H̃p,q

A (X)

is surjective. If in addition X is regular in the sense of [37], i.e., it satisfies the condition

ker(∂∂) = ker(∂) + Im(∂)

then i is injective.

Proof. We first prove that i is surjective. According to Aeppli decomposition; see [16, p. 10], any
(p, q)-current α can be decomposed as

α = hα + ∂∗∂
∗

η + ∂µ + ∂λ,

where hα ∈ Ep,q(X) so that ∂∗hα = ∂
∗

hα = ∂∂hα = 0, η ∈ D′p+1,q+1(X), µ ∈ D′p,q−1(X), and λ ∈

D′p,q−1(X). Let α ∈ D′p,q(X) ∩ ker(∂∂). Since ∂∂α = 0, we must have ∂∂
(
∂∗∂

∗

η
)
= 0. We claim that

∂∗∂
∗

η = 0. We have

∥∂∗∂
∗

η∥2 = ⟨∂∗∂
∗

η, ∂∗∂
∗

η⟩ = ⟨∂
∗

η, ∂∂∗∂
∗

η⟩ = ⟨η, ∂∂
(
∂∗∂

∗

η
)
⟩ = 0.

Thus ∂∗∂
∗

η = 0. Hence α has the representation:

α = hα + ∂µ + ∂λ,

with hα is a C∞ ∂∂-closed (p, q)-form and ∂µ + ∂λ ∈ Im∂ + Im∂. The map i is then surjective.
Injectivity: Let [α] ∈ Hp,q

A (X) such that ∂∂α = 0 and i([α]) = 0 in H̃p,q
A (X). This means that

there exist two currents β1 ∈ D
′p−1,q(X) and β2 ∈ D

′p,q−1(X) such that α = ∂β1 + ∂β2. It was shown
in [38, Proposition 3.1] that compact manifolds are regular if and only if they satisfy the ∂∂-Lemma,
hence, by the regularity assumption, α is also ∂∂-exact.

Therefore, as shown above, if α = f ∈ Ep,q(X), then f = ∂∂J f = ∂(∂ J f
2 ) + ∂(−∂ J f

2 ). This amounts
to β1 = ∂

J f
2 and β2 = −∂

J f
2 , which would be C∞-forms on X. This proves that [α] = 0 in Hp,q

A (X), and
hence i is injective.
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