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Abstract: We investigate the existence of periodic solutions for nonconservative superlinear second-
order differential equations in the sense of rotation numbers. Specifically, we focus on equations
whose solutions at infinity behave comparably to a suitable linear system. By employing a rotation
number approach, spiral analysis, and fixed-point theorems, we establish the existence of periodic
solutions for nonconservative superlinear second-order differential equations. Among the equations we
consider, a notable subclass is partially superlinear second-order differential equations, which provide
a concrete illustration of our results. Our results extend several recent results, thereby advancing to a
more comprehensive understanding of periodic behavior in nonconservative systems.

Keywords: periodic solutions; nonconservative; superlinear; rotation numbers; spiral analysis

1. Introduction

We investigate the existence of periodic solutions within the framework of nonconservative second-
order differential equations

x′′ + f (t, x, x′) = 0. (1.1)

The function f : R × R2 → R is presumed to be a Carathéodory function that is T -periodic in the time
variable and locally Lipschitz continuous with respect to (x, x′). The growth of f with respect to its
second variable is characterized by superlinear properties, interpreted through rotation numbers.

Researching periodic solutions in nonconservative superlinear second-order differential equations
is a complex and challenging area, intertwining mathematical theory with practical applications. As
discussed by Gidoni in [1], the question of periodic solutions is closely related to the broader problem
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regarding the boundedness, or unboundedness, of solutions for (1.1). An important result in this area
was established by Struwe [2] and subsequently extended by Capietto et al. [3], as well as Gidoni [1].

Recently, Wang et al. [4] further advanced the study of the existence of periodic solutions in non-
conservative equations

x′′ + f (t, x) + p(t, x, x′) = 0. (1.2)

By employing topological degree theory, they established a fixed-point theorem with angular descrip-
tions, which serves as a complement to the Poincaré–Birkhoff twist theorem. Their results extend the
results of [3], [1], and [2] by relaxing the assumption of global existence of solutions and providing a
broader understanding of periodic solutions in nonconservative contexts.

In [4], the function f is required to satisfy the following growth condition:

(A1) lim
|x|→+∞

f (t, x)
x
= +∞ for a.e. t ∈ [0,T ] uniformly.

We note that the superlinear condition (A1) is required to hold for a.e. t ∈ [0,T ]. However, consider
the case where

f (t, x) =
s(t)
8

x3 −
1
8

x cos 2πt, (1.3)

where s(t) is a 1-periodic function defined as

s(t) =
{

sin 2πt, t ∈ (0, 1/2),
0, t ∈ [0, 1] \(0, 1/2).

It is evident that f (t, x) does not satisfy condition (A1). However,

lim
|x|→+∞

f (t, x)
x
= lim
|x|→+∞

sin 2πt
8

x2 −
1
8

cos 2πt = +∞, (1.4)

for t ∈ (0, 1/2). This indicates that f (t, x) exhibits superlinear growth only over the subinterval (0, 1/2).
This leads to a natural question: under these circumstances, can it still guarantee the existence of a
periodic solution to Eq (1.2)?

To address this issue, the aim of this paper is to further extend these existing results to the case where
superlinearity is considered in the sense of rotation numbers. Specifically, we aim to investigate the
existence of periodic solutions for the following generalization of nonconservative superlinear second-
order equations (1.2), where we replace the traditional growth conditions with those involving rotation
numbers

(A′1) There exist functions an ∈ L1([0,T ]), n ∈ N such that

lim inf
|x|→+∞

f (t, x)
x
≥ an(t) uniformly a.e. in t ∈ [0,T ],

and ρ(an)→ +∞ as n→ +∞.
Here, ρ(an) is the rotation number of system x′ = 1

2y and − y′ = an(t)x, which is defined in Section
2. Papers related to rotation numbers can be found in [5–13], as well as the references cited therein.
Additionally, we assume that
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(H1) The function f : R×R2 → R is continuous, while p : R×R2 → R is a Carathéodory function;
both functions are T -periodic with respect to the first variable.

(H2) There exists a nonempty open bounded set E that contains the origin O, and if (x(0), x′(0)) ∈
∂E, then the solution x(·) of (1.2) exists on the interval [0,T ], with the condition that (x(t), x′(t)) , (0, 0)
for all t ∈ [0,T ].

(H3) There exist two positive constants Cp, Dp, and a positive function γp ∈ L1([0,T ]) such that
|p(t, x, y)| < γp(t) +Cp|x| + Dp|y|, for every (x, y) ∈ R2 and a.e. t ∈ [0,T ].

The primary result of this paper is summarized as follows.

Theorem 1.1. Assume that (1.2) satisfies conditions (H1), (A′1), (H2), and (H3). Then, Eq (1.2) has at
least one T-periodic solution.

Remark 1.1. In Theorem 1.1, the only distinction lies in condition (A′1), which replaces (A1) from
Theorem 1.1 in [4]. Notably, the assumption (A1) implies the hypothesis (A′1). As a result, Theorem 1.1
broadens the scope of the recent findings in [4]. A more detailed discussion is presented in Section 4.

To prove Theorem 1.1, we apply Theorem 2.1 established by Wang et al. [4], a fixed-point theorem
with angular descriptions. The key to applying Theorem 2.1 from [4] lies in identifying a continuous
map that is well-defined and establishing the twist condition on an annulus. However, the solutions
to Eq (1.2) may not exist globally, and as a result, the corresponding Poincaré map might not be
well-defined, which does not meet the requirements of Theorem 2.1 in [4]. To address this issue, we
modify the system using the spiral behavior of large-amplitude solutions from the original equation (see
Lemma 3.1 below). Additionally, by defining the rotation number of the linear system and estimating
the relationship between the rotation numbers of the linear and nonlinear systems, we identify the
rapid rotation properties of large-amplitude solutions under the superlinear condition in the sense of
rotation numbers (see Lemma 2.3 below). This leads us to find an appropriate annulus that satisfies the
twist condition. Other methods for studying second-order ordinary differential equations can be found
in [14–16].

The remaining sections of the paper are organized as follows. Section 2 presents the definition
and the relationship of the rotation number in planar systems. In Section 3, we analyze the behavior of
large-amplitude solutions to system (2.6). In Section 4, we modify system (2.6) and prove the existence
of periodic solutions for non-conservative superlinear equations in the context of rotation numbers.
Furthermore, we present a partially superlinear example in this section to illustrate the importance of
our results.

2. Rotation numbers and properties

Assuming that (x(t), y(t)) ∈ R2 does not reach the origin during the interval [0, t], one can convert it
to polar coordinates as follows:

x(t) = r(t) cos θ(t), y(t) = r(t) sin θ(t).

The t-rotation number of (x(t), y(t)) over this interval is defined by

Rot((x(t), y(t)); [0, t]) =
1

2π
(θ(0) − θ(t)) =

1
2π

∫ t

0

y(t)x′(t) − x(t)y′(t)
x(t)2 + y(t)2 dt.
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Here, Rot((x(t), y(t)); [0, t]) refers to the total algebraic number of clockwise rotations made by the
trajectory of (x(t), y(t)) around the origin during the time interval [0, t].

Next, we consider the planar system  x′ = 1
2y,

−y′ = an(t)x.
(La)

In this system, the angular function θ(t) satisfies

−θ′(t) = an(t) cos2(θ(t)) +
1
2

sin2(θ(t)). (2.1)

Here, θ(t) depends solely on the initial time and the angular function θ(0) ∈ S1 = R/(2πZ). We
denote the t-rotation number of the solution (x, y) of (La) over the interval [0, t] as Rotan(t; v), where
v = (1, θ0) ∈ Γ0 = {ξ = (r, θ) : r = 1, θ ∈ R}, θ0 is the polar angle of z(0) in the polar coordinates.
When the interval [0, t] coincides with [0,T ], we use the notation Rotan(v) for simplicity.

Additionally, for a given n ∈ N, the function

an(t) cos2(θ(t)) +
1
2

sin2(θ(t))

is 2π-periodic in θ and T -periodic in t. Therefore, Eq (2.1) describes a differential equation on a torus.
Thus, the rotation number of (2.1)

ρ(an) = lim
t→+∞

θ0 − θ(t)
t

exists and is independent of θ0, as stated in Theorem 2.1 of Chapter 2 in Hale [17].
In the following discussion, we define

bn(t) = an(t) −Cp − 2D2
p − |γp(t)|, (2.2)

where Cp, Dp, and γp(t) are introduced in (H3). Using similar arguments, we denote by Rotbn(t; v) the
t-rotation number of the solution for the system x′ = 1

2y,
−y′ = bn(t)x,

(Lb)

over the interval [0, t]. When the interval is [0,T ], we use the notation Rotbn(v) for convenience.
We now establish the following relation between the rotation number ρ(an) and the t-rotation number
Rotbn(v).

Lemma 2.1. If ρ(an)→ +∞ as n→ +∞, then both Rotan(v)→ +∞ and Rotbn(v)→ +∞ as n→ +∞.

Proof. The system (La) is now written as Jz′ = ∇Ln(t, z) (following the notation in [6]), where

Ln(t, z) =
an(t)x2

2
+

y2

4
,

and J is defined as
(

0 −1
1 0

)
. Based on the definitions of ρ(an) and Rotan(v), we have

ρ(Ln) = ρ(an) and RotLn(T ; v) = Rotan(v),
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where the definitions of ρ(Ln) and RotLn(T ; v) can be found in [6]. Applying Lemma 2.2 from [6], it
follows that ρ(an) > K0 if and only if Rotan(v) > K0 for all v ∈ S1 and K0 ∈ Z

+. Thus, if ρ(an) → +∞
as n→ +∞, then Rotan(v)→ +∞ as n→ +∞.

Consider the system (Lb) in general polar coordinates

x(t) =
r(t) cos(φ(t))

n
, y(t) = r(t) sin(φ(t)). (2.3)

Then, we have

−φ′(t) =
n(x′y − xy′)

n2x2 + y2 =
n[(an(t) −Cp − 2D2

p − |γp(t)|)x2 + 1
2y2]

n2x2 + y2

≥
n(an(t)x2 + 1

2y2)
n2x2 + y2 −

(Cp + 2D2
p + |γp(t)|)(n2x2 + y2)

n(n2x2 + y2)

=
n(an(t)x2 + 1

2y2)
n2x2 + y2 −

Cp + 2D2
p + |γp(t)|

n
. (2.4)

Note that the generalized polar coordinate (2.3) essentially represents a form of elliptic coordinates.
Consequently, according to the definition Rotan(v), we obtain

Rotan(v) =
1

2π

∫ 0

T
φ̄′(t)dt =

1
2π

∫ T

0

n(an(t)x2 + 1
2y2)

n2x2 + y2 dt → +∞ (n→ +∞) (2.5)

where φ̄(t) denotes the argument function of (x, y) with respect to system (La) in the generalized polar
coordinates (2.3). Combining (2.4) with (2.5), we have

Rotbn(v) =
1

2π
[φ(0) − φ(T )]

≥
1

2π

∫ T

0

n(an(t)x2 + 1
2y2)

n2x2 + y2 dt −
(Cp + 2D2

p)T

2nπ
−

1
2nπ

∫ T

0
|γp(t)|dt,

which implies that
Rotbn(v)→ +∞ as n→ ∞.

We can express Eq (1.2) as the planar system{
x′ = y,
−y′ = f (t, x) + p(t, x, y).

(2.6)

Let z(t; z0) = (x(t; x0), y(t; y0)) denote the solution to (2.6), with z(0; z0) = z0. For brevity, we write
Rot f (t; z) = Rot(z(t); [0, t]). When the interval is [0,T ], we use the notation Rot f (z) for convenience.
We now examine the relationship between the t-rotation number of the solution to system (2.6) and
that of the linear system (Lb).

Lemma 2.2. Let f : R × R→ R be a continuous function, T-periodic in the first variable, such that

lim inf
|x|→+∞

f (t, x)
x
⩾ an(t) uniformly a.e. in t ∈ [0,T ],

for a certain n ∈ N. Then, for every ε > 0, there exists Rε > 0 such that for any solution of (2.6) with
|z(t)| ⩾ Rε for all t ∈ [0,T ], it holds that

Rot f (t; z) ⩾ Rotbn(t; v) − ε, for all t ∈ [0,T ], with v = (1, θ0). (2.7)
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Proof. Let ε > 0 be fixed. In Lemma 2.2 of [6], we define

L1(t, z) =
bn(t)

2
x2 +

y2

4
, L2(t, z) =

bn(t) − δ
2

x2 +
y2

4
and V(z) = x2 + y2,

where δ is a sufficiently small positive number. Then, it follows that

RotL1(t; v) − RotL2(t; v) ≤
ε

2
, ∀ t ∈ [0,T ], v ∈ Γ0.

Let Rotbn−δ(t; v) denote the t-rotation number of the solution to the system x′ = 1
2y,

−y′ = (bn(t) − δ)x.

From the definitions of Rotbn(t; v) and Rotbn−δ(t; v), we have

Rotbn(t; v) = RotL1(t; v)

and
Rotbn−δ(t; v) = RotL2(t; v)

for all t ∈ [0,T ] and v ∈ Γ0. Thus, it follows that

Rotbn(t; v) − Rotbn−δ(t; v) ≤
ε

2
, ∀ t ∈ [0,T ], v ∈ Γ0. (2.8)

Assume, for contradiction, that the assertion of (2.7) does not hold. This implies that for every
m ∈ N, there exists a solution zm(t) of (2.6) defined on [0,T ] with |zm(t)| ⩾ m for all t ∈ [0,T ] such
that, for some tm ∈ [0,T ],

Rot f (tm; zm) < Rotbn(tm; vm) − ε, (2.9)

where vm = (1, αm) and αm is the polar angle of zm(0) in the polar coordinates. Without loss of gener-
ality, assume tm → τ ∈ [0,T ] and vm → v̄ = (1, α) ∈ Γ0 as m→ ∞ with αm → α. Note that Rotbn(·; ·) is
continuous on [0,T ] × Γ0. Taking the upper limit as m→ ∞ on both sides of (2.9), we obtain

lim sup
m→∞

Rot f (tm; zm) ≤ Rotbn(τ; v̄) − ε. (2.10)

By (A′1) and the continuity of f , there exists l := lδ ∈ L1([0,T ],R+) such that

f (t, x)x ⩾ (an(t) − δ)x2 − l(t), ∀ x ∈ R and a.e. t ∈ [0,T ]. (2.11)

Consider that (rm(t), θm(t)) represents the polar coordinates of zm(t) = (xm(t), ym(t)) with rm(t) ⩾ m.
From (H3), (2.6), and (2.11), we have

−θ′m(t) =
ymx′m − xmy′m

x2
m + y2

m

=
y2

m + xm ( f (t, xm) + p (t, xm, ym))
x2

m + y2
m

⩾
y2

m + xm f (t, xm) − |p (t, xm, ym)| |xm|

x2
m + y2

m

⩾
y2

m + (an(t) − δ) x2
m − l(t) − γp(t) |xm| −Cpx2

m − Dp |xm| |ym|

x2
m + y2

m
,
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which holds for a.e. t∈ [0,T ]. Note that 2D2
px2

m − Dp |xm| |ym| +
1
2y2

m > 0, so

−θ′m(t) ⩾

(
an(t) −Cp − 2D2

p − δ
)

x2
m +

1
2y2

m − γp(t) |xm| − l(t)

x2
m + y2

m
,

which holds for a.e. t∈ [0,T ]. Further, we have γp(t)(x2
m − |xm| + 1) > 0, which implies that

−γp(t) |xm| > −γp(t)x2
m − γp(t), for a.e. t∈ [0,T ].

Therefore, we obtain

−θ′m(t) ⩾

(
an(t) −Cp − 2D2

p − γp(t) − δ
)

x2
m +

1
2y2

m − γp(t) − l(t)

x2
m + y2

m

⩾ (bn(t) − δ) cos2 (θm(t)) +
1
2

sin2 (θm(t)) −
γp(t) + l(t)

m
for xm ∈ R and a.e. t∈ [0,T ], where bn(t) is introduced in (2.2).

Based on a result concerning differential inequalities [18], we can conclude that

Rot f (tm; zm) =
θm(0) − θm(tm)

2π
=
αm − θm(tm)

2π
⩾
αm − ϑm(tm)

2π
, (2.12)

where ϑm(tm) is the solution of−θ
′(t) = (bn(t) − δ) cos2 (θ(t)) +

1
2

sin2 (θ(t)) −
γp(t) + l(t)

m
,

θ(0) = αm.

By applying the principle of continuous dependence on initial conditions, it can be shown that as
m→ ∞, the function ϑm(t) converges uniformly to θ̄(t) on the interval [0,T ], where θ̄(t) is the solution
to the differential equation −θ

′(t) = (bn(t) − δ) cos2 (θ(t)) +
1
2

sin2 (θ(t))

θ(0) = α.

In particular, the uniform convergence implies that ϑm(tm)→ θ̄(τ) (m→ ∞). Consider the expression

Rotbn−δ(τ; v̄) =
1

2π

∫ τ

0

(bn(t) − δ)x2 + 1
2y2

x2 + y2 dt

= −
1

2π

∫ τ

0
(θ̄(t))′dt =

θ̄(0) − θ̄(τ)
2π

.

Thus, from (2.12), it follows that

lim inf
m→∞

Rot f (tm; zm) ⩾ lim
m→∞

αm − ϑm(tm)
2π

=
α − θ̄(τ)

2π
= Rotbn−δ(τ; v̄),

which combined with (2.10) gives

Rotbn(τ; v̄) − Rotbn−δ(τ; v̄) ⩾ ε.

This result contradicts the inequality (2.8), thereby confirming the validity of (2.7).
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Based on Lemma 2.2, we can obtain the rapid rotational property of large amplitude solutions for
the superlinear equations in the sense of rotation number.

Lemma 2.3. Let (H1), (A′1), and (H3) be satisfied. Then, for any integer j, there exists a sufficiently
large radius R j such that every solution z(t) of (2.6) with |z(t)| ≥ R j for a.e. t ∈ [0,T ] satisfies the
condition Rot f (z) > j.

Proof. According to (A′1) and Lemma 2.1, for any integer j, there exists a sufficiently large integer N
such that

Rotbn(v) > j, for n > N.

We can select an appropriate ε > 0 such that

Rotbn(v) − ε > j, for n > N.

By Lemma 2.2, for this choice of ε > 0, there exists a sufficiently large R j such that, for every solution
z(t) to system (2.6) with |z(t)| ⩾ R j for a.e. t ∈ [0,T ], it holds that

Rot f (z) ⩾ Rotbn(v) − ε > j.

This completes the proof.

3. Spiral analysis for large-amplitude solutions

In this section, we primarily analyze the behavior of large-amplitude solutions to system (2.6). The
following lemma establishes that solutions of this system exhibit spiral behavior when the amplitude
is large. By utilizing these spiral properties, we can estimate the relationship between changes in
the polar radius of the solution and variations in the rotational angle. Additionally, this allows us to
determine an appropriate bound for adjusting our system. For simplicity, let (r(t), θ(t)) represent the
polar coordinates of z(t; z0), with (r(0), θ(0)) = (r0, θ0).

Lemma 3.1. Assume the conditions (H1), (A′1), and (H3) are satisfied. For any positive integer N0 and
sufficiently large r∗, there exist two strictly increasing functions ξ±N0

(r) : [r∗,+∞)→ R such that

ξ±N0
(r)→ +∞ ⇔ r → +∞.

If a solution z(t) of system (2.6) satisfies r0 ⩾ r∗, then either

ξ−N0
(r0) ≤ r(t) ≤ ξ+N0

(r0), for t ∈ [0,T ];

or there exists a time t̂N0 ∈ (0,T ) such that

θ(t̂N0) − θ(0) = −2N0π,

and

ξ−N0
(r0) ≤ r(t) ≤ ξ+N0

(r0), for t ∈ [0, t̂N0].

Electronic Research Archive Volume 33, Issue 1, 50–67.



58

Proof. We partition R2 into four regions as follows:

D1 = {(x, y)|x ⩾ 0, y > 0}; D2 = {(x, y)|x > 0, y ≤ 0};
D3 = {(x, y)|x ≤ 0, y < 0}; D4 = {(x, y)|x < 0, y ⩾ 0}.

Consider the function

S (x, y) =
x2

2
+

y2

2
. (3.1)

According to condition (A′1), for any fixed n ∈ N, there exist ε0 ≤ 1 and Mε0 such that

f (t, x) ⩾ (an(t) − ε0)x, for x > Mε0 and a.e. t ∈ [0,T ],

and
f (t, x) ⩽ (an(t) − ε0)x, for x < −Mε0 and a.e. t ∈ [0,T ].

Thus, we have

y f (t, x) ⩾ (an(t) − ε0)xy, for |x| > Mε0 and (x, y) ∈ D1 ∪D3. (3.2)

Define K̄ = max{| f (t, x)| : t ∈ [0,T ], |x| ≤ Mε0}. For sufficiently large r, if |x| ≤ Mε0 , then |y| is
sufficiently large and |y| ≤ y2.

Consider first the case where (x, y) ∈ D1 ∪D3. When |x| ≤ Mε0 , using (2.6) and (3.1), we obtain

dS (x, y)
dt

= xx′ + yy′ = xy − y( f (t, x) + p(t, x, y))

≤ xy + |y|(| f (t, x)| + |p(t, x, y)|)

≤ xy + |y|
(
K̄ + γp(t) +Cp|x| + Dp|y|

)
≤

(
1 +Cp

)
xy +

(
K̄ + γp(t) + Dp

)
y2

≤ 2(K̄ + γp(t) + Dp + 1 +Cp)S (x, y). (3.3)

For the case where |x| > Mε0 , by (2.6), (3.1), and (3.2), we have

dS (x, y)
dt

= xx′ + yy′ = xy − y f (t, x) − yp(t, x, y)

≤ xy − (an(t) − ε0)xy + |y||p(t, x, y)|

≤ (1 − an(t) + ε0) xy + |y|
(
γp(t) +Cp|x| + Dp|y|

)
. (3.4)

For sufficiently large r, if |x| > Mε0 , then either |y| ≤ Mε0 < x2 or |y| > Mε0 . If |y| < x2, then applying
(3.4), we obtain

dS (x, y)
dt

≤
(
2 + |an(t)| +Cp

)
xy + γp(t)x2 + Dpy2

≤ 2
(
γp(t) + Dp + 2 + |an(t)| +Cp

)
S (x, y). (3.5)
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If |y| > Mε0 , then |y| ≤ y2. By (3.4), we have

dS (x, y)
dt

≤
(
2 + |an(t)| +Cp

)
xy +

(
γp(t) + Dp

)
y2

≤ 2
(
γp(t) + Dp + 2 + |an(t)| +Cp

)
S (x, y). (3.6)

By combining (3.3), (3.5), and (3.6), we deduce the existence of a positive function c1(t) ∈ L1([0,T ])
such that

dS (x, y)
dt

≤ c1(t)S (x, y), (3.7)

where c1(t) = 2
(
γp(t) + Dp + 2 + |an(t)| + K̄ +Cp

)
.

Next, consider the case when (x, y) ∈ D2 ∪D4. Here, for |x| ≤ Mε0 , we obtain

dS (x, y)
dt

= xx′ + yy′ = xy − y( f (t, x) + p(t, x, y))

⩾ −
(
|xy| + |y|(| f (t, x)| + |p(t, x, y)|)

)
⩾ −

(
|xy| + |y|

(
K̄ + γp(t) +Cp|x| + Dp|y|

) )
.

For |x| > Mε0 , we have

dS (x, y)
dt

= xx′ + yy′ = xy − y( f (t, x) + p(t, x, y))

⩾ xy − (an(t) − ε0)xy − yp(t, x, y)

⩾ −
(
(2 + |an(t)|)|xy| + |y|(γp(t) +Cp|x| + Dp|y|)

)
.

By similar arguments as for (x, y) ∈ D1 ∪D3, we find that

dS (x, y)
dt

⩾ −c1(t)S (x, y).

Consider now the function

T (x, y) =
y2

2
+ F̃+(x) +

x2

2
,

where F̃+(x) =
∫ x

0
f̃+(s)ds and f̃+(x) = sgn x max0≤t≤T {| f (t, x)|}. As F̃+(x) → +∞ when |x| → +∞, it

follows that
T (x, y)→ +∞ ⇐⇒ x2 + y2 → +∞.

For sufficiently large r, if 0 < |y| < 1, then |x| is large enough, and |y| ≤ x2. If |y| ⩾ 1, then |y| ≤ y2.
For (x, y) ∈ D1 ∪D3, we can obtain

dT (x, y)
dt

= yy′ + f̃+(x)y + xx′

= f̃+(x)y − y( f (t, x) + p(t, x, y)) + xy

⩾ y( f̃+(x) − f (t, x)) − |y| | p(t, x, y)| − |xy|
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⩾ −|y|
(
γp(t) +Cp|x| + Dp|y|

)
− |xy|

⩾ −
(
γp(t)|y| + (Cp + 1)|xy| + Dpy2

)
. (3.8)

When 0 < |y| < 1, applying (3.8) gives us

dT (x, y)
dt

⩾ −

(
γp(t)x2 +

Cp + 1
2

(
x2 + y2

)
+ Dpy2

)
⩾ −2

(
γp(t) +Cp + 1 + Dp

)
T (x, y).

If |y| ⩾ 1, applying (3.8) leads to

dT (x, y))
dt

⩾ −

(
γp(t)y2 +

Cp + 1
2

(
x2 + y2

)
+ Dpy2

)
⩾ −2

(
γp(t) +Cp + 1 + Dp

)
T (x, y).

Thus, we find that there exists a positive function c2(t) ∈ L1([0,T ]) such that

dT (x, y)
dt

⩾ −c2(t)T (x, y),

where c2(t) = 2(γp(t) +Cp + 1 + Dp).
For (x, y) ∈ D2 ∪D4, we have

dT (x, y)
dt

= yy′ + f̃+(x)y + xx′

= f̃+(x)y − y( f (t, x) + p(t, x, y)) + xy

≤ y( f̃+(x) − f (t, x)) + |y||p(t, x, y)| + |xy|

≤ γp(t)|y| +
(
Cp + 1

)
|xy| + Dp|y|2.

By similar arguments as for (x, y) ∈ D1 ∪D3, we obtain

dT (x, y)
dt

⩽ c2(t)T (x, y). (3.9)

In [6, Lemma 4.1], with φ(x) = 0 and ∂H
∂y (t, x, y) = y, the functions are defined as follows:

V(x, y) =
{

S (x, y), for (x, y) ∈ D1 ∪D3,

T (x, y), for (x, y) ∈ D2 ∪D4,

and

U(x, y) =
{

T (x, y), for (x, y) ∈ D1 ∪D3,

S (x, y), for (x, y) ∈ D2 ∪D4.

By (3.7) and (3.9), we obtain

dV(x, y)
dt

⩽ c1(t)V(x, y), for (x, y) ∈ D1 ∪D3
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and
dV(x, y)

dt
⩽ c2(t)V(x, y), for (x, y) ∈ D2 ∪D4.

It is evident that V(x, y) : R×R→ R+ is piecewise continuously differentiable. Additionally, V(x, y)→
+∞ if and only if x2 + y2 → +∞, and V(x, φ(x)) is monotonic with respect to x for (x, y) ∈ Di, where
i = 1, 2, 3, 4. The function U(x, y) exhibits similar properties to V(x, y). According to Lemmas 4.1 and
3.3, along with the definitions of the upper and lower spiral functions ξ±(·) as described in [6], we can
conclude the existence of two strictly increasing functions ξ±N0

(r) for system (2.6). This concludes the
proof.

Remark 3.1. Although Lemmas 4.1 and 3.3 in [6] emphasize the characteristics of solutions in conser-
vative Hamiltonian systems, these findings are also relevant to non-conservative systems. The demon-
stration of Lemma 3.1 uses the results obtained for nonconservative systems.

4. Modified planar systems and the existence of periodic solutions

Next, we will use Theorem 2.1 from Wang et al. [4], which provides a fixed-point theorem with an-
gular descriptions, to prove Theorem 1.1. It is evident that solutions to system (2.6) may not be globally
defined, which implies that its corresponding Poincaré map might not be well-defined. Theorem 2.1
in [4] requires the mapping to be continuous, so we cannot directly apply it to (2.6).

To address this issue, we will modify system (2.6) by utilizing the spiral properties of large-
amplitude solutions established in Lemma 3.1. This modification guarantees the global existence of
solutions, allowing us to apply Theorem 2.1 from [4] to establish the existence of periodic solutions.
Furthermore, we will use the angular description results from Theorem 2.1 in [4] to demonstrate that
the obtained periodic solutions are in fact solutions to the original system (2.6). We modify system
(2.6) as follows: {

x′ = y,
−y′ = λ(r2)( f (t, x) + p(t, x, y)) + (1 − λ(r2))x,

(4.1)

where λ(r2) = λ(x2 + y2) ∈ C∞(R+,R) is a defined truncated function given as

λ(r2) =


1, r ≤ r1,

smooth connection, r1 < r < r2,

0, r ⩾ r2.

The values of r1 and r2 will be determined based on the spiral properties as outlined in Lemma 3.1;
for further details, refer to the proof of Theorem 1.1. Let z̃(t; z̃0) denote the solution to equation (4.1)
with the initial condition z̃(0; z̃0) = z̃0. The T -rotation number of z̃(t; z̃0) is denoted by Rot fλ(z̃). We use
(r̃(t), θ̃(t)) to represent the polar coordinates of z̃(t; z̃0). The following properties can be easily verified:

(i) The initial value problem for (4.1) has a unique solution.
(ii) Every solution z̃(t; z̃0) is defined for all t ∈ R. Moreover, if z̃0 , (0, 0), then z̃(t; z̃0) , (0, 0) for

every t ∈ R.

Next, consider the Poincaré map defined by

Φ : R2 → R2, z̃0 7→ z̃(T ; z̃0).
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Thus, the Poincaré map Φ associated with system (4.1) is well-defined and continuous.
Next, we will apply the fixed-point theorem with angular descriptions recently established in [4] to

prove Theorem 1.1 of this paper.

Proof of Theorem 1.1. We will divide the proof into four steps.

Step 1. Under condition (H2), if z0 ∈ ∂E, then the solution z(t; z0) to (2.6) exists on the interval
t ∈ [0,T ] and z(t; z0) , (0, 0) for all t ∈ [0,T ]. This demonstrates the so-called “elastic” property of
the solutions, which indicates that

r− ≤ |z(t)| ≤ r+, for t ∈ [0,T ] and z0 ∈ ∂E,

where r± are positive real numbers. Owing to the uniqueness of solutions for the corresponding Cauchy
problems, the continuous dependence of the solutions of (2.6) on the initial conditions is guaranteed.
As a result, Rot f (z) is a continuous function. Thus, there exists an integer m such that

Rot f (z) < m, for z0 ∈ ∂E,

which leads to
θ(T ) − θ(0) > −2mπ, for z0 ∈ ∂E. (4.2)

Step 2. For any integer j ⩾ m + 1, according to Lemma 2.3, there exists R j > r+ such that every
solution z(t) of (2.6) with |z(t)| ⩾ R j for a.e. t ∈ [0,T ] satisfies

Rot f (z) > j,

which leads to
θ(T ) − θ(0) < −2 jπ. (4.3)

Let us choose
r1 = ξ

+
j (R∞), R∞ ⩾ (ξ−j )−1(R j) and r2 > r1,

where ξ±j (·) are functions defined in Lemma 3.1. According to (4.1), if r ≤ r1, the system (4.1) is
equivalent to (2.6). Therefore, using (4.2), we can deduce that

θ̃(T ) − θ̃(0) > −2mπ, for z̃0 ∈ ∂E. (4.4)

Next, consider the solution of (4.1) starting from z̃0 ∈ Γ =: {(x, y) : r = R∞}. If R j ≤ |z̃(t)| ≤ r1 for
a.e. t ∈ [0,T ], then (4.1) is equivalent to (2.6). In this case, applying (4.3) yields

θ̃(T ) − θ̃(0) < −2 jπ < −2mπ, for z̃0 ∈ Γ. (4.5)

If there exists t1 ∈ (0,T ) such that |z̃(t1)| > r1, then there exists a time t′1 ∈ (0, t1) such that |z̃(t′1)| = r1

and |z̃(t)| < r1 for a.e. t ∈ [0, t′1). By Lemma 3.1, we have

θ̃(t′1) − θ̃(0) = θ(t′1) − θ(0) = −2 jπ. (4.6)

Alternatively, from (4.1), we observe that x′y = y2 > 0 when x = 0 and y , 0. Thus, a nonzero solution
of (4.1) performs clockwise rotations around the y-axis. If the solution transitions from the positive
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(negative) y-axis to the negative (positive) y-axis, the angular function θ̃(t) increases by −π. On the
other hand, if the trajectory oscillates within the left (right) half-plane, the angle function θ̃(t) increases
by less than π. Consequently,

θ̃(t) − θ̃(t′1) < π, for all t ∈ (t′1,T ]. (4.7)

Combining (4.7) with (4.6), we obtain

θ̃(T ) − θ̃(0) = θ̃(T ) − θ̃(t′1) + θ̃(t′1) − θ̃(0)

< π + (−2 jπ) < −2mπ, for z̃0 ∈ Γ.
(4.8)

Finally, if there exists a time t2 ∈ (0,T ) such that |z̃(t2)| < R j, the validity of (4.8) can be proven
using similar arguments as those presented above.

Step 3. By applying Theorem 2.1 in [4], we establish that there exists at least one fixed point z∗0 for
Φ. Consequently, system (4.1) has at least one T -periodic solution z̃(t) that starts from z∗0.

Step 4. We will further show that z̃(t) remains in the circle r = r1, which implies that z̃(t) is in fact a
T -periodic solution of system (2.6). If z∗0 ∈ E, the choice of r1 ensures that |z̃(t)| ≤ r1. If z∗0 ∈ I(Γ) \ E,
then by Theorem 2.1 in [4], we have

θ̃(T ) − θ̃(0) = −2kπ, for k ≤ m. (4.9)

Assume there exists t′0 ∈ (0,T ] such that |z̃(t′0)| > r1. Using an argument similar to that in (4.6), we can
find t′′0 ∈ (0, t′0] such that

θ̃(t′′0 ) − θ̃(0) = −2 jπ.

Furthermore, using an argument analogous to (4.8), we obtain

θ̃(T ) − θ̃(0) = θ̃(T ) − θ̃(t′′0 ) + θ̃(t′′0 ) − θ̃(0)
< π + (−2 jπ) < −2mπ,

which contradicts (4.9). Therefore, system (2.6) has at least one T -periodic solution, and the same
conclusion applies to Eq (1.2). This completes the proof.

To illustrate the applicability of Theorem 1.1, we will discuss the problem mentioned in the intro-
duction, which satisfies the superlinear condition only on a partial interval, thereby concretely demon-
strating the theorem’s utility.

Example 4.1. Consider the non-conservative superlinear equation

x′′ + f (t, x) +
1
8

x′ −
1

10
cos 2πt = 0, (4.10)

where f (t, x) is given by (1.3). We can demonstrate that (4.10) has at least one 1-periodic solution.

Proof. To demonstrate this result within the context of Theorem 1.1, we consider

p(t, x, x′) =
x′

8
−

1
10

cos 2πt.
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The conditions (H1) and (H3) can be easily verified, so we only need to verify (A′1) and (H2).
Let us first verify condition (A′1). From (1.3), we have

f (t, x)
x
⩾ −

1
8

cos 2πt, for t ∈ [0, 1].

Therefore, for any fixed n ∈ N, it holds that

lim
|x|→+∞

f (t, x)
x
⩾ an(t), for a.e. t ∈ [0, 1] uniformly,

where

an(t) =


n2, t ∈ (0, 1/2);

−
1
8

cos 2πt, t ∈ [0, 1] \(0, 1/2).

Next, we prove that ρ (an)→ +∞ as n→ +∞. We start by using generalized polar coordinates

x(t) =
r(t)
n

cosψ(t), y(t) =
√

2r(t) sinψ(t) (4.11)

and consider the following system  x′ = 1
2y,

−y′ = an(t)x,

which leads to

−ψ′(t) =

√
2n(x′y − xy′)

2(n2x2 + 1
2y2)

=

√
2n(an(t)x2 + 1

2y2)

2(n2x2 + 1
2y2)

.

Thus, −ψ′(t) =
√

2n/2 for t ∈ (0, 1/2), and

−ψ′(t) =

√
2n(−1

8 x2 cos 2πt + 1
2y2)

2(n2x2 + 1
2y2)

⩾ −
1
8

√
2nx2

2(n2x2 + 1
2y2)

⩾ −
1
8

√
2(n2x2 + 1

2y2)

2n(n2x2 + 1
2y2)

= −

√
2

16n
, (4.12)

for t ∈ [0, 1]\(0, 1/2). Note that the generalized polar coordinates in (4.11) effectively correspond to a
variant of elliptic coordinates. Consequently, using the definition of Rotan(v), we can deduce that

Rotan(v) = −
1

2π

∫ 1

0
ψ′(t)dt ⩾

1
2π

 √2
4

n −

√
2

16n

→ +∞ (n→ +∞).

Using a method similar to that in the proof of Lemma 2.1, it can be shown that ρ(an) → +∞ as
n→ +∞.

Next, we verify condition (H2). The Eq (4.10) can be rewritten as x′ = y,

−y′ = f (t, x) +
y
8
−

1
10

cos 2πt,
(4.13)
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If (x, y) , (0, 0) for t ∈ [0, 1], it can be represented in polar coordinates as

x = r cos θ, y = r sin θ.

For sufficiently small values of r ≤ 1, the following result can be obtained using (4.13) and (1.3):

|r′| =
∣∣∣∣∣ xx′ + yy′

r

∣∣∣∣∣ ≤ 9
8 |xy| + 1

8y2 + 1
8

∣∣∣x3y
∣∣∣ + 1

10 |y|

r

≤
( 1

4 + 1)|xy| + 1
8r2 + 1

10r

r
≤

3
4

r +
1

10
.

This implies that

0 < r(0)e−
3
4 +

2
15

(
e−

3
4 − 1

)
≤ r(t) ≤ r(0)e

3
4 +

2
15

(
e

3
4 − 1

)
< 1

for t ∈ [0, 1], provided that 2
15 (e

3
4 − 1) < r(0) ≤ 2

15e
3
4 . Therefore, condition (H2) is satisfied with the

nonempty open bounded set

E =
{

(x, y) :
√

x2 + y2 <
2

15
e

3
4

}
.

According to Theorem 1.1, Eq (4.10) has at least one 1-periodic solution.

Remark 4.1. Assumption (A1) implies that (A′1) is satisfied. Indeed, from (A1), for any fixed n ∈ N, it
holds that

lim
|x|→+∞

f (t, x)
x
⩾ an(t), for a.e.t ∈ [0,T ] uniformly,

where an(t) = n2 for t ∈ [0,T ]. Using a method similar to that in Example 4.1, we can show that
ρ (an)→ +∞ as n→ +∞.

By applying Theorem 1.1 and Remark 4.1, we can derive the following corollaries, which provide
further insight into the implications of the theorem. Notably, Corollary 4.1 is Theorem 1.1 in [4].
Therefore, our Theorem 1.1 extends the corresponding result from [4].

Corollary 4.1. Suppose that (1.2) satisfies (H1), (A1), (H2), and (H3). Then Eq (1.2) has at least one
T-periodic solution.
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