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Abstract: The implementation of ecological pest-management strategies is an important trend in
the global agricultural development, which makes integrated pest management become an important
research field. In this study, to achieve a scientific and reasonable pest-management objective, three
aspects of work were carried out. 1) Modeling and analysis: a pest-natural enemy Gomportz-
type model with a variable searching rate was put forward, and two pest-management models were
formulated. The dynamic characteristics of the continuous model were investigated, and the results
indicated that the search speed of natural enemies had an effect on the coexistence equilibrium. 2)
Control effect: the sliding mode dynamics of the Filippov system including the existence of pseudo-
equilibrium was analyzed to illustrate the effect of the non-smooth control strategy on the system. A
Poincaré map was constructed for the system with a threshold control, and the complex dynamics
induced by the threshold control was investigated. 3) Verifications: computer simulations were
presented step by step to illustrate and verify the correctness of the theoretical results. A comprehensive
study of predation relationships as well as the effects of different management strategies on the system
can serve as a valuable reference for advancing sustainable agricultural practices and pest control.
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1. Background and motivation

One of the most significant trends in global agricultural development is the ecological management
of pests. From the perspective of ecosystem integrity, reducing and controlling pests through
biological and ecological control are of great significance for the construction of ecological
civilization. Biological and ecological control can reduce management cost, maintain ecological
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stability, and avoid environmental pollution and damage to biodiversity. As a large agricultural
country, China places a premium on green prevention and control within its agricultural sector and
proposed the National Strategic Plan for Quality Agriculture (2018–2022), which proposes to
implement green prevention and control actions instead of chemical control and achieve a coverage
rate of more than 50% for green prevention and control of major crop pests. The Crop Pests
Regulations on the Prevention and Control of Crop Pests prioritizes the endorsement and support of
green prevention and control technologies such as ecological management, fosters the widespread
application of information technology and biotechnology, and propels the advancement of intelligent,
specialized, and green prevention and control efforts [1]. Therefore, the simulation of pest dynamic
behavior and the research of control strategies are helpful for more scientific and reasonable pest
management.

In a natural ecosystem, the predator-prey relationship is one of the most important relationships,
and has become a main topic in ecological research and widely studied by scholars in recent years.
Depending on the problem under consideration and the biological background, related research can be
divided into two forms: ordinary differential [2–5] and partial differential [6–11]. The earliest work
on the mathematical modeling of predation relationships dates back to the twentieth century, named
as the Lotka-Volterra model [12, 13]. Subsequently, scholars have extended the Lotka-Volterra model
in different directions such as introducing different types of growth functions [14–16] and different
forms of functional response [17–20]. The Gompertz model [14] is one of the most frequently used
sigmoid models fitted to growth data and other. Scholars have fitted the Gompertz model to everything
from plant growth, bird growth, fish growth, and growth of other animals [21–23]. Compared with the
logistic model, it is more suitable for pest or disease curve fitting with S-shaped curve asymmetry, and
fast development at first and slow development later. In addition, the Holling-II functional response
function is the most commonly employed one, in which the searching rate is considered as a constant.
Nevertheless, in the real world, the density of the prey and the predator’s searching environment can
affect the predator’s searching speed. Consequently, Hassell et al. [24] proposed a saturated searching
rate. Guo et al. [25] introduced a fishery model with the Smith growth rate and the Holling-II functional
response with a variable searching rate. In this work, a pest-natural enemy model with the Gomportz
growth rate and a variable searching rate is investigated.

To prevent the spread of pests, effective control action should be implemented before the pests
cause a certain amount of damage to the environment and crops. One way is to slow down the
spreading speed of pests by setting a warning threshold, and when the density of pests exceeds this
threshold level, an integrated control measure is imposed on the system. This kind of control system
can be modeled by a Filippov system, which has been recognized by scholars and widely used in the
study of concrete models with one threshold [26–31], a ratio-dependent threshold [32], or two
thresholds [33]. In this study, we will also focus on Filippov predation models with dual thresholds.
In addition, considering the instantaneous behavior of the control, an integrated pest-management
strategy with threshold control is adopted, which is an instantaneous intervention imposed on the
system and always taken as a practical approach for pest management. In recent years, there has been
a lot of research and application of impulsive differential equations (IDEs) in population dynamics to
model the instantaneous intervention activities. There are mainly six types of models involved in the
research: periodic [34–37], prey-dependent [38–43], predator-dependent [44], ratio-dependent [45],
nonlinear prey-dependent [46], and combined prey-predator dependent [47–51]. In the context of
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integrated pest management, setting a threshold for pest population density to control its spread is
crucial. Therefore, in this study, we introduce a pest economic threshold: when the pest population
density exceeds this threshold, we will intervene manually, which includes not only spraying
pesticides but also releasing natural enemies.

The article is organized in the following way: In Section 2, an integrated pest-management model
with a variable searching rate based on double-threshold control is proposed. In Section 3, a
dynamical analysis of the continuous system is performed, including the positivity and boundedness
of the solutions, the existence and local stability of equilibrium points, and the dynamic behavior of
the Filippov pest-management model with double thresholds. In Section 4, the complex dynamic
behavior of the system induced by the economic threshold feedback control is focused on. In Section
5, numerical simulations are carried out to illustrate the main results of the above two sections step by
step and to illustrate the practical implications. Finally, a summary of the research work is presented,
and future research directions are discussed.

2. Model formulation and preliminaries

2.1. Pest control model

A pest-natural enemy Gomportz model with a variable searching rate and Holling-II functional
response is considered: 

dx
dt
= rx(ln K − ln x) − b(x)

xy
1 + hx

,

dy
dt
= b(x)

exy
1 + hx

− dy,
(2.1)

where x (y) represents the pest’s (natural enemies) density, respectively; r represents the pest’s intrinsic
growth rate; K represents the pest’s environmental carrying capacity; b(x) = bx/(x + g) represents the
variable searching rate [24, 25] with maximum searching rate b and saturated constant g; e represents
the conversion efficiency; and d represents the predator’s natural mortality. All parameters are positive,
and b, e and d are less than one. In addition, it requires that eb− dh > 0, i.e., the natural enemy species
can survive when pests are abundant.

To prevent the rapid spread of pests, two control methods are adapted: one is the continuous control
with two thresholds, that is, when the pest density is below the pest warning threshold xET , no control
measures need to be taken, when the pest and natural enemy densities satisfy x > xET and y < yET , the
control action by spraying pesticides and releasing a part (q1) of the natural enemies is taken, which
causes the death of pests (p1) and natural enemies (q2), when their densities satisfy x > xET , y > yET ,
only spraying pesticides is adapted. Based on the above control strategy, the impulsive control system
can be formulated as follows:


dx
dt
= rx(ln K − ln x) −

bx2y
(1 + hx)(x + g)

− δ1(x, y)x,

dy
dt
=

ebx2y
(1 + hx)(x + g)

− dy + δ2(x, y)y,
(2.2)
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where

(δ1(x, y), δ2(x, y)) =


(0, 0), x < xET ,

(p1, q1 − q2), x > xET , y < yET ,

(p1,−q2), x > xET , y > yET .

(2.3)

Another one is an intermittent control with an economic threshold, that is, when the pest’s density
is below an economic threshold, no control action is implemented. Once the pest’s density reaches the
economic threshold, the control action by spraying pesticides and releasing a nonlinear volume τ

1+ly
of natural enemies is taken, which causes the death of pests (p1) and natural enemies (q2), where τ
and l > 0 are the formal parameters of the maximum volume of predators, respectively. Based on this
control strategy, we can formulate the impulsive control system as follows:

dx
dt
= rx(ln K − ln x) −

bx2y
(1 + hx)(x + g)

dy
dt
=

ebx2y
(1 + hx)(x + g)

− dy

 x < xET ,

x(t+) = (1 − p1)x(t)

y(t+) = (1 − q2)y(t) +
τ

1 + ly(t)

 x = xET .

(2.4)

The aim of this study focuses on analyzing the effects of different control measures on the dynamics
of Models (2.2) and (2.4), respectively.

2.2. Basic knowledge

2.2.1. Filippov system

Consider a piecewise-continuous system
dx
dt
dy
dt

 =
{

F1(x, y) if (x, y) ∈ S1,

F2(x, y) if (x, y) ∈ S2,
(2.5)

where
S1 = {(x, y) ∈ R+ : H(x, y) > 0} ,S2 = {(x, y) ∈ R+ : H(x, y) < 0}

and discontinuous demarcation is

Σ =
{
(x, y) ∈ R+ : H(x, y) = 0

}
.

Let FiH = ⟨∇H,Fi⟩, where ⟨·, ·⟩ is the standard scalar product. Then Fm
i H =

〈
∇

(
Fm−1

i H
)
,Fi

〉
.

Thus the discontinuous demarcation Σ can be distinguished into three regions: 1) sliding region: Σs =

{(x, y) ∈ Σ : F1H < 0 and F2H > 0}; 2) crossing region: Σc = {(x, y) ∈ Σ : F1H · F2H > 0}; 3) escaping
region: Σe = {(x, y) ∈ Σ : F1H > 0 and F2H < 0}.

The dynamics of system (2.5) along Σs is determined by
dx
dt
dy
dt

 = Fs(x, y)(x, y) ∈ Σs
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where Fs = λF1 + (1 − λ)F2 with λ = F2H
F2H−F1H ∈ (0.1).

Definition 1 ( [24]). For system (2.5), E∗ is a real equilibrium if ∃i ∈ {1, 2} so that Fi (E∗) = 0,
E∗ ∈ S i; E∗ is a virtual equilibrium if ∃i, j ∈ {1, 2}, i , j, so that Fi (E∗) = 0, E∗ ∈ S j; and E∗ is a
pseudo-equilibrium if Fs (E∗) = λF1 (E∗) + (1 − λ)F2 (E∗) = 0,H (E∗) = 0, and λ = F2H

F2H−F1H ∈ (0, 1).

2.3. Impulsive semi-continuous system

For the given planar model
dx
dt
= χ1(x, y),

dy
dt
= χ2(x, y) ω(x, y) , 0,

∆x = I1(x, y),∆y = I2(x, y) ω(x, y) = 0,
(2.6)

we have:

Definition 2 (Order-k periodic solution [50, 51]). The solution z̃(t) = (x̃(t), ỹ(t)) is called periodic if
there exists n(⩾ 1) satisfying z̃n = z̃0. Furthermore, z̃ is an order-k T-periodic solution with k ≜
min{ j|1 ≤ j ≤ n, z̃ j = z̃0}.

Lemma 1 (Stability criterion [50, 51]). The order-k T-periodic solution z(t) = (ξ(t), η(t))T is orbitally
asymptotically stable if |µq| < 1, where

µk =

k∏
j=1

∆ j exp
∫ T

0

[
∂χ1

∂x
+
∂χ2

∂y

]
(ξ(t),η(t))

dt
 ,

with

∆ j =

χ+1

(
∂I2

∂y
∂ω

∂x
−
∂I2

∂x
∂ω

∂y
+
∂ω

∂x

)
+ χ+2

(
∂I1

∂x
∂ω

∂y
−
∂I1

∂y
∂ω

∂x
+
∂ω

∂y

)
χ1
∂ω

∂x
+ χ2

∂ω

∂y

,

χ+1 = χ1(ξ(θ+j ), η(θ+j )), χ+2 = χ2(ξ(θ+j ), η(θ+j )), and χ1, χ2, ∂I1
∂x , ∂I1

∂y , ∂I2
∂x , ∂I2

∂y , ∂ω
∂x , ∂ω

∂y are calculated at
(ξ(θ j), η(θ j)).

3. Dynamic properties of the Filippov Model (2.1)

For convenience, denote

f1(x, y) ≜ r(ln K − ln x) −
bxy

(1 + hx)(x + g)
,

f2(x) ≜
ebx2

(1 + hx)(x + g)
− d, χ1(x, y) = x f1(x, y), χ2(x, y) = y f2(x).

Since

x(t) = x(0) exp
(∫ t

0
f1(x, y)ds

)
≥ 0, y(t) = y(0) exp

(∫ t

0
f2(x)ds

)
≥ 0,

then all solutions (x(t), y(t)) of Model (2.1) with x(0) > 0 and y(0) > 0 are positive in the region
D = {(x(t), y(t))|0 < x ≤ K, y ≥ 0}.

Electronic Research Archive Volume 33, Issue 1, 26–49.



31

Theorem 1. For Model (2.1), the solutions are ultimately bounded and uniform in the region D1.

Proof. Define ι(x(t), y(t)) ≜ x(t) + y(t). Then

dι
dt
=

dx
dt
+

dy
dt
= rx(ln K − ln x) −

(1 − e)bx2y
(1 + hx)(x + g)

− dy.

Take 0 < θ ≤ min {r, d}, and there is

dι
dt
+ θι ≤ rx(ln K − ln x) + θx ≜ σ(x).

Obviously, σ′(x) = r(ln K − r ln x − 1) − θ. If 0 < x < Ke
θ
r−1, then σ′(x) > 0. If x > Ke

θ
r−1, then

σ′(x) < 0. Then σ(x) has a maximum σ∗. Thus d
dt (ι −

σ∗

θ
) ≤ −θ(ι − σ∗

θ
), and then

0 ≤ ι (x(t), y(t)) ≤
(
1 − e−θt

) σ∗
θ
+ ι (x(0), y(0)) e−θt.

For t → ∞, there is 0 ≤ ι (x(t), y(t)) ≤ σ∗

θ
. Therefore, the solutions of Model (2.1) are uniformly

bounded in the region

D1 =

{
(x, y) ∈ D : x(t) + y(t) ≤

σ∗

θ

}
⊂ D.

For Model (2.1), the boundary equilibrium EK(K, 0) always exists. Define

b̄(d; p1) = d(Ke−
p1
r + g)(1 + hKe−

p1
r )/(eK2e−

2p1
r ),

∆(d) = d2(1 + gh)2 + 4dg(eb − dh),U(x) = (x + g)(1 + hx) + (g − hx2)(ln K − ln x).

Theorem 2. For Model (2.1), if b < b̄(d; 0), then EB(K, 0) is locally asymptotically stable. If b >

b̄(d; 0), there exists a coexistence equilibrium, denoted as E∗1 =
(
x∗1 , y∗1

)
, which is locally asymptotically

stable if U(x∗1) > 0, where

x∗1 =
d(1 + gh) +

√
∆(d)

2(eb − dh)
, y∗1 = r(ln K − ln x∗1)

(x∗1 + g)(1 + hx∗1)
bx∗1

.

Proof. For Model (2.1), we have

J =


r(ln K − ln x) − r −

bxy(x + hgx + 2g)
[(x + g)(1 + hx)]2 −

bx2

(x + g)(1 + hx)
ebxy(x + hgx + 2g)
[(x + g)(1 + hx)]2

ebx2

(x + g)(1 + hx)
− d

 .
1) For EK(K, 0), we have

J|(K,0) =

−r − bK2

(K+g)(1+hK)

0 ebK2

(K+g)(1+hK) − d

 .
Then λ1 = −r < 0 and λ2 =

ebK2

(K+g)(1+hx) − d. Therefore, EB(K, 0) is locally asymptotically stable if
b < b(d; 0).
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2) Since

f1x = −
r
x
−

by(g − hx2)
[(x + g)(1 + hx)]2 , f1y = −

bx
(x + g)(1 + hx)

, f2x =
ebx(x + hgx + 2g)
[(x + g)(1 + hx)]2 ,

then for E∗1, we have
λ1λ2 = −x∗1y∗1 f1y f2x > 0, λ1 + λ2 = x∗1 f1x.

If U(x∗1) > 0 holds, then λ1λ2 > 0, λ1 + λ2 < 0, i.e., E∗1 is locally asymptotically stable.

3.1. Complex dynamics of Model (2.2)

Let

F1(x, y) =
(
rx(ln K − ln x) −

bx2y
(1 + hx)(x + g)

,
ebx2y

(1 + hx)(x + g)
− dy

)T

,

F2(x, y) =
(
rx(ln K − ln x) −

bx2y
(1 + hx)(x + g)

− p1x,
ebx2y

(1 + hx)(x + g)
− dy + (q1 − q2)y

)T

,

F3(x, y) =
(
rx(ln K − ln x) −

bx2y
(1 + hx)(x + g)

− p1x,
ebx2y

(1 + hx)(x + g)
− dy − q2y

)T

.

Then systems (2.2) and (2.3) can be described as
dx
dt
dy
dt

 = Fi(x, y), (x, y) ∈ Gi, i = 1, 2, 3, (3.1)

where
G1 =

{
(x, y) ∈ R2

+ : x < xET

}
,

G2 =
{
(x, y) ∈ R2

+ : x > xET , y < yET

}
,G3 =

{
(x, y) ∈ R2

+ : x > xET , y > yET

}
.

The switching boundaries are, respectively,

Σ1 =
{
(x, y) ∈ R2

+ : x = xET , y < yET

}
,

Σ2 =
{
(x, y) ∈ R2

+ : x = xET , y > yET

}
,Σ3 =

{
(x, y) ∈ R2

+ : x > xET , y = yET

}
.

Let n1 = (1, 0) and n2 = (0, 1) be the normal vector for Σ1 and Σ3. If ∃Σi j ⊂ Σi such that the
trajectory of Fi(x, y) approaches or moves away from Σi (i ∈ {1, 2, 3}) on both sides, then a sliding
domain exists, and the dynamics on Σi can be determined by means of the Filippov convex method.

3.1.1. Dynamic behavior of the sub-models

The dynamic behavior of the model in G1 can be referred to Section 3.2. The model in G2 is
described as follows: 

dx
dt
= rx(ln K − ln x) −

bx2y
(1 + hx)(x + g)

− p1x,

dy
dt
=

ebx2y
(1 + hx)(x + g)

− dy + (q1 − q2)y.
(3.2)
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Theorem 3. Model (3.2) always has an equilibrium EB(Ke−
p1
r , 0). If q1 < q2 + d and b < b(d − q1 +

q2; p1), then EB(Ke−
p1
r , 0) is locally asymptotically stable. If q1 < q2 + d and b > b̄(d + q2 − q1, p1),

Model (3.2) has a coexistence equilibrium, denoted as E∗2 =
(
x∗2 , y∗2

)
, which is locally asymptotically

stable if U(x∗2) > 0, where

x∗2 =
(d − q1 + q2)(1 + gh) +

√
∆(d − q1 + q2)

2[eb + h(q1 − q2 − d)]
, y∗2 = [r(ln K − ln x∗2) − p1]

(x∗2 + g)(1 + hx∗2)
bx∗2

.

Similarly, the model in G3 is described as follows:
dx
dt
= rx(ln K − ln x) −

bx2y
(1 + hx)(x + g)

− p1x,

dy
dt
=

ebx2y
(1 + hx)(x + g)

− dy − q2y.
(3.3)

Theorem 4. Model (3.3) always has an equilibrium EB(Ke−
p1
r , 0). If b < b(d + q2; p1), then EB is

locally asymptotically stable. If b > b(d + q2; p1), Model (3.3) has a coexistence equilibrium, denoted
as E∗3 = (x∗3 , y∗3 ), which is locally asymptotically stable if U(x∗3) > 0, where

x∗3 =
(d + q2)(1 + gh) +

√
∆(d − q1 + q2)

2[eb − h(d + q2)]
, y∗3 = [r(ln K − ln x∗3) − p1]

(x∗3 + g)(1 + hx∗3)
bx∗3

.

3.1.2. Dynamic behavior of Model (2.2)

It is assumed that

(H1) p1 < r;

(H2)
d(1 + gh) +

√
∆(d)

2(eb − dh)
< K;

(H3) q1 − q2 − d < 0,
(d − q1 + q2)(1 + gh) +

√
∆(d − q1 + q2)

2[eb + h(q1 − q2 − d)]
< Ke−

p1
r ;

(H4)
(d + q2)(1 + gh) +

√
∆(d + q2)

2[eb − h(d + q2)]
< Ke−

p1
r .

For Model (2.2), we have x∗1 < x∗2 < x∗3 when q1 < q2 and x∗2 < x∗1 < x∗3 when q2 < q1 < q2 + d.
Define

yET1 = [r(ln K − ln xET ) − p1]
(xET + g)(1 + hxET )

bxET
,

yET2 = r(ln K − ln xET )
(xET + g)(1 + hxET )

bxET
,

where yET2 > 0 and yET1 < yET2.
First, we will discuss the sliding mode domain on Σ1 and the corresponding dynamics. Since

< F1,n1 >|(x,y)∈Σ1 = xET

[
r(ln K − ln xET ) −

bxET y
(1 + hxET )(xET + g)

]
,

< F2,n1 >|(x,y)∈Σ1 = xET

[
r(ln K − ln xET ) −

bxET y
(1 + hxET )(xET + g)

− p1

]
,

(3.4)
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then the sliding mode domain on Σ1 does not exist if yET < yET1. When yET > yET1, we have

Σ11 = { (x, y) ∈ Σ1|max{0, yET1} < y < min{yET2, yET }} . (3.5)

Next, the Filippov convex method is used, i.e.,

dX
dt
= λF1 + (1 − λ)F2, (x, y) ∈ Σ11, (3.6)

where
λ =

< F2,n1 >

< F2,n1 > − < F1,n1 >
,

and the sliding mode dynamics of Eq (3.1) along Σ11 is determined by the following system:
dx
dt
= 0,

dy
dt
=

[
ebxET

2

(1 + hxET )(xET + g)
− d

]
y +

q1 − q2

p1

[
r(ln K − ln xET ) −

bxET y
(1 + hxET )(xET + g)

]
y.

(3.7)

Let ς1 = ebxET
2 + (1 + hxET )(xET + g)

[
r(q1−q2)

p1
(ln K − ln xET ) − d

]
. Then a positive equilibrium

Ea1(xET , ya1) exists, where ya1 =
p1ς1

bxET (q1 − q2)
> 0. Therefore

ya1 − yET2 =
p1

bxET (q1 − q2)
[ebxET

2 − d(1 + hxET )(xET + g)].

If x∗1 < xET , then ya1 > yET2, i.e., Ea1 is not located in Σ11, and then Ea1 is not a pseudo-equilibrium. If
x∗1 > xET , then ya1 < yET2.

Similarly, we have

ya1 − yET1 =
p1

bxET (q1 − q2)
[ebxET

2 + (q1 − q2 − d)(1 + hxET )(xET + g)].

If x∗2 > xET , then ya1 < yET1, i.e., Ea1 is not located in Σ11, and then Ea1 is not a pseudo-equilibrium.
If x∗2 < xET , then ya1 > yET1. Therefore, yET1 < ya1 < yET2. When ya1 < yET , Ea1 is the pseudo-
equilibrium.

Second, we will discuss the sliding mode domain on Σ2 and the dynamic characteristics on the
sliding mode. Since

< F1,n1 >|(x,y)∈Σ2 = xET

[
r(ln K − ln xET ) −

bxET y
(1 + hxET )(xET + g)

]
,

< F3,n1 >|(x,y)∈Σ2 = xET

[
r(ln K − ln xET ) −

bxET y
(1 + hxET )(xET + g)

− p1

]
,

(3.8)

then the sliding mode domain on Σ2 does not exist if yET > yET2; When yET < yET2, we have

Σ22 = { (x, y) ∈ Σ2|max{yET1, yET } < y < yET2} . (3.9)

Therefore, when yET > yET2, there is no sliding mode domain on Σ2. When yET < yET2, the sliding
mode domain of the system (3.1) on Σ2 can be expressed as Eq (3.9).
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According to the Filippov convex method, we have

dX
dt
= λF1 + (1 − λ)F3, (x, y) ∈ Σ22, (3.10)

where
λ =

< F3,n1 >

< F3,n1 > − < F1,n1 >
,

and the sliding mode dynamics of equation (3.1) along Σ22 is determined by the following system:
dx
dt
= 0,

dy
dt
=

[
ebxET

2

(1 + hxET )(xET + g)
− d

]
y −

q2

p1

[
r(ln K − ln xET ) −

bxET y
(1 + hxET )(xET + g)

]
y.

(3.11)

Let ς2 = (1+hxET )(xET +g)
[

rq2
p1

(ln K − ln xET ) + d
]
− ebxET

2. Then the system (3.11) has a positive
equilibrium Ea2(xET , ya2), where ya2 =

p1ς2
q2bxET

> 0. Obviously,

ya2 − yET2 = −
p1

q2bxET
[ebxET

2 − d(1 + hxET )(xET + g)].

If x∗1 > xET , then ya2 > yET2, i.e., Ea2 is not located in Σ22. If x∗1 < xET , then ya2 < yET2. Similarly, we
have

ya2 − yET1 = −
p1

q2bxET
[ebxET

2 − (d + q2)(1 + hxET )(xET + g)].

If x∗3 < xET , then ya2 < yET1, i.e, Ea2 is not located in Σ22. If x∗3 > xET , then ya2 > yET1. Therefore
yET1 < ya2 < yET2. If yET1 < yET < ya2 or yET < yET1, then Ea2 is located in Σ22 and is a pseudo-
equilibrium.

Finally, we will discuss the sliding mode domain on Σ3 and the dynamic characteristics of the sliding
mode. We have

< F2,n2 >|(x,y)∈Σ3 = yET

[
ebx2

(1 + hx)(x + g)
− d + q1 − q2

]
,

< F3,n2 >|(x,y)∈Σ3 = yET

[
ebx2

(1 + hx)(x + g)
− d − q2

]
.

(3.12)

According to Eq (3.12), < F2,n2 >|(x,y)∈Σ3 > < F3,n2 >|(x,y)∈Σ3 . If x∗3 < xET , then the system (3.1)
does not have a sliding mode domain on Σ3. If x∗2 < xET < x∗3, it is found through Eq (3.12) that the
system (3.1) can be expressed in the sliding mode domain on Σ3 as

Σ33 =
{
(x, y) ∈ Σ3| xET < x < x∗3

}
. (3.13)

According to the Filippov convex method, we have

dX
dt
= λF2 + (1 − λ)F3, (x, y) ∈ Σ33, (3.14)

where
λ =

< F3,n2 >

< F3,n2 > − < F2,n2 >
.
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The sliding mode dynamics of Eq (3.1) along Σ11 is determined by the following system:
dx
dt
= rx(ln K − ln x) −

bx2yET

(1 + hx)(x + g)
− p1x,

dy
dt
= 0.

(3.15)

Then
[r(ln K − ln x) − p1](1 + hx)(x + g) − bxyET = 0. (3.16)

If the root x = xb > 0 of Eq (3.16) satisfies Eq (3.13), then Eb(xb, yET ) of the system (3.15) is a
pseudo-equilibrium, and if it does not satisfy Eq (3.13), then Eb is not a pseudo-equilibrium.

4. Dynamic analysis of the impulse pest-management model

For Model (2.4), let

y = ŷ(x) ≜
r(ln(K) − ln(x))(1 + hx)(x + g)

bx
.

The curve y = ŷ(x) intersects with x = xET and x = (1− p1)xET at P(xET , yP) (yP = ŷ(xET )) and R0((1−
p1)xET , yR0). The trajectory passing through P is denoted by γ1, and it goes backward and intersects y =
ŷ(x) at H(xH, yH)(yH = ŷ(xH)). If xH < (1−p1)xET , then denote Q1((1−p1)xET , yQ1),Q2((1−p1)xET , yQ2)
as the intersection points between γ1 and x = (1−p1)xET with yQ1 < yQ2 . The trajectory passing through
R0 is denoted by γ2. If γ2 ∩ {x = xET } , ∅, then denote R1(xET , yR1) as the intersection point between
γ2 and x = xET . The curve γ2 defines a function y = y(x, yR0) on the interval [(1 − p1)xET , xET ] with

dy
dx
=

ebx2y
(1+hx)(x+g) − dy

rx(ln K − ln x) − bx2y
(1+hx)(x+g)

≜ φ(x, y), y((1 − p1)xET , yR0) = yR0 ,

which takes the form

y = y(x, yR0) = yR0 +

∫ x

(1−p1)xET

φ(u, y(u, yR0))du.

4.1. Accurate domains ofM and N

For Model (2.4), we haveM = {(x, y) | x = xET , y > 0}. The trajectory of the system (2.4) with
x0 < xET can reach M1 = {(x, y)|x = xET , 0 ≤ y ≤ yP} ⊂ M, which is called the effective impulse
set, denoted by Me f f . The corresponding effective phase set is denoted by Ne f f . Moreover, define
M2 =

{
(x, y) | x = xET , 0 ≤ y ≤ yR1

}
⊂ M1.

Since ∆y = −q2y + τ
1+ly , then define

ρ(y) ≜ (1 − q2)y +
τ

1 + ly
.

Obviously, the function ρ(y) reaches a minimum at y =
⌢

y, where
⌢

y ≜
√
τl(1−q2)−(1−q2)

l(1−q2) . Denote R(xET ,
⌢

y) ∈

M, and its phase point is R+
(
(1 − p1)xET , ρ(

⌢

y)
)
.
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Define
x1

ET ≜ max{ xET | y(xET ,R0)}, x2
ET ≜ max{ xET | y(xET ,Q1) ≥ yQ2/2}.

Denote

τ1 ≜
1 − q2

l
, τ2 ≜

(1 − q2)(1 + lyP)2

l
, τ3 ≜

(1 − q2)(1 + lyR1)
2

l
.

The exact domains ofM and N can be determined by sign(ρ′(y)) and sign(
⌢

y), which will be discussed
in the following two situations:

Case I: x1
ET < xET ≤ x2

ET .

For this situation,Me f f =M1. To determineNe f f , we are required to judge the magnitude between
⌢

y and yP. Denote Λ = [0, yQ1]
⋃

[yQ2 ,+∞).
i) τ ≥ τ1, then

⌢

y ≤ 0. For ∀y ∈ [0, yP], ρ′ ≥ 0 holds, and then τ ≤ ρ(y) ≤ ρ(yP) for y ∈ [0, yP].
Denote Λ11 = [τ, ρ(yP)], Λ1 = Λ

⋂
Λ11, and Ne f f = N1 = { (x+, y+)| x+ = (1 − p1)xET , y+ ∈ Λ1}.

ii) τ1 < τ < τ2, then 0 <
⌢

y < yP. For ∀y ∈ [0,
⌢

y], ρ′ ≤ 0 holds, and then ρ(
⌢

y) ≤ ρ(y) ≤ τ for y ∈ [0,
⌢

y].
Denote Λ21 = [ρ(

⌢

y), τ], Λ∗21 = Λ
⋂
Λ21, and N21 =

{
(x+, y+)| x+ = (1 − p1)xET , y+ ∈ Λ∗21

}
. Similarly,

for ∀y ∈ (
⌢

y, yP], ρ′ > 0 holds, i.e., ρ(
⌢

y) < ρ(y) ≤ ρ(yP). Denote Λ22 = (ρ(
⌢

y), ρ(yP)], Λ∗22 = Λ
⋂
Λ22, and

N22 =
{
(x+, y+)| x+ = (1 − p1)xET , y+ ∈ Λ∗22

}
. Thus, we have Ne f f = N2 = N21

⋃
N22.

iii) τ ≤ τ2, then
⌢

y ≥ yP. For ∀y ∈ [0, yP], ρ′ ≤ 0 holds, i.e., ρ(yP) ≤ ρ(y) ≤ τ. DenoteΛ33 = [ρ(yP), τ]
and Λ3 = Λ

⋂
Λ33. Then Ne f f = N3 = { (x+, y+)| x+ = (1 − p1)xET , y+ ∈ Λ3}.

Case II: xET ≥ x1
ET .

For this situation,Me f f =M2. Similar to the discussion in case I, we have
i) τ ≥ τ1. Then Ne f f = N4 = { (x+, y+)| x+ = (1 − p1)xET , y+ ∈ Λ4}, where Λ4 = [τ, ρ(yR1)].
ii) τ1 < τ < τ3. For ∀y ∈ [0,

⌢

y], we have N51 = { (x+, y+)| x+ = (1 − p1)xET , y+ ∈ Λ21}. Similarly,
for ∀y ∈ (

⌢

y, yR1], denote Λ52 = (ρ(
⌢

y), ρ(yR1)], and then N52 = {(x+, y+)|x+ = (1 − p1)xET , y+ ∈ Λ52}.
Therefore, Ne f f = N5 = N51

⋃
N52.

iii) τ ≤ τ3. Then Ne f f = N6 = { (x+, y+)| x+ = (1 − p1)xET , y+ ∈ Λ6} with Λ6 = [ρ(yR1), τ].

4.2. Poincaré map

Denote Gi(xET , yi) ∈ M, G+i ((1 − p1)xET , y+i ) ∈ N , i = 0, 1, 2, ..., where G+i = I(Gi). Since G+i and
Gi+1 lie on the same trajectory γG+i , then we have yi+1 = ϖ(y+i ) and y+i+1 = ψ(y+i ), where

ψ(y+i ) ≜ (1 − q2)ϖ(y+i ) +
τ

1 + lϖ(y+i )
.

If ∃ŷ ∈ N such that ψ(ŷ) = ŷ, then Model (2.4) admits an order-1 periodic trajectory. Next, we will
investigate the monotonicity of ψ(y) with τ > 0 for situations I and II.

Case I: x1
ET < xET ≤ x2

ET .

i) τ ≥ τ1. ρ(y) monotonically increases on [0, yP], and then the map ψ(y) monotonically increases
on [0, yQ1] and monotonically decreases on [yQ2 ,+∞).
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ii) τ1 < τ < τ2. we have ρ′(y) < 0 for y ∈ [0,
⌢

y] and ρ′(y) > 0 for y ∈ (
⌢

y, yP]. Denote yS 1 = min{y :
ψ(y) = yR+}, yS 2 = max{y : ψ(y) = yR+}. Then ψ(y) monotonically increases on [yS 1 , yQ1], [yS 2 ,+∞) and
monotonically decreases on the interval [0, yS 1], [yQ2 , yS 2], respectively.

iii) τ ≤ τ2. ρ(y) monotonically decreases on [0, yP], and then the map ψ(y) monotonically decreases
on [0, yQ1] and monotonically increases on [yQ2 ,+∞).

Case II: xET ≥ x1
ET .

i) τ ≥ τ1. Then ψ′(y) > 0 for y ∈ [0, yR0] and ψ′(y) < 0 for y ∈ [yR0 ,+∞).
ii) τ1 < τ < τ3. Denote yV1 = min{y : ψ(y) = yR+} and yV2 = max{y : ψ(y) = yR+}. Then

ψ(y) monotonically decreases on [0, yV1] and [yR0 , yV2], and monotonically increases on [yV1 , yR0] and
[yV2 ,+∞).

iii) τ ≤ τ3. The map ψ(y) monotonically decreases on [0, yR0] and monotonically increases on
[yR0 ,+∞).

4.3. Order-1 periodic trajectory

4.3.1. Natural enemy extinction periodic trajectory

For Model (2.4) with τ = 0, if y0 ≡ 0, then y ≡ 0 holds. Thus Model (2.4) is degenerated to
dx
dt
= rx(ln K − ln x), x < xET ,

∆x = −p1x(t), x = xET .
(4.1)

Let x = x̃(t) be the solution of equation

dx
dt
= rx(ln K − ln x)

with initial value x̃(0) = x0 ≜ (1 − p1)xET . Define

T0 ≜
1
r

(
ln ln

K
(1 − p1)xET

− ln ln
K

xET

)
.

We have x̃(T0) = xET and x̃(T+0 ) = x0. Thus, z(t) = (x̃(t), 0) ((k − 1)T0 < t ≤ kT0, k ∈ N+) is a natural
enemy extinction periodic trajectory.

Theorem 5. The natural enemy extinction period trajectory z(t) = (x̃(t), 0) ((k − 1)T0 < t ≤ kT0,
k ∈ N+) is orbitally asymptotically stable if q2 > q̂, where

q̂ ≜ 1 − τl −
(ln K − ln xET ) exp

(
−

∫ T0

0

(
r(ln K − ln x̃) − r + ebx̃2

(x̃+g)(1+hx̃) − d
)
dt

)
(1 − p1)(ln K − ln(1 − p1)xET )

.

Proof. For Model (4.1), we have

I1(x, y) = −p1x, I2(x, y) = −q2y +
τ

1 + ly
, ω(x, y) = x − xET .
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Then
∂χ1

∂x
= r(ln K − ln x) − r −

bxy(x + hgx + 2g)
[(x + g)(1 + hx)]2 ,

∂χ2

∂y
=

ebx2

(x + g)(1 + hx)
− d,

∂I1

∂x
= −p1,

∂I1

∂y
= 0,

∂I2

∂x
= 0,

∂I2

∂y
= −q2 −

lτ
(1 + ly)2 ,

∂ω

∂x
= 1,

∂ω

∂y
= 0.

Through calculation, we have

κ̃ =
(1 − q2 − lτ)(1 − p1)(ln K − ln(1 − p1)xET )

ln K − ln xET

and ∫ T

0+

(
∂χ1

∂x
+
∂χ2

∂y

)
(x̃,0)

dt =
∫ T0

0

(
r(ln K − ln x̃) − r +

ebx̃2

(x̃ + g)(1 + hx̃)
− d

)
dt.

Thus,

ρ̂ = κ̃ exp
(∫ T0

0

(
r(ln K − ln x̃) − r +

ebx̃2

(x̃ + g)(1 + hx̃)
− d

)
dt

)
.

Therefore, if q2 > q̂, we have ρ̂ < 1, and by Lemma 1, z(t) = (x̃(t), 0) ((k − 1)T0 < t ≤ kT0, k ∈ N+) is
orbitally asymptotically stable.

4.3.2. Coexisting order-1 periodic trajectory

Denote that the points P, R1 are mapped to the points P+
(
(1 − p1)xET , (1 − q2)yP +

τ
1+lyP

)
and

R+1
(
(1 − p1)xET , (1 − q2)yR1 +

τ
1+lyR1

)
, respectively, after a single impulse. Denote W((1 − p1)xET , τ).

Case I: x1
ET < xET ≤ x2

ET .

Define

q∗2 ≜ 1 −
yQ2

2yP
, l∗ ≜

√
1 + 4yP(1 − q2)/(yQ1 − (1 − q2)yP) − 1

2yP
,

τ̃1 ≜ (1 + lyP)(yQ1 − (1 − q2)yP), τ̃2 ≜ (1 + lyP)(yQ2 − (1 − q2)yP),

τ̂1 = (1 − q2)
[1 + lyQ2/(1 − q2)]2

4l
, τ̂2 = (1 − q2)

[1 + lyQ1/(1 − q2)]2

4l
, τ4 ≜ (1 − q2)

1 + lyP

l
.

Obviously, τ4 < τ2 and for q2 ≤ q∗2, we have l > max{l∗, 0}.

1) For τ = τ̃2, we have ψ(yQ2) = yP+ = yQ2 .

2) For τ > τ̃2, we have ψ(yQ2) = yP+ > yQ2 . Then

• 2-a) for τ ≥ τ2, Wis the highest after the pulse, while P+ is the lowest after the pulse. Then
ψ(τ) < τ, ψ(yP+) > yP+ , and thus ∃y′ ∈ (yP+ , τ) such that ψ(y′) = y′.

• 2-b) for τ̃2 < τ < τ2, if τ ≥ τ̂2, then ρ(
⌢

y) ≥ yQ2 . Since the point R+ is the lowest point after
the pulse, then ψ(yR+) > yR+ . If τ > τ4, we have τ > yP+ . Then W is the highest point after
the impulse, i.e., ψ(τ) < τ. If τ ≤ τ4, we have τ ≤ yP+ . Then P+ is the highest point after
the impulse, i.e., ψ(yP+) < yP+ . Combine the above two aspects and it can be concluded that
∃y′′ ∈ (yR+ ,max{τ, yP+}) such that ψ(y′′) = y′′. While for τ < τ̂2, we have ρ(

⌢

y) < yQ2 . In such
a case, ψ is not defined on [ρ(

⌢

y), yQ2) and it is uncertain whether a fixed point of ψ exists or
not.
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3) When τ̃1 < τ < τ̃2, then yQ1 < yP+ < yQ2 . If τ ≥ τ̂1, then ρ(
⌢

y) ≥ yQ1 , i.e., ψ does not have a fixed
point. While for τ < τ̂1, we have ρ(

⌢

y) < yQ1 . In such a case, it is uncertain whether a fixed point
of ψ exists or not.

4) When 0 < τ < τ̃1, and then ψ(yQ1) = yP+ < yQ1 . If τ > τ1, the point R+ is the lowest point after
the pulse, then ψ(yR+) > yR+ , i.e., ψ(y) has a fixed point on (yR+ , yQ1). If τ ≤ τ1, the point W is the
lowest point after the pulse, and then ψ(τ) > τ, i.e., ψ(y) has a fixed point on (τ, yQ1).

Case II: xET ≥ x1
ET .

Define τ̃ ≜ (1 + lyR1)(yR0 − (1 − q2)yR1).

1) For τ = τ̃, we have ψ(yR0) = yR+1
= yR0 .

2) For τ > τ̃, we have ψ(yR0) = yR+1
> yR0 . Then

• 2-a) for τ ≥ τ3, since R+1 and W are the lowest and highest points after the pulse, then we have
ψ(yR+1

) > yR+1
, ψ(τ) < τ, and thus ∃y′ ∈ (yR+1

, τ) such that ψ(y′) = y′;
• 2-b) for τ̃ < τ < τ3 and if τ > yR+1

, then ψ(τ) < τ; if τ ≤ yR+1
, then ψ(yR+1

) > yR+1
. On the

other hand, take the point A in a small neighborhood near the point R0, i.e., A ∈
⋃

(R0, δ).
A is above R0. By the continuity of the impulse function and the Poincaré map, we have
ψ(yA) > yA. Therefore, the map ψ(y) has a fixed point on (yA,max{yR+1

, τ}).

3) When τ < τ̃, then ψ(yR0) = yR+1
< yR0 . If τ > τ1, we have ψ(yR+) > yR+ . If τ ≤ τ1, we have ψ(τ) > τ.

Combine the above two aspects and it can be concluded that ∃y′′ ∈ (max{yR+ , τ}, yR0) such that
ψ(y′′) = y′′.

To sum up, we have:

Theorem 6. For the situation of xET ≥ x1
ET , Model (2.4) admits an order-1 periodic trajectory. While

for the situation of x1
ET < xET ≤ x2

ET , Model (2.4) admits an order-1 periodic trajectory if τ < τ̃1 or
τ ≥ max{τ̃2, τ̂2}.

Let z̃(t) = (ξ(t), η(t)) ((k − 1)T < t ≤ kT , k ∈ N+) be the T -periodic trajectory of the system (2.4)
with initial values A0((1 − p1)xET , yA0). The trajectory intersectsM at A−

0
(ξ(T ), η(T )), where ξ(T ) =

xET , η(T ) = y0, and then it is pulsed to N at A+
0
(ξ(T+), η(T+)). Thus, ξ(T+) = (1 − p1)xET , η1(T+) =

(1 − q2)y0 +
τ

1+ly0
= yA0 .

Theorem 7. The T-periodic trajectory z̃(t) = (ξ(t), η(t)) ((k− 1)T < t ≤ kT , k ∈ N+) with initial values(
(1 − p1)xET , (1 − q2)y0 +

τ
1+ly0

)
is orbitally asymptotically stable if∫ T

0

(
r(ln K − ln x) − r −

bxy(x + hgx + 2g)
[(x + g)(1 + hx)]2 +

ebx2

(x + g)(1 + hx)
− d

)
(ξ(t),η(t))

dt < ln(κ̂),

where

κ̂ =
r(ln K − ln xET ) − bxET y0

(xET+g)(1+hxET )

(1 − p1)
(
1 − q2 −

lτ
(1+ly0)2

) r(ln K − ln(1 − p1)xET ) −
b(1−p1)xET

(
(1−q2)y0+

τ
1+ly0

)
((1−p1)xET+g)(1+h(1−p1)xET )

 .
Proof. The proof can be referred to that in Theorem 5 and is, therefore omitted.
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5. Computer simulations

For the purpose of simulation, it is assumed that r = 1.5, K = 120, b = 0.595, h = 0.92, e = 0.8,
d = 0.5 and g = 0.8.

5.1. Verification of Model (2.1)

When b = 0.595, the interior equilibrium E∗1 = (54.7, 103.1) is locally asymptotically stable, as
presented in Figure 1. When b increases to 0.61, a limit cycle occurs, as presented in Figure 2. The
effect of the maximum search rate on pests and natural enemies in the coexistence steady state is
presented in Figure 3, and it is obvious that x∗1 decreases with increasing b, while y∗1 increases and then
decreases with increasing b. Therefore, increasing the search rate for pests helps to reduce the number
of pests.
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(t
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Figure 1. Tendencies of Model (2.1) in
case of b = 0.595.

Figure 2. Tendencies of Model (2.1) in
case of b = 0.61.
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Figure 3. Relationship between the number of pests (natural enemies) and the maximum
search rate at the steady state.

5.2. Verification of Model (2.2)

When p1 = 0.25, q1 = 0.5 and q2 = 0.007, the positive equilibrium of the G1 region is
E∗1 = (54.707, 103.1337), the positive equilibrium of the G2 region is E∗2 = (0.1229, 141.532), and the
positive equilibrium of the G3 region is E∗3 = (92.5247, 20.443). When xET = 100 and yET = 110,
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there is x∗2 < x∗3 < xET , x∗1 < xET , yET1 = 3.6997 and yET2 = 43.0879. The sliding mode domain of
Model (3.1) on Σ1 can be represented as Σ11 = {(x, y) ∈ Σ1|3.6997 < y < 43.0879}, and there is no
pseudo-equilibrium on Σ1, as illustrated in Figure 4(a). When xET = 80 and yET = 110, there is
x∗2 < xET < x∗3, x∗1 < xET , yET1 = 45.3593 and yET2 = 77.0172. The sliding mode domain of Model
(3.1) on Σ1 can be represented as Σ11 = { (x, y) ∈ Σ1| 45.3593 < y < 77.0172}, and there is no
pseudo-equilibrium on Σ1, as presented in Figure 4(b).
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y(
t)

Figure 4. The dynamic behavior of Model (2.2) for yET = 110 and different pest control
levels: (a) xET = 100; (b) xET = 80.

5.3. Verification of Model (2.4)

When q2 = 0.11, for xET = 62.667, the periodic trajectory of Model (2.4) is presented by changing
the killing rate p1 of the prey, the amount of predator released τ, and the value of the parameter l.
When τ = 0, p1 = 0.5 and l = 0.02, the natural enemy extinction periodic trajectory is orbitally
asymptotically stable (Figure 5(a)). To prevent the extinction of natural enemies, we are required to
release natural enemies in an appropriate amount. When τ = 5, the natural enemy extinction periodic
trajectory loses its stability and an order-1 periodic trajectory occurs (Figure 5(b)).
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Figure 5. Illustration of the trajectory of Model (2.4) for l = 0.02 and different τ: (a) τ = 0,
(b) τ = 5.
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Next, the accurate domains of M and N for different cases are presented as well as the order-1
periodic trajectory (Figure 6). The accurate domains of M and N are marked in red and blue solid
lines, respectively. When p1 = 0.5, H lies on the left side of the phase set. The schematic diagram of
the exact domain of the phase set and pulse set, and the order-1 periodic trajectories for different cases
are presented in subfigures Figure 6(a)–(c). When p1 = 0.6, H lies on the right side of the phase set.
The schematic diagram of the accurate domain ofM and N and the order-1 periodic trajectories for
different cases are presented in subfigures Figure 6(d)–(f).
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Figure 6. Presentation of the order-1 periodic trajectory of Model (2.4).

When p1 = 0.5, l = 0.02, τ = 10, b = 0.595 and xET = 50, E∗ is locally asymptotically stable, and
Model (2.4) admits an order-1 periodic trajectory for xET < x1

ET , as presented in Figure 7.
Finally, order-n periodic solutions are presented for different τ and l. When b = 0.595, E∗ is locally
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Figure 7. Presentation of the order-1 periodic trajectory of Model (2.4) for xET < x1
ET .

asymptotically stable. For control parameters l = 0.03, τ = 120, xET = 62.667 or l = 0.002, τ = 40,
xET = 62.667, Model (2.2) admits an order-k periodic trajectory, as presented in subfigures 8(a) and
(b). When b = 0.61, Model (2.1) admits a limit cycle. For xET = 50, Model (2.2) admits an order-k
periodic trajectory, as presented in subfigures 8(c)–8(f).
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Figure 8. Presentation of the order-k periodic trajectory of Model (2.4) for different
situations.
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6. Conclusions and discussion

Pests are important factors that harm agricultural production. In order to effectively control the
spread of pests, a pest-natural enemy model with a variable search rate and threshold dependent
feedback control was proposed. The dynamic properties such as the existence, positivity, and
boundedness of solutions for continuous systems were discussed, and the results show that pests and
natural enemies will not increase indefinitely due to system constraints (Theorem 1). In addition, it is
shown that the natural enemy’s searching rate b plays an important role in determining the dynamics
of the system, i.e., when b is smaller than the level b̄(d; 0), the predators in the system will go to
extinction and when b is greater than b̄(d; 0), there exists a steady state E∗ at which the natural
enemies and the pests in the system keep a balance. Moreover, the steady state is locally
asymptotically stable as long as U(x∗) > 0 (Theorems 2–4, Figure 1). When U(x∗) < 0, the stability is
lost and a limit cycle surrounding E∗ is obtained (Figure 2). The relationship between the number of
pests (natural enemies) and the maximum search rate at the steady state was presented in Figure 3.

To prevent the spread of pests, two different types of control strategies were adopted. The first is a
non-smooth control and the model is described by a Filippov system with two warning thresholds. By
analyzing the sliding dynamics, we discussed the existence of pseudo-equilibrium Ep (Figure 4). The
pseudo-equilibrium Ep is a new state of the control system at which the pests and the natural enemies
keep a balance and the pest populations can be controlled at appropriate levels, which in turn indicates
the effectiveness of the control. The second is an intermittent control with an economic threshold.
When the pests reach the economic threshold, manual intervention is carried out by spraying pesticides
and releasing a certain amount of natural enemies. For the control model, the accurate domain of the
phase set was presented and the Poincaré map was constructed, through which the conditions for
the existence of the order-1 periodic trajectories were presented (Theorems 5 and 6 and Figures 5–
7). The order-1 periodic solution provides a possibility for periodic pest control, thus avoiding the
need and difficulty of implementing pest population monitoring. The stability of the order-1 periodic
trajectory was also verified (Theorems 5 and 7). This ensures the robustness of the control, and even
if there is a condition monitoring error, it can still converge to the periodic solution of the system,
thus providing a guarantee for the periodic control. We also presented the order-k periodic solutions
in numerical simulations (Figure 8), which further explain the complexity of the control system and
the necessity of maintaining the stability of the system. The results illustrate the complex dynamics
of the proposed models, which can serve as a valuable reference for the advancement of sustainable
agricultural practices and the control of pests.
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