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Abstract: For any R > 0, infinitely many nonradial singular solutions can be constructed for the
following equation:

−∆u = eu in BR\{0}, (0.1)

where BR = {x ∈ RN (N ≥ 3) : |x| < R}. To construct nonradial singular solutions, we need to
consider asymptotic expansion at the isolated singular point x = 0 of a prescribed solution of (0.1).
Then, nonradial singular solutions of (0.1) can be constructed by using the asymptotic expansion and
introducing suitable weighted Hölder spaces.

Keywords: nonradial singular solutions; asymptotic expansions; exponential nonlinearity; weighted
spaces

1. Introduction

We are interested in singular solutions of the following equation with exponential nonlinearity:

∆u + eu = 0 in BR\{0}, (1.1)

where R > 0 and BR = {x ∈ RN (N ≥ 3) : |x| < R} is a ball.
By a singular solution of (1.1) we mean that u ∈ C2(BR\{0}) and 0 is a nonremovable singular point

of u.
It is easily known that (1.1) admits a (trivial) radial singular solution:

Us(x) = Us(|x|) := −2 ln |x| + ln[2(N − 2)]. (1.2)

We are mainly concerned with nonradial singular solutions of (1.1) in this paper.
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When N = 2, by using the moving plane method, the authors of [1] proved that every solution of∆u + eu = 0 in R2,∫
R2 eudx < ∞

(1.3)

has the form

u(x) = ln
32λ2

(4 + λ2|x − x0|
2)2 , λ > 0, x0 ∈ R

2.

For n > 0, symmetry and uniqueness results were obtained in [2] for the solutions of the following
problem: ∆u + |x|2(n−1)eu = 0 in R2,∫

R2 |x|2(n−1)eudx < ∞.
(1.4)

If n = 1, problem (1.4) reduces to (1.3); also, classification of solutions of (1.4) can be found in [1].
Under the condition that n ≥ 2 is an integer, the authors of [2] showed that problem (1.4) admits radial
and nonradial solutions, but, when n > 0 is not an integer, problem (1.4) only has radial solutions.
Note that, for each n > 0, if u(x) is a solution of (1.4), we can perform the following transformation:

v(x) = 2(n − 1) ln |x| + u(x),

we see that v(x) satisfies the following equation∆v + ev = 0 in R2\{0},∫
R2\{0}

evdx < ∞.
(1.5)

The results in [2] imply that (1.5) admits a family of radial and nonradial singular solutions.
The asymptotic behavior of singular solutions of the problem given by{

∆u + eu = 0 in D1\{0},∫
D1\{0}

eudx < ∞ (1.6)

where D1 ⊂ R
2 is the unit disc, was studied in [3]. The authors of [3] obtained that if u ∈ C2(D1\{0})

is a singular solution of (1.6), then there is α > −2 such that

u(x) = α ln |x| + O(1) as |x| → 0.

In a recent paper [4], the authors continued the study in [3] and obtained asymptotic expansions up to
arbitrary orders for u(x) as |x| → 0.

Under the condition that N ≥ 2, the structure of finite Morse index solutions of the equation

∆u + eu = 0 in RN (1.7)

was studied in [5–7]. In particular, under the condition that N = 3, the asymptotic behavior at x = 0 of
solutions u with |x|2eu ∈ L∞(R3) of the equation

∆u + eu = 0 in R3\{0}, (1.8)
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was classified in [8]. For the case that N = 3, if we write

u(x) = −2 ln |x| + Θ(θ)

where (|x|, θ) ∈ (0,∞) × S 2 denotes the spherical coordinates in R3\{0}, we find that Θ(θ) must satisfy

∆S2Θ − 2 + eΘ = 0 (1.9)

on S 2 where ∆S2 is the Laplace-Beltrami operator on (S 2, g0) and g0 is the standard round metric. It
means that the Gaussian curvature of the metric g = eΘg0 on S 2 is 1

2 . This and related equations
have been studied for more than three decades. Chang and Yang [9] and Onofri [10] described all
regular solutions of (1.9). Specifically, axially symmetric solutions of (1.9) can be written explicitly as
Θ(θ) = log 2 − 2 log(

√
c2 + 1 − c cos θ), where c ∈ R is constant and θ ∈ [0, π] is the geodesic distance

from the north pole of S 2. Hence,

u(x) = −2 ln |x| + log 2 − 2 log(
√

c2 + 1 − c cos θ)

is a one-parameter family of non-radial singular solutions of (1.8).
Recently, singular solutions in different settings have also been studied in [11] and [12]. The authors

of [12] obtained the existence and asymptotic behavior of singular solutions to quasilinear elliptic in-
equalities with nonlocal terms. Moreover, by using mini-max and asymptotic approximation methods,
the existence of positive singular solutions to the planar logarithmic Choquard equation with exponen-
tial nonlinearity was established in [11].

In this paper, we study singular solutions of (1.1) in BR ⊂ R
N (N ≥ 3). We are interested in not

only the asymptotic behavior of singular solutions of (1.1) at x = 0, but also the existence of nonradial
singular solutions of (1.1). The structure of nonradial singular solutions of the equation

∆u + eu = 0 in RN\{0} with N ≥ 3 (1.10)

remains largely open. Motivated by the main ideas in [13], the authors of [14, 15] obtained infinitely
many nonradial singular solutions of (1.10) of the following form given 4 ≤ N ≤ 10:

u(x) = −2 ln |x| + Θ(θ), (1.11)

where Θ(θ) is a non-constant solution of the equation

∆SN−1Θ − 2(N − 2) + eΘ = 0 (1.12)

on S N−1, where ∆SN−1 is the Laplace-Beltrami operator on (S N−1, g0). They constructed infinitely many
axially symmetric non-constant classical solutions of (1.12). The only singular solutions to (1.10)
known so far are the (trivial) radial singular solution Us(x) and the solutions given in (1.11). It is clear
that they are also the singular solutions to (1.1).

We will construct a new type of singular solutions of (1.1) in the following form:

u(x) − Us(x) = O(|x|ϵ) as |x| → 0, (1.13)

for some ϵ > 0.
Our main result is as follows.
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Theorem 1.1. For any R > 0, Eq (1.1) admits infinitely many nonradial singular solutions u(x) of the
following form:

u(x) = Us(x) + O(|x|σ
(2)
+ ) as |x| → 0, (1.14)

where
σ(2)
+ = −

1
2

(N − 2) +
1
2

√
N2 − 4N + 20 > 0.

It is known from Theorem 1.1 that the parameter ϵ in (1.13) is σ(2)
+ .

To prove Theorem 1.1, we firstly study the detailed asymptotic behavior at x = 0 of a prescribed
singular solution u of

∆u + eu = 0 in B\{0} (1.15)

with the form (1.13), where B := B1 = {x ∈ RN (N ≥ 3) : |x| < 1} is the unit ball. Then, the in-
finitely many nonradial singular solutions of the form (1.14) can be constructed by using the asymptotic
expansion and introducing suitable Hölder spaces.

This paper is organized as follows. In Section 2, we obtain asymptotic expansions near the isolated
singular point x = 0 of solutions of (1.15). In Section 3, we establish weighted Hölder spaces and
invertible operators related to our Equation (1.15). In Section 4, we construct infinitely many singular
solutions of (1.1) and show that the singular solutions that we have constructed are non-radial singular
solutions.

2. Asymptotic expansion of a prescribed singular solution u ∈ C2(B\{0}) of (1.15) that satisfies
(1.13)

We will establish asymptotic expansions of the singular solution u ∈ C2(B\{0}) of (1.15) such that
(1.13) is satisfied.

Let v(x) = u(x) − Us(x). Then v(x) satisfies

−∆v = 2(N − 2)|x|−2(ev − 1) in B\{0}. (2.1)

Making the following transformations:

t = ln r, w(t, θ) = v(r, θ),

we see from (2.1) that w(t, θ) satisfies

wtt + (N − 2)wt + ∆SN−1w + 2(N − 2)(ew − 1) = 0 in (−∞, 0) × SN−1. (2.2)

We write (2.2) in the following forms

wtt + (N − 2)wt + ∆SN−1w + 2(N − 2)w + 2(N − 2)(ew − 1 − w) = 0 in (−∞, 0) × SN−1 (2.3)

and
Lw + F (w) = 0 in (−∞, 0) × SN−1, (2.4)

where
Lw = wtt + (N − 2)wt + ∆SN−1w + 2(N − 2)w, F (w) = 2(N − 2)(ew − 1 − w).
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Moreover, (1.13) implies that

w(t, θ) = O(eϵt) uniformly for θ ∈ SN−1 as t → −∞. (2.5)

Define a linearized operator

L =
∂2

∂t2 + (N − 2)
∂

∂t
+ ∆SN−1 + 2(N − 2). (2.6)

Obviously, L can decouple into infinitely many ordinary differential operators, i.e.,

Lk =
d2

dt2 + (N − 2)
d
dt
− λk + 2(N − 2) (2.7)

for k = 0, 1, 2, . . ., where λk is the k-th eigenvalue of

−∆S N−1 Q = λQ (2.8)

and λk = k(N − 2 + k) with the following multiplicity:

mk =
(N − 2 + 2k)(N − 3 + k)!

k!(N − 2)!
.

The {Qk
1(θ), . . . ,Qk

mk
(θ)} with ∥Qk

j∥L2(S N−1) = 1 denotes the basis of the eigenspace Hk(S N−1) ⊂ L2(S N−1)
corresponding to λk. Then two roots of characteristic polynomial of (2.7) are as follows:

σ(k)
± = −

1
2

(N − 2) ±
1
2

√
(N − 2)(N − 10) + 4k(N − 2 + k). (2.9)

For k = 0, we have from (2.9) that

σ(0)
± =


−1

2 (N − 2) ± i
2

√
(N − 2)(10 − N), for 3 ≤ N ≤ 9,

−1
2 (N − 2) < 0, for N = 10,
−1

2 (N − 2) ± 1
2

√
(N − 2)(N − 10) < 0, for N ≥ 11.

(2.10)

For k = 1,

σ(1)
± = −

(N − 2)
2

±
|N − 4|

2
. (2.11)

Then,

σ(1)
+ =

{
0, for N = 3,
−

(N−2)
2 + |N−4|

2 < 0, for N ≥ 4
(2.12)

and
σ(1)
− = −

(N − 2)
2

−
|N − 4|

2
< 0, for N ≥ 3. (2.13)

For k ≥ 2, the fact that k(N − 2 + k) > 2(N − 2) implies that

(N − 2)(N − 10) + 4k(N − 2 + k) > (N − 2)2,

we see from (2.9) that
σ(k)
+ > 0, σ(k)

− < 0. (2.14)

It is clear that
σ(k+1)
+ > σ(k)

+ > 0, σ(k+1)
− < σ(k)

− < 0 for any k ≥ 2.
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Proposition 2.1. Assume that N ≥ 3 and u = u(r) is a radial solution of (1.15) that satisfies

u(r) − Us(r) = O(rϵ) for r near 0 and some ϵ > 0.

Then
u(r) ≡ Us(r) for r ∈ (0, 1].

Proof. Bt applying the following transformations:

v(r) = u(r) − Us(r), w(t) = v(r), t = log r,

by (2.3), w(t) satisfies the following ordinary diifferential equation (ODE):

wtt + (N − 2)wt + 2(N − 2)w + f (w) = 0 in (−∞, 0), (2.15)

where
f (w) = 2(N − 2)(ew − 1 − w) = O(w2) = O(e2ϵt).

Note that w(t) = O(eϵt) for t near −∞. Therefore, for 3 ≤ N ≤ 9,

w(t) = A1eτt cos γt + A2eτt sin γt − B1eτt cos γt
∫ t

−∞

e−τs[− f (w(s))] sin γsds

−B2eτt sin γt
∫ t

−∞

e−τs[− f (w(s))] cos γsds, (2.16)

where |B1| = |B2| = 1/γ, | f (w(t))| = O(e2ϵt),

τ = −
1
2

(N − 2), γ =
1
2

√
(N − 2)(10 − N).

Since w(t)→ 0 as t → −∞, we obtain from (2.16) that A1 = A2 = 0 and

w(t) = B1eτt cos γt
∫ t

−∞

e−τsO(w2(s)) sin γsds + B2eτt sin γt
∫ t

−∞

e−τsO(w2(s)) cos γsds, (2.17)

and
|w(t)| ≤ Ce2ϵt := eβ+2ϵt for some fixed β > 0 with C = eβ and t near −∞. (2.18)

Substituting (2.18) into (2.17), we see that

|w(t)| ≤ e3β+4ϵt for t near −∞. (2.19)

We can do the same process to obtain that w(t) ≡ 0 for t ≤ −4β
ϵ

. Since w(t) satisfies the ODE in (2.15),
then w(t) ≡ 0 for t ∈ (−∞, 0).

For N = 10, we see that

w(t) = A1eτt + A2teτt

−B1eτt
∫ t

−∞

se−τs[− f (w(s))]ds − B2teτt
∫ t

−∞

e−τs[− f (w(s))]ds, (2.20)
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where |B1| = |B2| = 1. Note that τ = − (N−2)
2 < 0. Since w(t) → 0 as t → −∞, we see that A1 = A2 = 0.

Arguments similar to those in the proof for the case of 3 ≤ N ≤ 9 imply that w(t) ≡ 0 for t ∈ (−∞, 0).
For N ≥ 11, we see that

w(t) = A1eσ
(0)
+ t + A2eσ

(0)
− t

−B1eσ
(0)
+ t
∫ t

−∞

e−σ
(0)
+ s[− f (w(s))]ds − B2eσ

(0)
− t
∫ t

−∞

e−σ
(0)
− s[− f (w(s))]ds, (2.21)

where |B1| = |B2| =
∣∣∣∣ 1
σ(0)
− −σ

(0)
+

∣∣∣∣. Note that σ(0)
+ < 0 and σ(0)

− < 0. Since w(t) → 0 as t → −∞, we see that
A1 = A2 = 0. Arguments similar to those in the proof for the case of 3 ≤ N ≤ 9 imply that w(t) ≡ 0 for
t ∈ (−∞, 0). This completes the proof of this proposition.

Lemma 2.2. Assume that N ≥ 3 and u ∈ C2(B\{0}) is a singular solution of (1.15) that satisfies (1.13).
Defining w(t, θ) = u(x) − Us(x) and t = ln r, it follows that w(t, θ) = O(eϵt) for t ∈ (−∞,−1], and

max
S N−1
|w(t, θ)| ≤ Ceσ

(2)
+ t for t ∈ (−∞,−1]. (2.22)

Proof. Let

w(t, θ) =
∞∑

k=0

mk∑
j=1

wk
j(t)Q

k
j(θ).

Then wk
j(t) satisfies the following equation:

(wk
j)
′′(t) + (N − 2)(wk

j)
′(t) + [2(N − 2) − λk]wk

j(t) = −gk
j(t), (2.23)

where

gk
j(t) =

∫
S N−1
F (w(t, θ))Qk

j(θ)dθ.

Note that

∥w∥2L2(S N−1) =

∞∑
k=0

mk∑
j=1

(wk
j(t))

2, ∥F (w)∥2L2(S N−1) =

∞∑
k=0

mk∑
j=1

(gk
j(t))

2.

Since F (w) = O(w2) and w(t, θ) = O(eϵt), we see that

∥F (w)∥L2(S N−1) = O(eϵt∥w∥L2(S N−1)). (2.24)

On the other hand, it follows from (2.23) that for k ≥ 2, T ≪ −1 and t < T ,

wk
j(t) = Ak

j,1eσ
(k)
+ t + Ak

j,2eσ
(k)
− t

+Bk
j,1

∫ T

t
eσ

(k)
+ (t−s)[−gk

j(s)]ds − Bk
j,2

∫ t

−∞

eσ
(k)
− (t−s)[−gk

j(s)]ds,

where

|Bk
j,1| = |B

k
j,2| =

∣∣∣∣ 1

σ(k)
− − σ

(k)
+

∣∣∣∣.
Electronic Research Archive Volume 32, Issue 5, 3171–3201.
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Since wk
j(t)→ 0 as t → −∞, we have that Ak

j,2 = 0. Moreover,

wk
j(T ) = Ak

j,1eσ
(k)
+ T − Bk

j,2

∫ T

−∞

eσ
(k)
− (T−s)[−gk

j(s)]ds

and
Ak

j,1 = O(e−σ
(k)
+ T ).

Then,

wk
j(t) = O(eσ

(k)
+ (t−T ))

+Bk
j,1

∫ T

t
eσ

(k)
+ (t−s)[−gk

j(s)]ds − Bk
j,2

∫ t

−∞

eσ
(k)
− (t−s)[−gk

j(s)]ds (2.25)

and for small enough δ > 0,

[wk
j(t)]

2 ≤ O(e2σ(k)
+ (t−T )) + 4(Bk

j,1)2
( ∫ T

t
eδ(t−s)ds

)( ∫ T

t
e(2σ(k)

+ −δ)(t−s)(gk
j(s))2ds

)
+4(Bk

j,2)2
( ∫ t

−∞

e−δ(t−s)ds
)( ∫ t

−∞

e(2σ(k)
− +δ)(t−s)(gk

j(s))2ds
)

≤ Ce2σ(k)
+ (t−T ) +Cδ

∫ T

t
e(2σ(2)

+ −δ)(t−s)(gk
j(s))2ds

+Cδ

∫ t

−∞

e(2σ(2)
− +δ)(t−s)(gk

j(s))2ds,

with constants C > 0 and Cδ > 0 being dependent on δ and independent of ( j, k).
For k = 1, T ≪ −1 and t < T ,

w1
j(t) = A1

j,1eσ
(1)
+ t + A1

j,2eσ
(1)
− t

−B1
j,1

∫ t

−∞

eσ
(1)
+ (t−s)[−g1

j(s)]ds − B1
j,2

∫ t

−∞

eσ
(1)
− (t−s)[−g1

j(s)]ds,

where
|B1

j,1| = |B
1
j,2| =

∣∣∣∣ 1

σ(1)
− − σ

(1)
+

∣∣∣∣.
Note that σ(1)

+ ≤ 0 and σ(1)
− < 0. Since w1

j(t)→ 0 as t → −∞, we have that A1
j,1 = A1

j,2 = 0,

w1
j(t) = −B1

j,1

∫ t

−∞

eσ
(1)
+ (t−s)[−g1

j(s)]ds − B1
j,2

∫ t

−∞

eσ
(1)
− (t−s)[−g1

j(s)]ds (2.26)

and
(w1

j(t))
2 = O(e4ϵt). (2.27)

Note that
(g1

j(t))
2 ≤ C∥F (w)∥2L2(S N−1) ≤ Ce4ϵt.

Similarly, we have
(g0

1(t))2 = O(e4ϵt), (w0
1(t))2 = O(e4ϵt). (2.28)
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Then,

∞∑
k=2

mk∑
j=1

(wk
j(t))

2 ≤ C
∞∑

k=2

mk∑
j=1

e2σ(k)
+ (t−T ) +Cδ

∫ T

t
e(2σ(2)

+ −δ)(t−s)
∞∑

k=2

mk∑
j=1

(gk
j(s))2ds

+Cδ

∫ t

−∞

e(2σ(2)
− +δ)(t−s)

∞∑
k=2

mk∑
j=1

(gk
j(s))2ds

≤ C
∞∑

k=2

mk∑
j=1

e2σ(k)
+ (t−T )

+C
∫ T

t
e(2σ(2)

+ −δ)(t−s)e4ϵsds +C
∫ T

t
e(2σ(2)

+ −δ)(t−s)e2ϵs
∞∑

k=2

mk∑
j=1

(wk
j(s))2ds

+C
∫ t

−∞

e(2σ(2)
− +δ)(t−s)e4ϵsds +C

∫ t

−∞

e(2σ(2)
− +δ)(t−s)e2ϵs

∞∑
k=2

mk∑
j=1

(wk
j(s))2ds.

Notice that
∞∑

k=2

mk∑
j=1

(gk
j(t))

2 = ∥F (w)∥2L2(S N−1) −
[
(g0

1(t))2 +

N∑
j=1

(g1
j(t))

2
]

and

∥F (w)∥2L2(S N−1) = O(e2ϵt)∥w∥2L2(S N−1) = O(e2ϵt)
[ ∞∑

k=2

mk∑
j=1

(wk
j(t))

2 +
(
(w0

1(t))2 +

N∑
j=1

(w1
j(t))

2
)]
,

since F (w) = O(w2). We also know that

∞∑
k=2

mk∑
j=1

e2σ(k)
+ (t−T ) =

∞∑
k=2

mke2σ(k)
+ (t−T ) = O(e2σ(2)

+ (t−T )),

since

lim
k→∞

mk+1e2(σ(k+1)
+ −σ(2)

+ )(t−T )

mke2(σ(k)
+ −σ

(2)
+ )(t−T )

= lim
k→∞

[mk+1

mk
e2(σ(k+1)

+ −σ(k)
+ )(t−T )

]
= e2(t−T ) <

1
2
.

Let [W(t)]2 =
∑∞

k=2
∑mk

j=1(wk
j(t))

2. We have that, if 4ϵ , 2σ(2)
+ − δ,

[W(t)]2 ≤ Ce2σ(2)
+ (t−T ) +Ce4ϵt +C

∫ T

t
e(2σ(2)

+ −δ)(t−s)e4ϵsds

+C
∫ T

t
e(2σ(2)

+ −δ)(t−s)e2ϵs[W(s)]2ds +C
∫ t

−∞

e(2σ(2)
− +δ)(t−s)e2ϵs[W(s)]2ds.

Now we show that, for t < T ≪ −1,

∥w∥L2(S N−1) =
[ ∞∑

k=0

mk∑
j=1

(wk
j(t))

2
] 1

2
= O(eσ

(2)
+ t). (2.29)
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In fact, two cases can occur: (i) 4ϵ ≥ [2σ(2)
+ − δ] and (ii) 4ϵ < [2σ(2)

+ − δ].
It suffices to consider that 4ϵ > [2σ(2)

+ − δ] in the case (i). So

[W(t)]2 ≤ Ce(2σ(2)
+ −δ)(t−T ) +C

∫ T

t
e(2σ(2)

+ −δ)(t−s)e2ϵs[W(s)]2ds

+C
∫ t

−∞

e(2σ(2)
− +δ)(t−s)e2ϵs[W(s)]2ds. (2.30)

Set

K1(t) =
∫ T

t
e(2σ(2)

+ −δ)(t−s)[W(s)]2ds, K2(t) =
∫ t

−∞

e(2σ(2)
− +δ)(t−s)[W(s)]2ds.

Then, if |T | is large,

(K2 − K1)′(t) = (2σ(2)
− + δ)K2(t) − (2σ(2)

+ − δ)K1(t) + 2[W(t)]2

≤ (2σ(2)
− + δ)K2(t) − (2σ(2)

+ − δ)K1(t) +Ce2ϵT (K1(t) + K2(t)) +Ce(2σ(2)
+ −δ)(t−T )

≤ Ce(2σ(2)
+ −δ)(t−T )

where σ(2)
− < 0, σ(2)

+ > 0. Since K1(t)→ 0 and K2(t)→ 0 as t → −∞, then for t < T ,

K2(t) ≤ K1(t) +Ce(2σ(2)
+ −δ)t. (2.31)

Substituting (2.31) into (2.30), we have

[W(t)]2 ≤ Ce(2σ(2)
+ −δ)t +Ce2ϵT

∫ T

t
e(2σ(2)

+ −δ)(t−s)[W(s)]2ds. (2.32)

It follows from arguments similar to those in [16, 17] that, for t < T (enlarge |T | if necessary),

[W(t)]2 ≤ CϵT e(2σ(2)
+ −δ−ϵT )t, (2.33)

where ϵT = Ce2ϵT (i.e., C is independent of ϵ). On the other hand, (2.27) and (2.28) imply that

(w1
j(t))

2 = O(e4ϵt) = O(e(2σ(2)
+ −δ)t), j = 1, 2, . . . ,m1,

(w0
1(t))2 = O(e4ϵt) = O(e(2σ(2)

+ −δ)t)

where 4ϵ > 2σ(2)
+ − δ. Therefore, for t < T (i.e., T is sufficiently negative),

∞∑
k=0

mk∑
j=1

(wk
j(t))

2 = O(e(2σ(2)
+ −δ−ϵT )t) (2.34)

and
∥w∥L2(S N−1) = O(e(σ(2)

+ −
δ
2−

ϵT
2 )t). (2.35)

Using (2.35), we obtain

∥F (w)∥2L2(S N−1) = O(e2ϵt)∥w∥2L2(S N−1) = O(e(2σ(2)
+ −δ−ϵT+2ϵ)t). (2.36)
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Choosing δ sufficiently small such that δ < 2ϵ − ϵT , then

m2∑
j=1

|w2
j(t)| ≤ Ceσ

(2)
+ (t−T ) +C

∫ T

t
eσ

(2)
+ (t−s)

m2∑
j=1

|g2
j(s)|ds

+C
∫ t

−∞

eσ
(2)
− (t−s)

m2∑
j=1

|g2
j(s)|ds

≤ Ceσ
(2)
+ t +C

∫ T

t
eσ

(2)
+ (t−s)e(σ(2)

+ −
δ
2−

ϵT
2 +ϵ)sds

+C
∫ t

−∞

eσ
(2)
− (t−s)e(σ(2)

+ −
δ
2−

ϵT
2 +ϵ)sds

≤ Ceσ
(2)
+ t.

So for t < T ,
m2∑
j=1

|w2
j(t)|

2 ≤
[ m2∑

j=1

|w2
j(t)|
]2
≤ Ce2σ(2)

+ t. (2.37)

Moreover, we choose 0 < δ < min{2ϵ − ϵT , 2σ
(3)
+ − 2σ(2)

+ }; then,

∞∑
k=3

mk∑
j=1

(wk
j(t))

2 ≤ C
∞∑

k=3

mk∑
j=1

e2σ(k)
+ (t−T ) +Cδ

∫ T

t
e(2σ(3)

+ −δ)(t−s)
∞∑

k=3

mk∑
j=1

(gk
j(s))2ds

+Cδ

∫ t

−∞

e(2σ(3)
− +δ)(t−s)

∞∑
k=3

mk∑
j=1

(gk
j(s))2ds

≤ Ce2σ(3)
+ t +C

∫ T

t
e(2σ(3)

+ −δ)(t−s)e(2σ(2)
+ −δ−ϵT+2ϵ)sds

+C
∫ t

−∞

e(2σ(3)
− +δ)(t−s)e(2σ(2)

+ −δ−ϵT+2ϵ)sds

≤ Ce2σ(3)
+ t +C max{e(2σ(3)

+ −δ)t, e(2σ(2)
+ −δ−ϵT+2ϵ)t} +Ce(2σ(2)

+ −δ−ϵT+2ϵ)t

≤ Ce2σ(2)
+ t. (2.38)

It is known from (2.36) and δ < 2ϵ − ϵT that

∥F (w)∥2L2(SN−1) = O(e2σ(2)
+ t),

m1∑
j=1

(g1
j)

2 = O(e2σ(2)
+ t), (g0

1)2 = O(e2σ(2)
+ t).

By (2.26) and g1
j(t) = O(eσ

(2)
+ t), we obtain

m1∑
j=1

(w1
j(t))

2 = O(e2σ(2)
+ t). (2.39)

Similarly,
(w0

1(t))2 = O(e2σ(2)
+ t). (2.40)
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We obtain from (2.37)–(2.40) that
∥w∥L2(SN−1) = O(eσ

(2)
+ t). (2.41)

For any fixed (t, θ) ∈ (−∞,T − 1) × SN−1, by applying the interior L∞-estimate to (2.4) with (t − 1, t +
1) × SN−1, we obtain from (2.41) and (2.24) that

|w(t, θ)| ≤ C{∥w∥L2((t−1,t+1)×SN−1) + ∥F (w)∥L2((t−1,t+1)×SN−1)} ≤ Ceσ
(2)
+ t, (2.42)

where C > 0 is independent of t. Note that we can also use arguments similar to those in the proof
of [18] to obtain

max
θ∈SN−1

|w(t, θ)| ≤ Meσ
(2)
+ t for t ∈ (−∞,T − 1). (2.43)

Defining
v(r, θ) = w(t, θ), r = et,

it follows that v(r, θ) satisfies

∆v +
2(N − 2)v

r2 +
F (v)

r2 = 0 in BR\{0}, (2.44)

where R = eT−1. For any x0 ∈ BR\{0}, denote r0 = |x0| > 0 and Ω = Br0/2(x0). Consider (2.44) to be a
linear equation in Ω as in Lemma 5.1 and Theorem 5.1 of [18] with

k = k1 = 1, h(x) ≡ 0, |c| =
Q
r2

0

, k2 =
Q
r2

0

where Q = Q(v) > 0. Then, (2.41) implies that there is a positive constant (independent of r0)

M = M(k1/k, k2r2
0) = M(Q) = M(v)

such that
sup

x∈Br0/4(x0)
|v(x)| ≤ Mrσ

(2)
+

0 .

In particular, we have
|v(x0)| ≤ Mrσ

(2)
+

0 ,

max
|x|=r
|v(x)| ≤ Mrσ

(2)
+ .

Hence, (2.43) follows for t ∈ (−∞,T − 1).
For the case of 4ϵ = 2σ(2)

+ − δ, we may choose δ′ a little larger than δ such that 0 < δ < δ′ and
4ϵ > 2σ(2)

+ − δ
′. By similar arguments, we can prove (2.41) and (2.43).

For the case (ii), by F (w) = O(e2ϵt),
∑∞

k=2
∑mk

j=1(gk
j(s))2 = O(e4ϵt) and 4ϵ < 2σ(2)

+ − δ < 2σ(2)
+ , we can

obtain
∞∑

k=2

mk∑
j=1

(wk
j(t))

2 ≤ C
∞∑

k=2

mk∑
j=1

e2σ(k)
+ (t−T ) +C

∫ T

t
e(2σ(2)

+ −δ)(t−s)
∞∑

k=2

mk∑
j=1

(gk
j(s))2ds

+C
∫ t

−∞

e(2σ(2)
− +δ)(t−s)

∞∑
k=2

mk∑
j=1

(gk
j(s))2ds
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≤ Ce4ϵt.

Then
[W(t)]2 ≤ Ce4ϵt for t < T .

Together with (2.27) and (2.28), we know that

∥w∥L2(SN−1) = O(e2ϵt).

Arguments similar to those in the proof of (2.43) imply that

max
θ∈SN−1

|w(t, θ)| ≤ Me2ϵt for t ∈ (−∞,−1], (2.45)

where M := M(w) > 0. As a consequence,

max
SN−1
|F (w)| ≤ Ce4ϵt for t ∈ (−∞,−1]. (2.46)

Then (2.26) implies that
w1

j(t) = O(e4ϵt), j = 1, 2, . . .m1. (2.47)

Similarly,
w0

1(t) = O(e4ϵt). (2.48)

Therefore,

[W(t)]2 ≤ Ce2σ(2)
+ (t−T ) +C

∫ T

t
e(2σ(2)

+ −δ)(t−s)e8ϵsds +C
∫ T

t
e(2σ(2)

+ −δ)(t−s)e2ϵs[W(s)]2ds

+C
∫ t

−∞

e(2σ(2)
− +δ)(t−s)e8ϵsds +C

∫ t

−∞

e(2σ(2)
− +δ)(t−s)e2ϵs[W(s)]2ds. (2.49)

Note that
∞∑

k=2

mk∑
j=1

(gk
j(t))

2 ≤ Ce2ϵt([W(t)]2 + e8ϵt).

In what follows, there are also two cases: (a) 8ϵ ≥ [2σ(2)
+ − δ] and (b) 8ϵ < [2σ(2)

+ − δ].
For the case (a), using (2.49) and arguments similar to those in the proof of (i), we can obtain (2.43).
The case (b) implies that F (w) = O(e4ϵt). Then

[W(t)]2 ≤ Ce8ϵt for t < T .

This, (2.47) and (2.48) imply that
∥w∥L2(SN−1) = O(e4ϵt) (2.50)

and
∥F (w)∥L2(SN−1) = O(e5ϵt). (2.51)

Therefore,
g1

j(t) = O(e5ϵt), w1
j(t) = O(e5ϵt), w0

1(t) = O(e5ϵt). (2.52)

Electronic Research Archive Volume 32, Issue 5, 3171–3201.



3184

Then we have
∞∑

k=2

mk∑
j=1

(gk
j(t))

2 ≤ Ce2ϵt([W(t)]2 + e10ϵt)

and

[W(t)]2 ≤ Ce2σ(2)
+ (t−T ) +C

∫ T

t
e(2σ(2)

+ −δ)(t−s)e10ϵsds +C
∫ T

t
e(2σ(2)

+ −δ)(t−s)e2ϵs[W(s)]2ds

+C
∫ t

−∞

e(2σ(2)
− +δ)(t−s)e10ϵsds +C

∫ t

−∞

e(2σ(2)
− +δ)(t−s)e2ϵs[W(s)]2ds. (2.53)

Similarly, we still consider two cases: 10ϵ ≥ [2σ(2)
+ − δ] and 10ϵ < [2σ(2)

+ − δ]; then, we obtain (2.43).
The proof of this lemma is complete.

Theorem 2.3. Assume that N ≥ 3 and u ∈ C2(B\{0}) is a singular solution of (1.15) that satisfies
(1.13). Defining w(t, θ) = u(x)−Us(x) and t = ln r, there is a positive number sequence {µk}k≥1, strictly
increasing and converging to∞ with

µ1 = σ
(2)
+ (2.54)

such that for any positive integer n ≫ 1 and any (t, θ) ∈ (−∞,−1) × S N−1,

w(t, θ) =
n∑

k=1

k−1∑
ℓ=0

ckℓ(θ)tℓeµkt + O
(
|t|neµn+1t

)
, (2.55)

where

ckℓ(θ) =
Mkℓ∑
i=0

akℓiQi(θ) (2.56)

and Mkℓ is a nonnegative integer depending on N, k, ℓ; akℓi is constant and Qi(θ) is a linear combination
of {Qi

1(θ),Qi
2(θ), . . . ,Qi

mi
(θ)}. Especially, for k = 1,

c10(θ) = a102Q2(θ),

where a102 is a constant.

Proof. By using the starting estimate (2.22), constructing the index set I, and examining the equa-
tion of w, the expansion of w(t, θ) can be established via similar arguments to those in Theorem 1.1
of [19].

Let {ρk}k≥1 be positive strictly increasing and converging to∞:

ρ1 = σ
(2)
+ , ρ2 = σ

(3)
+ , . . . , ρk = σ

(k+1)
+ , . . . .

Also, let Z+ be the collection of nonnegative integers. Define the index set I by

I =
{∑

k≥1

nkρk : nk ∈ Z+ with finitely many nk > 0
}
. (2.57)

Set
Iρ = {ρk : k ≥ 1} (2.58)
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and

Iρ̃ =
{ i∑

k=1

nkρk : nk ∈ Z+,
i∑

k=1

nk ≥ 2
}
. (2.59)

Assume that Iρ̃ is given by a strictly increasing sequence {ρ̃k}k≥1 with ρ̃1 = 2ρ1. There may be identical
elements in Iρ and Iρ̃.

For ρ̃k ∈ Iρ̃, there are nonnegative integers n1, . . . , ni1 such that

n1 + . . . + ni1 ≥ 2, n1ρ1 + . . . + ni1ρi1 = ρ̃k. (2.60)

The collections of nonnegative integers n1, . . . , ni1 that satisfy (2.60) are finite. Set

M̃k = max{2n1+3n2+ . . .+ (i1+1)ni1 : n1, . . . , ni1 are nonnegative integers satisfying (2.60)}. (2.61)

Arrange I as follows:

ρ1 < . . . < ρi1 ≤ ρ̃1 < . . . < ρ̃l1 ≤ ρi1+1 < . . . < ρi2 ≤ ρ̃l1+1 < . . . < ρ̃l2 ≤ ρi2+1 < . . . . (2.62)

Note that if ρ1 < ρ̃1 < ρ2, we choose i1 = 1 and l1 = 1 and the arrangement of (2.62) becomes
ρ1 < ρ̃1 < ρ2 < . . .. Similarly, if ρik+1 ≤ ρ̃lk+1 < ρik+2 for some k ≥ 1, define ik + 1 = ik+1 and
lk + 1 = lk+1. We do not consider the multiplicity of ρk here, since all terms containing eρkt in the
expansions of w(t, θ) can be combined as one term. We know

L(w) = −F (w),

where F (w) =
∑∞

k=2 bkwk for |w| < ϵ̂ with some sufficiently small ϵ̂ > 0; also, the expansion of F (w)
consists of terms including

∑I(k)
ℓ=0

(∑M̃k
i=0 ckℓiQi(θ)

)
tℓeρ̃kt for ρ̃k ∈ Iρ̃ in (2.59).

Define
µ1 = ρ1, µ2 = ρ2, µ3 = ρ3, . . . , µi1 = ρi1 , µi1+1 = ρ̃1, . . . (2.63)

according to the arrangement in (2.62). To ensure that {µk}k≥1 is a strictly increasing sequence of
positive constants, when ρi1 = ρ̃1, define µi1 = ρi1 and µi1+1 = ρ̃2. In this case, an extra power of t term
corresponding to µi1 may appear in the expansion of w(t, θ). Similarly, make the same choices of µk for
the cases ρ̃l1 = ρi1+1, ρi2 = ρ̃l1+1, ρ̃l2 = ρi2+1, etc. As a consequence, for any positive integer n ≫ 1 and
any (t, θ) ∈ (−∞,−1) × S N−1,

w(t, θ) =
n∑

k=1

k−1∑
ℓ=0

ckℓ(θ)tℓeµkt + O
(
|t|neµn+1t

)
, (2.64)

where

ckℓ(θ) =
Mkℓ∑
i=0

akℓiQi(θ) (2.65)

and Mkℓ is a nonnegative integer that is dependent on N, k, ℓ, akℓi is constant and Qi(θ) is in the span of
Qi

1(θ),Qi
2(θ), . . . ,Qi

mi
(θ). Especially, for k = 1,

c10(θ) = a102Q2(θ).

The proof of this theorem is complete.
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3. Linearized equations and inverse of the operator

We will introduce the appropriate weighted Hölder spaces and obtain the inverse of the operator L
on those spaces, where L is given in (2.4). We use some ideas from [20], where the authors derived
singular solutions to the following equation:

∆u +
N(N − 2)

4
u

N+2
N−2 = 0 in B\{0}.

Fix a t0 < 0. For a nonnegative integer i, α ∈ (0, 1), and µ ∈ R, define

∥v∥Ci
µ((−∞,t0]×SN−1) =

i∑
j=0

sup
(t,θ)∈(−∞,t0]×SN−1

e−µt|∇ jv(t, θ)|,

and
∥v∥Ci,α

µ ((−∞,t0]×SN−1) = ∥v∥Ci
µ((−∞,t0]×SN−1) + sup

t≤t0−1
e−µt[∇iv]Cα([t−1,t+1]×SN−1),

where [·]Cα is the usual Hölder semi-norm.

Definition 3.1. The collection of functions v in Ci((−∞, t0]× SN−1) with a finite norm ∥v∥Ci,α
µ ((−∞,t0]×SN−1)

is the weighted Hölder space Ci,α
µ ((−∞, t0] × SN−1).

For µ > 0 and some g ∈ C0,α
µ ((−∞, t0] × SN−1), to consider the linear equation given by

Lv = g in (−∞, t0) × SN−1, (3.1)

we introduce a boundary condition on t = t0 such that

L : C2,α
µ ((−∞, t0] × SN−1)→ C0,α

µ ((−∞, t0] × SN−1)

has a bounded inverse. However, since signs of coefficients of zero order terms are inappropriate, we
cannot directly apply the maximum principle to the following Dirichlet boundary-value problem{

Lv = g in (−∞, t0) × SN−1,

v = φ on {t0} × S
N−1.

(3.2)

Lemma 3.1. Let µ > 0, g ∈ C0
µ((−∞, t0]× SN−1), and φ ∈ C0(SN−1). Then, there is at most one solution

v ∈ C2
µ((−∞, t0] × SN−1) of (3.2).

Proof. Assume that g = 0, φ = 0 and v ∈ C2
µ((−∞, t0] × SN−1) is a solution of (3.2). For each k ≥ 0,

define
vk(t) =

∫
SN−1

v(t, θ)Qk(θ)dθ.

So Lk(vk) = 0 on (−∞, t0) and vk(t0) = 0. This implies that vk is a linear combinations of the basis of
Ker(Lk). In particular, for k = 0,

v0(t) =


c1

0eℜ(σ(0)
+ )t cos γt + c2

0eℜ(σ(0)
+ )t sin γt, for 3 ≤ N ≤ 9,

c1
0eσ

(0)
+ t + c2

0teσ
(0)
+ t, for N = 10,

c1
0eσ

(0)
+ t + c2

0eσ
(0)
− t, for N ≥ 11,
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and for k ≥ 1,
vk(t) = c1

keσ
(k)
+ t + c2

keσ
(k)
− t,

where c1
k and c2

k are constants for k = 0, 1, 2, . . .. By the assumption, we have the following for any
t ∈ (−∞, t0):

|e−µtvk(t)| ≤ C. (3.3)

Hence, vk = 0 for k = 0 and k = 1. Note that{
ℜ(σ(0)

+ ) < 0, ℜ(σ(0)
− ) < 0, for 3 ≤ N ≤ 9,

σ(0)
+ < 0, σ(0)

− < 0, for N ≥ 10,

σ(1)
+ ≤ 0 and σ(1)

− < 0 for N ≥ 3. Moreover, vk(t) = c1
keσ

(k)
+ t for k ≥ 2, which decays exponentially as

t → −∞ (note that c2
k = 0 since σ(k)

− < 0 for k ≥ 2). Since vk(t0) = 0, we can directly obtain c1
k = 0 and

vk(t) ≡ 0 for k ≥ 2. In conclusion, vk = 0 for all k ≥ 0, i.e., v ≡ 0.

Lemma 3.2. Let α ∈ (0, 1), µ > 0, g ∈ C0,α
µ ((−∞, t0] × SN−1), and φ ∈ C2,α(SN−1). Suppose that

v ∈ C2,α
µ ((−∞, t0] × SN−1) is a solution of (3.2). Then

∥v∥C2,α
µ ((−∞,t0]×SN−1) ≤ C

[
∥v∥C0

µ((−∞,t0]×SN−1) + ∥g∥C0,α
µ ((−∞,t0]×SN−1) + e−µt0∥φ∥C2,α(SN−1)

]
, (3.4)

where C is a positive constant that is only dependent on N, α, µ and is independent of t0.

Proof. Using similar arguments to that of Lemma 2.5 of [20], consider two cases:
(i) t < t0 − 2. We have

2∑
j=0

sup
SN−1
|∇ jv(t, ·)| + [∇2v]Cα([t−1,t+1]×SN−1)

≤ C
[
∥v∥L∞([t−2,t+2]×SN−1) + ∥g∥L∞([t−2,t+2]×SN−1) + [g]Cα([t−2,t+2]×SN−1)

]
,

where C is a positive constant that is independent of t. We estimate [g]Cα([t−2,t+2]×SN−1), by setting (t1, θ1),
(t2, θ2) ∈ [t − 2, t + 2] × SN−1 with (t1, θ1) , (t2, θ2). There are two cases: |t1 − t2| ≤ 2 and |t1 − t2| > 2.

When |t1 − t2| ≤ 2, choose t′ ∈ [t − 1, t + 1] such that t1, t2 ∈ [t′ − 1, t′ + 1] is satisfied. Then,

[g]Cα([t−2,t+2]×SN−1) ≤ max
{

sup
t′∈[t−1,t+1]

[g]Cα([t′−1,t′+1]×SN−1), ∥g∥L∞([t−2,t+2]×SN−1)

}
.

So,

2∑
j=0

sup
SN−1
|∇ jv(t, ·)| + [∇2v]Cα([t−1,t+1]×SN−1)

≤ C
[
∥v∥L∞([t−2,t+2]×SN−1) + ∥g∥L∞([t−2,t+2]×SN−1) + sup

t′∈[t−1,t+1]
[g]Cα([t′−1,t′+1]×SN−1)

]
.

We multiply both sides by e−µt and take the supremum over t ∈ (−∞, t0 − 2). The following holds

2∑
j=0

sup
t∈(−∞,t0−2)

sup
SN−1

e−µt|∇ jv(t, ·)| + sup
t∈(−∞,t0−2)

e−µt[∇2v]Cα([t−1,t+1]×SN−1)
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≤ C
[
∥v∥C0

µ((−∞,t0]×SN−1) + ∥g∥C0,α
µ ((−∞,t0]×SN−1)

]
, (3.5)

where C is a positive constant that is independent of t0.
(ii) t0 − 2 ≤ t ≤ t0. From the boundary Schauder estimate, we see that

2∑
j=0

sup
SN−1
|∇ jv(t, ·)| + [∇2v]Cα([t0−3,t0]×SN−1)

≤ C
[
∥v∥L∞([t0−4,t0]×SN−1) + ∥g∥L∞([t0−4,t0]×SN−1) + [g]Cα([t0−4,t0]×SN−1) + ∥φ∥C2,α(SN−1)

]
.

Similarly,

2∑
j=0

sup
t∈[t0−2,t0]

sup
SN−1

e−µt|∇ jv(t, ·)| + sup
t∈[t0−2,t0−1]

e−µt[∇2v]Cα([t−1,t+1]×SN−1)

≤ C
[
∥v∥C0

µ((−∞,t0]×SN−1) + ∥g∥C0,α
µ ((−∞,t0]×SN−1) + e−µt0∥φ∥C2,α(SN−1)

]
. (3.6)

Combining (3.5) and (3.6), (3.4) holds.
Then, by arguments similar to those in [20–22], we obtain the L∞ estimates of solutions on finite

cylinders to (3.2) with a 0 boundary value.

Lemma 3.3. Let µ > ρ1 and µ , ρk for k ≥ 1, T and t0 be constants with t0 ≤ 0 and T − t0 ≤ −4, and
g ∈ C0([T, t0] × SN−1). Suppose that v ∈ C2([T, t0] × SN−1) satisfies the following:{

Lv = g in (T, t0) × SN−1,

v = 0 on ({T } ∪ {t0}) × SN−1,

and
∫
SN−1 v(t, θ)Qk(θ)dθ = 0 for k = 0, 1, · · · ,K, where K is the largest integer satisfying that ρK−1 < µ.

Then,
sup

(t,θ)∈[T,t0]×SN−1
e−µt|v(t, θ)| ≤ C sup

(t,θ)∈[T,t0]×SN−1
e−µt|g(t, θ)|, (3.7)

where C is a positive constant dependent only on N, µ and independent of T and t0.

Proof. Note that ρ1 = σ
(2)
+ .

Let the sequences {Ti}, {ti}, {vi} and {gi} with ti ≤ 0 and Ti − ti ≤ −4, satisfy the following:{
Lvi = gi in (Ti, ti) × SN−1,

vi = 0 on ({Ti} ∪ {ti}) × SN−1,

and
sup

(t,θ)∈[Ti,ti]×SN−1
e−µt|gi(t, θ)| = 1,

sup
(t,θ)∈[Ti,ti]×SN−1

e−µt|vi(t, θ)| → ∞ as i→ ∞.

There exists t∗i ∈ (Ti, ti) that satisfies

Mi = sup
SN−1

e−µt∗i |vi(t∗i , ·)| = sup
(t,θ)∈[Ti,ti]×SN−1

e−µt|vi(t, θ)| → ∞ as i→ ∞.
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Set
ṽi(t, θ) = M−1

i e−µt∗i vi(t + t∗i , θ), (3.8)

g̃i(t, θ) = M−1
i e−µt∗i gi(t + t∗i , θ). (3.9)

The following holds:
sup
SN−1
|ṽi(0, ·)| = 1,

for any (t, θ) ∈ [Ti − t∗i , ti − t∗i ] × SN−1,
|e−µtṽi(t, θ)| ≤ 1 (3.10)

and
Lṽi = g̃i for t ∈ (Ti − t∗i , ti − t∗i ) × SN−1.

Assume the following for some τ− ∈ R− ∪ {−∞} and τ+ ∈ R+ ∪ {∞}:

Ti − t∗i → τ−, ti − t∗i → τ+. (3.11)

From (3.10) we have
|ṽi| ≤ Ceµ(t∗i −Ti) on (Ti − t∗i ,Ti − t∗i + 2) × SN−1,

and hence ∣∣∣∣d2ṽi

dt2 + (N − 2)
dṽi

dt
+ ∆θṽi

∣∣∣∣ ≤ Ceµ(t∗i −Ti) on (Ti − t∗i ,Ti − t∗i + 2) × SN−1.

Since ṽi = 0 on {Ti − t∗i } × S
N−1, we have

|∇ṽi| ≤ Ceµ(t∗i −Ti) on (Ti − t∗i ,Ti − t∗i + 1) × SN−1.

This implies that Ti − t∗i remains bounded away from zero. Similar arguments imply that ti − t∗i is
bounded away from zero. As a consequence, 0 ∈ (τ−, τ+). Let

ṽi → v̂ in the compact set of (τ−, τ+). (3.12)

Moreover, g̃i → 0 in every compact set of (τ−, τ+). So the following holds:

v̂ , 0,

|e−µtv̂(t, θ)| ≤ 1 for any (t, θ) ∈ (τ−, τ+) × SN−1, (3.13)

Lv̂ = 0 on (τ−, τ+) × SN−1,

and
lim
t→τ∗

v̂(t, θ) = 0 (3.14)

where τ∗ = τ− or τ+ if it is finite.
Let

v̂k(t) =
∫
SN−1

v̂(t, θ)Qk(θ)dθ. (3.15)

Then Lk(v̂k) = 0; hence, v̂k is the linear combination of the basis of Ker(Lk). We now take k ≥ 2 with
ρk > µ. Then

v̂k+1(t) = c1
k+1eρkt + c2

k+1eσ
(k+1)
− t,
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where c1
k+1 and c2

k+1 are constants. From (3.13), we obtain the following for any t ∈ (τ−, τ+):

|e−µtv̂k+1(t)| ≤ C.

When τ+ = ∞, c1
k+1 = 0 and hence v̂k+1(t) = c2

k+1eσ
(k+1)
− t. When τ+ is finite, limt→τ+ v̂k+1(t) = 0 by (3.14).

Similarly, when τ− = −∞, v̂k+1(t) = c1
k+1eρkt = c1

k+1eσ
(k+1)
+ t. When τ− is finite, limt→τ− v̂k+1(t) = 0 by

(3.14). Thus, ∫ τ+

τ−

[
(∂tv̂k+1)2 + [λk+1 − 2(N − 2)

]
v̂2

k+1

]
dt = 0.

Since ρk > µ > 0, it follows that λk+1 > 2N for each k. This implies that λk+1 − 2(N − 2) > 0 for each
k. Therefore, v̂k+1 = 0 for each k. By the assumption, we have

v̂0 = v̂1 = . . . = v̂k = 0

provided that ρk−1 < µ. In conclusion, v̂k = 0 for any k ≥ 0; hence, v̂ ≡ 0. This is a contradiction.

Lemma 3.4. Let α ∈ (0, 1), µ > ρK for some K ≥ 1, and g ∈ C0,α
µ ((−∞, t0] × SN−1) with g(t, ·) ∈

span{Q0,Q1, . . . ,QK+1} for t ≤ t0. Then, there is a unique solution v ∈ C2,α
µ ((−∞, t0] × SN−1) of (3.1)

with v(t, ·) ∈ span{Q0,Q1, . . . ,QK+1} for t ≤ t0. Furthermore, g 7→ v is linear, and

∥v∥C2,α
µ ((−∞,t0]×SN−1) ≤ C∥g∥C0,α

µ ((−∞,t0]×SN−1),

where C is a positive constant that is only dependent on N, α, µ and independent of t0.

Proof. For k = 0, 1, . . . ,K + 1, define

gk(t) =
∫
SN−1

g(t, θ)Qk(θ)dθ.

Then,
∥gk∥C0,α

µ ((−∞,t0]) ≤ C∥g∥C0,α
µ ((−∞,t0]×SN−1),

and

g(t, θ) =
K+1∑
k=0

gk(t)Qk(θ). (3.16)

Consider the following ODE:
Lkvk = gk. (3.17)

Suppose that there is a solution vk ∈ C2,α
µ ((−∞, t0]) of (3.17) and

∥vk∥C2,α
µ ((−∞,t0]) ≤ C∥gk∥C0,α

µ ((−∞,t0]), (3.18)

where C is a constant that depends only on N, α, µ and independent of t0.
If k = 0, it is known from Section 2 that Ker(L0) encompasses eτt cos γt and eτt sin γt with

τ = −
1
2

(N − 2) < 0, γ =
1
2

√
(N − 2)(10 − N)
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provided that 3 ≤ N ≤ 9. Ker(L0) encompasses eσ
(0)
+ t and teσ

(0)
+ t with σ(0)

+ = σ(0)
− < 0 provided that

N = 10. Ker(L0) encompasses eσ
(0)
+ t and eσ

(0)
− t with σ(0)

+ < 0, σ(0)
− < 0 provided that N ≥ 11. If k = 1,

Ker(L1) encompasses eσ
(1)
+ t and eσ

(1)
− t with σ(1)

+ ≤ 0, σ(1)
− < 0 provided that N ≥ 3.

We now consider k = 0 and k = 1. For k = 0, we see that

v0(t) =


B1

0

∫ t

−∞
eτ(t−s) sin γ(t − s)g0(s)ds, for 3 ≤ N ≤ 9,∫ t

−∞
seσ

(0)
+ (t−s)g0(s)ds − t

∫ t

−∞
eσ

(0)
+ (t−s)g0(s)ds, for N = 10,

B1
0

∫ t

−∞
eσ

(0)
+ (t−s)g0(s)ds − B1

0

∫ t

−∞
eσ

(0)
− (t−s)g0(s)ds, for N ≥ 11,

(3.19)

where

|B1
0| =


1
γ
, for 3 ≤ N ≤ 9,∣∣∣∣ 1
σ(0)
+ −σ

(0)
−

∣∣∣∣, for N ≥ 11.

We only consider v0(t) for N ≥ 11 and v1(t). The other cases for v0(t) can be demonstrated similarly
since τ < 0 and σ(0)

+ < 0 in these cases. Let

vk(t) = B1
k

∫ t

−∞

eσ
(k)
+ (t−s)gk(s)ds − B1

k

∫ t

−∞

eσ
(k)
− (t−s)gk(s)ds, (3.20)

where
|B1

k | =
∣∣∣∣ 1

σ(k)
− − σ

(k)
+

∣∣∣∣.
Direct calculation implies the following for t ≤ t0:

e−µt|vk(t)| ≤ C sup
t≤t0

e−µt|gk(t)| = C∥gk∥C0
µ((−∞,t0]), (3.21)

e−µt(|v′k(t)| + |v
′′
k (t)|) ≤ C∥gk∥C0

µ((−∞,t0]). (3.22)

Set
v′′k (t) = R1(t) + R2(t),

where

R1(t) = B1
k(eσ

(k)
+ t)′′
∫ t

−∞

e−σ
(k)
+ sgk(s)ds − B1

k(eσ
(k)
− t)′′
∫ t

−∞

e−σ
(k)
− sgk(s)ds,

and
R2(t) = B1

k(eσ
(k)
+ t)′e−σ

(k)
+ tgk(t) − B1

k(eσ
(k)
− t)′e−σ

(k)
− tgk(t).

Then,

R′1(t) = B1
k(eσ

(k)
+ t)′′′

∫ t

−∞

e−σ
(k)
+ sgk(s)ds − B1

k(eσ
(k)
− t)′′′

∫ t

−∞

e−σ
(k)
− sgk(s)ds

+B1
k(eσ

(k)
+ t)′′e−σ

(k)
+ tgk(t) − B1

k(eσ
(k)
− t)′′e−σ

(k)
− tgk(t).

Then we have
e−µt|R′1(t)| ≤ C∥gk∥C0

µ((−∞,t0]),

and hence, for t ≤ t0 − 1,
e−µt[R1]Cα([t−1,t+1]) ≤ C∥gk∥C0

µ((−∞,t0]),
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e−µt[R2]Cα([t−1,t+1]) ≤ C∥gk∥C0,α
µ ((−∞,t0]).

Therefore, for t ≤ t0 − 1,
e−µt[v′′k ]Cα([t−1,t+1]) ≤ C∥gk∥C0,α

µ ((−∞,t0]). (3.23)

Combining (3.21), (3.22) and (3.23), (3.18) holds for k = 0 with N ≥ 11 and k = 1.
For 2 ≤ k ≤ K + 1, since e−µt|gk(t)| ≤ C and µ > ρK , we can also define

vk(t) = B1
k

∫ t

−∞

eσ
(k)
+ (t−s)gk(s)ds − B1

k

∫ t

−∞

eσ
(k)
− (t−s)gk(s)ds. (3.24)

Note that, at this time, σ(k)
+ > 0 and σ(k)

− < 0 for k = 2, . . . ,K + 1 and ρk = σ
(k+1)
+ . By arguments similar

to those in the proof of (3.18) for k = 0 with N ≥ 11 and k = 1, we obtain (3.18) for 2 ≤ k ≤ K + 1.
With the solution vk of (3.17) for k = 0, 1, . . . ,K + 1, we set

v(t, θ) =
K+1∑
k=0

vk(t)Qk(θ).

Then, Lv = g and, by (3.18), we have

∥v∥C2,α
µ ((−∞,t0]×SN−1) ≤ C

K+1∑
k=0

∥vk∥C2,α
µ ((−∞,t0])

≤ C
K+1∑
k=0

∥gk∥C0,α
µ ((−∞,t0])

≤ C∥g∥C0,α
µ ((−∞,t0]×SN−1).

Then the extra requirement v(t, ·) ∈ span{Q0,Q1, . . . ,QK+1} implies the uniqueness of v.

Lemma 3.5. Let α ∈ (0, 1), µ > ρ1 and µ , ρk for any k ≥ 1; also, g ∈ C0,α
µ ((−∞, t0] × SN−1), with∫

SN−1 g(t, ·)Qk(θ)dθ = 0 for any k = 0, 1, . . . ,K,K + 1, where K is the largest integer such that ρK < µ,
and t ≤ t0. Then, there exists a unique solution v ∈ C2,α

µ ((−∞, t0] × SN−1) of (3.1) with v = 0 on
{t0} × S

N−1. Moreover,
∥v∥C2,α

µ ((−∞,t0]×SN−1) ≤ C∥g∥C0,α
µ ((−∞,t0]×SN−1), (3.25)

where C is a positive constant that is dependent on N, α and µ and independent of t0.

Proof. Assume that T ≤ t0 − 4. We claim that there is a solution vT ∈ C2,α([T, t0] × SN−1) to the
following problem: {

LvT = g in (T, t0) × SN−1,

vT = 0 on ({T } ∪ {t0}) × SN−1.
(3.26)

The problem described by (3.26) can be written as follows:{
∂
∂t (e

τt ∂vT
∂t ) + eτt∆θvT + 2(N − 2)eτtvT = eτtg in (T, t0) × SN−1,

vT = 0 on ({T } ∪ {t0}) × SN−1.
(3.27)

where τ = N − 2. Consider the energy function

GT (v) =
∫ t0

T

∫
SN−1

[
eτt(∂tv)2 + eτt|∇θv|2 − 2(N − 2)eτtv2 + 2eτtgv

]
dtdθ.
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Set

Γ =
{
ϕ ∈ H1(SN−1) :

∫
SN−1

ϕ(θ)Qk(θ)dθ = 0 for k = 0, 1, . . . ,K,K + 1 with ρK < µ
}
.

Then, for any ϕ ∈ Γ, ∫
SN−1
|∇θϕ|

2dθ ≥ 2N
∫
SN−1

ϕ2dθ,

since λk+1 ≥ λ2 = 2N with µ > ρk ≥ ρ1. Hence, for any v ∈ H1
0((T, t0) × SN−1) with v(t, ·) ∈ Γ for any

t ∈ (T, t0), we have

GT (v) ≥
∫ t0

T

∫
SN−1

[
eτt(∂tv)2 + [2N − 2(N − 2)]eτtv2 + 2eτtgv

]
dθdt.

The inequality 2N − 2(N − 2) > 0 implies that GT is coercive and weakly lower semi-continuous. Then
there is a minimizer vT of GT in the following statement:

{v ∈ H1
0((T, t0) × SN−1) : v(t, ·) ∈ Γ for any t ∈ (T, t0)}.

So vT is a solution of (3.26) that satisfies vT (t, ·) ∈ Γ for any t ∈ (T, t0).
We obtain that by Lemma 3.3,

sup
(t,θ)∈[T,t0]×SN−1

e−µt|vT (t, θ)| ≤ C sup
(t,θ)∈[T,t0]×SN−1

e−µt|g(t, θ)|,

where C is a positive constant that is dependent on N, µ and independent of T and t0. Fix T0 < t0. By the
interior and boundary Schauder estimates in [t0+T0, t0]×SN−1 ⊂ [t0+T0−1, t0]×SN−1 and vT (t0, θ) = 0,
there exists a subsequence vT that converges to a C2,α-solution v of (3.1) in [t0+T0, t0]×SN−1 satisfying
v = 0 on {t0} × S

N−1, as T → −∞. Then, we can obtain that vT converges to a C2,α-solution v of (3.1)
in (−∞, t0] × SN−1 such that the following is satisfied: v = 0 on {t0} × S

N−1,

sup
(t,θ)∈[T,t0]×SN−1

e−µt|v(t, θ)| ≤ C sup
(t,θ)∈[T,t0]×SN−1

e−µt|g(t, θ)|,

or
∥v∥C0

µ((−∞,t0]×SN−1) ≤ C∥g∥C0
µ((−∞,t0]×SN−1), (3.28)

Combining (3.28) and (3.4) with φ = 0, (3.25) holds.

Theorem 3.6. Let α ∈ (0, 1), µ > ρ1, µ , ρk for any k ≥ 1 and g ∈ C0,α
µ ((−∞, t0] × SN−1). Then (3.1)

admits a solution v ∈ C2,α
µ ((−∞, t0] × SN−1) and

∥v∥C2,α
µ ((−∞,t0]×SN−1) ≤ C∥g∥C0,α

µ ((−∞,t0]×SN−1), (3.29)

where C is a positive constant that is dependent on N, α, µ, and independent of t0. Also, g 7→ v is linear.

Proof. Assume that K ≥ 1 is the largest integer with ρK < µ. Define

gk(t) =
∫
SN−1

g(t, θ)Qk(θ)dθ for k = 0, 1, . . . ,K + 1.
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Then v1 ∈ C2,α
µ ((−∞, t0] × SN−1) is a solution of

L(v1) =
K+1∑
k=0

gk(t)Qk(θ) in (−∞, t0] × SN−1

as in Lemma 3.4. By Lemma 3.5, let v2 ∈ C2,α
µ ((−∞, t0]× SN−1) be the unique solution of the following

problem: {
Lv = g −

∑K+1
k=0 gkQk in (−∞, t0] × SN−1,

v = 0 on {t0} × S
N−1.

Then v = v1 + v2 is a solution of (3.1) satisfying that v(t0, θ) = v1(t0, θ) =
∑K+1

k=0 vk(t0)Qk(θ), where vk(t)
for k = 0, 1, . . . ,K,K + 1 is given in Lemma 3.4.

Remark 3.7. Theorem 3.6 implies that the bound of

L−1 : C0,α
µ ((−∞, t0] × SN−1)→ C2,α

µ ((−∞, t0] × SN−1) (3.30)

is independent of t0.

4. Nonradial singular solutions of (1.1)

In what follows, singular solutions of (1.1) will be constructed.
We set

N(w) = wtt + (N − 2)wt + ∆SN−1w + 2(N − 2)(ew − 1). (4.1)

Then w satisfies

wtt + (N − 2)wt + ∆SN−1w + 2(N − 2)(ew − 1) = 0 in (−∞, 0) × SN−1 (4.2)

if N(w) = 0 in (−∞, 0) × SN−1. This also implies that u(x) = Us(x) + w(ln |x|, θ) is a solution of (1.15)
in B\{0}.

Theorem 4.1. Let Us(x) be given as in (1.2), the index set Iρ be given as in (2.58), and µ > ρ1 with
µ < Iρ. Suppose that ŵ ∈ C2,α((−∞, 0] × SN−1) satisfies

|ŵ(t, θ)| + |∇ŵ(t, θ)| → 0 as t → −∞ uniformly in θ ∈ SN−1, (4.3)

and for (t, θ) ∈ (−∞, 0] × SN−1,

|N(ŵ)(t, θ)| + |∇(N(ŵ))(t, θ)| ≤ Ceµt, (4.4)

where C is a positive constant. Then, there exist t0 < 0 and a solution w ∈ C2,α((−∞, t0] × SN−1) of the
equation in (4.2) such that the following is satisfied for (t, θ) ∈ (−∞, t0) × SN−1:

|w(t, θ) − ŵ(t, θ)| ≤ Ceµt, (4.5)

where C is a positive constant.
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Proof. The proof consists of 4 steps.
Step 1. We claim that there is z ∈ C2,α

µ ((−∞, t0] × SN−1) such that

N(ŵ + z) = 0. (4.6)

Rewrite this equation as
Lz +N(ŵ) + P(z) = 0, (4.7)

and
z = L−1

[
− N(ŵ) − P(z)

]
, (4.8)

where
P(z) = 2(N − 2)[eŵ+z − eŵ − z]. (4.9)

Defining T by
T (z) = L−1

[
− N(ŵ) − P(z)

]
, (4.10)

we prove that T is a contraction on some ball in C2,α
µ ((−∞, t0] × SN−1), for some t0 < 0 with |t0| large.

We set
ΓB,t0 = {z ∈ C2,α

µ ((−∞, t0] × SN−1) : ∥z∥C2,α
µ ((−∞,t0]×SN−1) ≤ B}.

Step 2. We claim that T maps ΓB,t0 to itself, for some fixed B and any t0 with |t0| sufficiently
large, namely, for any z ∈ C2,α

µ ((−∞, t0] × SN−1) with ∥z∥C2,α
µ ((−∞,t0]×SN−1) ≤ B, we have that T (z) ∈

C2,α
µ ((−∞, t0] × SN−1) and ∥T (z)∥C2,α

µ ((−∞,t0]×SN−1) ≤ B.
First, it follows from (4.4) that

∥N(ŵ)∥C1
µ((−∞,t0]×SN−1) ≤ C1.

Next, set

E(z) = 2(N − 2)
∫ 1

0
(eŵ+sz − 1)ds. (4.11)

Then, P(z) = zE(z). Take any z ∈ C2,α
µ ((−∞, t0] × SN−1) with ∥z∥C2,α

µ ((−∞,t0]×SN−1) ≤ B where B will be
determined later. Because

|ŵ| + |∇ŵ| ≤ ϵ(t),

where ϵ is increasing such that ϵ(t)→ 0 as t → −∞ and

|z| + |∇z| ≤ Beµt.

Then, for t ≤ t0,
|E(z)| + |∇E(z)| ≤ C2(ϵ(t) + Beµt), (4.12)

and hence,

∥P(z)∥C1
µ((−∞,t0]×SN−1) ≤ C2(ϵ(t0) + Beµt0)∥z∥C1

µ((−∞,t0]×SN−1)

≤ C2(ϵ(t0) + Beµt0)B.

By Theorem 3.6, we have

∥T (z)∥C2,α
µ ((−∞,t0]×SN−1) ≤ C∥ − N(ŵ) − P(z)∥C0,α

µ ((−∞,t0]×SN−1)
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≤ C[C1 +C2(ϵ(t0) + Beµt0)B],

where C, C1 and C2 are constants that are independent of t0. Choose B ≥ 2CC1 and t0 with |t0|

sufficiently large such that CC2(ϵ(t0) + Beµt0) ≤ 1/2. Then,

∥T (z)∥C2,α
µ ((−∞,t0]×SN−1) ≤ B.

Step 3. We claim that T : ΓB,t0 → ΓB,t0 is a contraction, i.e., for any z1, z2 ∈ ΓB,t0 ,

∥T (z1) − T (z2)∥C2,α
µ ((−∞,t0]×SN−1) ≤ κ∥z1 − z2∥C2,α

µ ((−∞,t0]×SN−1), (4.13)

for some constant κ ∈ (0, 1).
Note that

T (z1) − T (z2) = L−1[P(z2) − P(z1)],

and

P(z1) − P(z2) = z1E(z1) − z2E(z2)
= (z1 − z2)E(z1) + z2(E(z1) − E(z2)).

By (4.11), we have

E(z1) − E(z2) = 2(N − 2)
∫ 1

0
[eŵ+sz1 − eŵ+sz2]ds.

Then,
|E(z1) − E(z2)| + |∇(E(z1) − E(z2))| ≤ C(|z1 − z2| + |∇(z1 − z2)|).

By (4.12), we have the following for any t ≤ t0,

|P(z1) − P(z2)| + |∇(P(z1) − P(z2))|
≤ C(ϵ(t) + Beµt)(|z1 − z2| + |∇(z1 − z2)|),

and hence
∥P(z1) − P(z2)∥C1

µ((−∞,t0]×SN−1) ≤ C(ϵ(t0) + Beµt0)∥z1 − z2∥C1
µ((−∞,t0]×SN−1).

By Theorem 3.6, we obtain

∥T (z1) − T (z2)∥C2,α
µ ((−∞,t0]×SN−1) ≤ C∥P(z1) − P(z2)∥C0,α

µ ((−∞,t0]×SN−1)

≤ C(ϵ(t0) + Beµt0)∥z1 − z2∥C2,α
µ ((−∞,t0]×SN−1).

We derive (4.13) by choosing t0 with t0 sufficiently negative.
Step 4. The contraction mapping principle implies that there exists z ∈ C2,α

µ ((−∞, t0] × SN−1) such
that T (z) = z. Then z ∈ C2,α

µ ((−∞, t0]× SN−1) is a solution of (4.6) and hence w = ŵ+ z is a solution of
(4.2).

We call a function ŵ that satisfies (4.3) and (4.4) an approximate solution to (4.2) with order µ.

Lemma 4.2. Assume that Qk(θ) is the combination of Qk
1(θ), . . . ,Qk

mk
(θ). Then,

QkQl =

k+l∑
i=0

Qi. (4.14)
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Proof. The proof is similar to that of Lemma 2.4 in [19]. We omit the details here.

Proposition 4.3. Let the index sets Iρ and Iρ̃ be respectively given as in (2.58) and (2.59) and µ > ρ1

with µ < Iρ ∪ Iρ̃. Let η be a solution of L(η) = 0 on R × SN−1 such that η(t, ·) → 0 as t → −∞
uniformly on SN−1. Therefore for some t0 < 0, there exists a smooth function η̃ on (−∞, t0] × SN−1 such
that ŵ = η + η̃ satisfies (4.3) and (4.4).

Proof. Choose ϕ with |ϕ| < ϵ̂ on (−∞, 0) × SN−1, where ϵ̂ > 0 is a sufficiently small number. Then,
a simple computation yields

N(ϕ) = Lϕ + 2(N − 2)(eϕ − 1 − ϕ).

Therefore,

N(ϕ) = L(ϕ) +
∞∑

i=2

aiϕ
i. (4.15)

Assume K ≥ 1 and K̃ represent the largest corresponding integer with ρK < µ and ρ̃K̃ < µ, respec-
tively. There is no function that converges to 0 as t → −∞ in KerL0 and KerL1; for k ≥ 2, ψ+k (t) = eσ

(k)
+

and ψ−k (t) = eσ
(k)
− t in KerLkt. Any term eρkt with k > K in η will produce the term eρ̃lt with ρ̃l > µ in

N(η); set

η(t, θ) =
K∑

k=1

ckQk+1(θ)eρkt, (4.16)

where ck denotes constants.
For the following case:

Iρ ∩ Iρ̃ = ∅, (4.17)

we will show that there η̃0, η̃1, . . . , η̃K̃ exists in succession such that, for any i = 0, 1, . . . , K̃,

N(η + η̃0 + . . . + η̃i) = O(eρ̃i+1t). (4.18)

Set ϕ = η. From (4.15) and L(η) = 0, we obtain

N(η) =
∑

n1+...+ni1≥2

an1...ni1
e(n1ρ1+...+ni1ρi1 )tQn1

2 . . .Q
ni1
i1+1,

where n1, . . . , ni1 are nonnegative integers and an1...ni1
is a constant. By the definition of Iρ̃, n1ρ1 + . . .+

ni1ρi1 is some ρ̃k. Hence, by Lemma 4.2,

N(η) =
K̃∑

k=1

{ M̃k∑
m=0

akmQm(θ)
}
eρ̃kt + O(eρ̃K̃+1t), (4.19)

where M̃k is defined as in (2.61) and akm is constant. We see that

N(η) = O(eρ̃1t),

where ρ̃1 = 2ρ1. Then η̃0 = 0.
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Assume that (4.18) holds for 0, 1, . . . , i − 1. Set

η̃i(t, θ) =
( M̃i∑

m=0

cimQm(θ)
)
eρ̃it, (4.20)

where cim is constant. This implies that

N(η + η̃0 + . . . + η̃i) = L(η̃1) + . . . +L(η̃i)

+

K̃∑
k=1

{ M̃k∑
m=0

akmQm(θ)
}
eρ̃kt + O(eρ̃K̃+1t),

where akm is different from that in (4.19). The induction hypothesis implies that

N(η + η̃0 + . . . + η̃i) = L(η̃i) +
K̃∑

k=i

{ M̃k∑
m=0

akmQm(θ)
}
eρ̃kt + O(eρ̃K̃+1t).

Choose η̃i such that

L(η̃i) = −
{ M̃i∑

m=0

aimQm(θ)
}
eρ̃it.

So (4.18) holds for i. For m = 0, 1, . . . , M̃i, solve

Lm(cimeρ̃it) = −aimeρ̃it. (4.21)

Similar to that in Lemma 3.4, there is a formula for cimeρ̃it in terms of aimeρ̃it. For 0 < ρm < ρ̃i, the
expression is in the form of (3.24). For ρm > ρ̃i, the expression is similar. If m = 0 or 1, the expression
is (3.19) or (3.20). Therefore, define

η̃(t, θ) =
K̃∑

k=1

{ M̃k∑
m=0

ckmQm(θ)
}
eρ̃kt, (4.22)

where ckm is a constant. We obtain

N(η + η̃) = O(eρ̃K̃+1t) = O(eµt).

The estimate of ∇N(η + η̃) is similar.
Then for the general case, ρk can be some ρ̃i. We only need to modify (4.21). When ρm = ρ̃i, there

exist constants ci0m and ci1m such that

Lm((ci0m + tci1m)eρ̃it) = −aimeρ̃it.

By iteration, there are more powers of t. Therefore, there exist constants denoted by ci jm with j =
0, 1, . . . , J + 1 such that

Lm

( J+1∑
j=0

ci jmt jeρ̃it
)
=

J∑
j=0

ai jmt jeρ̃it.
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In conclusion, instead of (4.22), apply

η̃(t, θ) =
K̃∑

k=1

k∑
j=0

{ M̃k∑
m=0

ck jmQm(θ)
}
t jeρ̃kt, (4.23)

where ck jm is a constant.
Proof of Theorem 1.1
Theorem 4.1 and Proposition 4.3 imply that we can obtain t0 and a solution w ∈ C2,α((−∞, t0]×SN−1)

of the equation in (4.2) such that, for µ > ρ1 with µ < Iρ ∪ Iρ̃ and any (t, θ) ∈ (−∞, t0) × SN−1,

w(t, θ) = η̂(t, θ) + O(eµt), (4.24)

η̂(t, θ) = η(t, θ) + η̃(t, θ).

Let r0 = et0 . Then 0 < r0 < 1. Since u(x) = Us(x) + w(ln |x|, θ), we add easily see that

u(x) = Us(x) + O(|x|σ
(2)
+ ) for x ∈ Br0\{0}. (4.25)

On the other hand, for any R > 0, we see that ũ(y) := u(x) + 2 ln(R−1r0), y = Rr−1
0 x satisfies the

following equations:
−∆yũ = eũ in BR\{0} (4.26)

and
ũ(y) = Us(y) + O(|y|σ

(2)
+ ) as |y| → 0+. (4.27)

This implies that ũ is a singular solution of (1.1).
Now, suppose that ũ is non-radial. It suffices to prove that u is non-radial in Br0\{0}. Suppose that

u(x) = u(|x|). Then from Proposition 2.1 we have

u(x) ≡ Us(x) for x ∈ Br0\{0}. (4.28)

Moreover, we can easily see from (4.24) and (4.25) that

w(t, θ) . 0.

This implies that u and ũ are non-radial singular solutions of (1.15) in Br0\{0} and (1.1) in BR\{0},
respectively.

Since w(t, θ) depends on the parameter µ, for each µ > ρ1, different coefficients ck of η(t, θ) in (4.16)
can determine infinitely many ũµ and t0 may change. When restricting all coefficients of η(t, θ) in (4.16)
in a bounded interval, there is a minimal t0 < 0. Since K of η(t, θ) in (4.16) depends on µ, we can obtain
infinitely many ũ(y) by choosing a sequence of parameters µ > ρ1 with µ → ∞. Hence, a family of
nonradial singular solutions of (1.1) can be constructed.

5. Conclusions

In this manuscript, infinitely many nonradial singular solutions have been constructed for the equa-
tion

−∆u = eu in BR\{0},

where BR = {x ∈ RN (N ≥ 3) : |x| < R}.
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