
Electronic
Research Archive

http://www.aimspress.com/journal/era

ERA, 32(5): 3162–3170.
DOI: 10.3934/era.2024145
Received: 20 December 2023
Revised: 28 March 2024
Accepted: 28 April 2024
Published: 06 May 2024

Theory article

The algorithm for canonical forms of neural ideals

Licui Zheng*, Yiyao Zhang and Jinwang Liu

School of Mathematics and Computational Science, Hunan University of Science and Technology,
Xiangtan 411201, China

* Correspondence: Email: zhenglicui@126.com.

Abstract: To elucidate the combinatorial architecture of neural codes, the neural ideal JC, an algebraic
object, was introduced. Represented in its canonical form, JC provides a succinct characterization of
the inherent receptive field architecture within the code. The polynomials in JC are also instrumental
in determining the relationships among the neurons’ receptive fields. Consequently, the computation
of the collection of canonical forms is pivotal. In this paper, based on the study of relations between
pseudo-monomials, the authors present a computationally efficient iterative algorithm for the canonical
forms of the neural ideal. Additionally, we introduce a new relationship among the neurons’ receptive
fields, which can be characterized by if-and-only-if statements, relating both to JC and to a larger ideal
of a code I(C).

Keywords: neural code; neural ideals; canonical forms

1. Introduction

One of the pivotal realms of neuroscience research revolves around unraveling the intricate mecha-
nisms by which the brain perceives and interprets spatial information. Within this framework, neurons
in the brain employ sophisticated neural codes to encapsulate and manifest external stimuli. With the
continuous advancement of neuroscience technology, researchers’ ability to collect neural data is also
constantly increasing, hence the requirement for alternative methodologies to analyze and process these
data. A significant challenge in current research is understanding how brain processes encode environ-
mental spatial characteristics through neural activity patterns. In 2013, C. Curto and others studied the
encoding of the stimulus space region corresponding to each neuron [1, 2], introducing algebraic ob-
jects to present neural activity data in the form of neural codes, and mapping the corresponding codes
to pseudo-monomials in F2, thereby defining the related neural ring and neural ideal. The neural ring
is a quotient ring in F2, and the neural ideal encompasses the entire combinatorial dataset of neural
coding. This concept is represented by a unique set of minimal pseudo-monomials within the neural

http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2024145

3163

ideal, known as the canonical form, which is the minimal representation of the receptive field structure
in the stimulus space. Therefore, the study of stimulus space features can be transformed into the study
of the neural ideal or its canonical form. Since then, this field has been very active, especially in recent
years when some relatively important works have appeared. For example, the works [3–9] have done
a good job of processing the receptive field structure formed in the brain. The study of the specific
algorithm for the canonical form of neural ideals is a question of concern to many scholars at present.
In 2013, C. Curto and others gave the original method for computing the canonical form [1]. This
specific algorithm mainly uses ideas similar to monomial ideal theory and is implemented by comput-
ing the primary decomposition of the pseudo-monomial ideal. E. Petersen and others gave an iterative
method [10]. In the same year, A. R. Perez and others also involved the calculation of the canonical
form when studying the homomorphism that preserves the neural ideal on the neural ring [11]. We
have more interest in [10]. In [10], the authors present an alternative specific algorithm that diverges
from utilizing primary decomposition. Instead, it commences with the canonical form of a code made
up of a solitary codeword, proceeding to incorporate the residual codewords singly while readjusting
the canonical form correspondingly through iteration. But the specific algorithm should examine the
multiplication of f with all possible linear terms (xi− ci) and it involves individually verifying whether
f is indivisible by each xi − ci − 1. We offer some criteria that, by employing these principles, al-
low for the efficient identification of those pseudo-monomials whose product with (xi − ci) need not
be computed.

Besides, Curto et al. showed that the presence of certain types of polynomials in the neural ideal
gives information about the relationships among receptive fields. They found three receptive field rela-
tionships, known as the Type 1–3 relationships, that can be read off from the neural ideal. Later, Garcia
et al. discovered three more such relations, known as the Type 4–6 relations [2]. A. Morvant modified
statements of Type 4–6 as a if-and-only-if statements to both JC and I(C) [9]. Within this study, we
identify additional types of receptive field relationships that stem from non-pseudo-monomials.

The paper is organized as follows. Some basic concepts for neural ideals are introduced in Section 2.
In Section 3, the main results are presented. And in Section 4, we have presented an improved, specific
algorithm and clearly illustrated its modifications through a concrete example.

2. Preliminaries

Moving on to the next section, we give a short overview of the neural ideal of neural code. For a
more detailed background, including relevant theorems and proofs, please refer to [2].

Definition 1. A neural code on n neurons is a set of binary firing patterns C ⊆ {0, 1}n, and any vector
c within this set is referred to as a codeword.

Each individual codeword c within the context of a neural code represents a firing pattern of n
neurons: 1 signifies an active neuron, whereas 0 denotes an inactive or quiescent neuron. For example,
the presence of the word 0101 in a 4-neuron code would indicate an instance when neurons 2 and 4
were firing but neurons 1 and 3 were not.

Alternatively, a codeword is characterized by the collection of neurons that exhibit activity:

supp(c) := {i ∈ [n]|ci = 1} ⊆ [n].

Electronic Research Archive Volume 32, Issue 5, 3162–3170.

3164

Consequently, the entire neural code is associated with a set of subsets comprising neurons that fire
simultaneously: supp(C) = {supp(c)|c ∈ C} ⊆ 2[n].

Neurons like place cells, are activated in specific areas of a stimulus space, known as receptive fields.

Definition 2. Assume X be a stimulus space (such as X ⊆ Rd) and U = {U1, . . . ,Un} as a set of open
sets, where each Ui ⊆ X corresponds to the receptive field of the i-th neuron in a group of n neurons.
The receptive field code (RF code) C(U) ⊆ {0, 1}n is the set of all binary codewords corresponding to
stimuli in X:

C(U) def
=

c ∈ {0, 1}n
∣∣∣∣∣
 ⋂

i∈supp(c)

Ui

 \
 ⋃

j<supp(c)

U j

 , ∅
 .

In the previous discussion, we frequently associated this code with the set of corresponding subsets
within [n]. Moreover, when it comes to an empty intersection, we adhere to the following convention:⋂

i∈∅Ui = X.

Definition 3. A pseudo-monomial in F2[x1, ..., xn] is a polynomial exemplified by the following struc-
tural expression:

f =
∏
i∈σ

xi
∏
j∈τ

(1 + x j),

where σ, τ ∈ [n] with σ ∩ τ = ∅.
For any v ∈ {0, 1}n, consider the polynomial:

ρv =
n∏

i=1
(1 − vi − xi) =

∏
{i|vi=1}

xi
∏
{ j|v j=0}

(1 − x j).

Notice that ρv(x) acts as a characteristic function for v, since it satisfies ρv(v) = 1 and ρv(x) = 0 for
any x , v.

Definition 4. Let C ⊆ {0, 1}n be a neural code. The neural ideal JC ⊂ F2[x1, ..., xn] associated to the
neural code C is the ideal generated by the polynomials ρv with v < C, that is:

JC := {ρv|v < C}.

Notice that this implies that if f ∈ JC, then f (c) = 0 for any c ∈ C.

Definition 5. Let C ⊆ {0, 1}n be a neural code, then the ideal of C is:

I(C) := { f ∈ F2[x1, . . . , xn]|∀c ∈ C : f (c) = 0}.

By this definition, JC ⊆ I(C). A lemma is provided below, which gives a version in terms of algebra
for the previous assertion.

Lemma 6. ([1]) Let C ⊆ {0, 1}n be a neural code. Then:

I(C) = JC + ⟨xi(1 + xi)|i ∈ [n]⟩.

The collection of polynomials that make up a neural ideal offers a way to understand the connections
between the receptive fields within a stimulus space. These interconnections were initially explored
by Curto, Itskov, Veliz-Cuba, and Youngs, who identified the first three types of relationships [1]. To
abbreviate the notation, we introduce:

Electronic Research Archive Volume 32, Issue 5, 3162–3170.

3165

xσ =
∏
i∈σ

xi, and Uσ =
⋂
i∈σ

Ui.

Note that if σ = ∅, then xσ =
∏
i∈σ

xi = 1 and Uσ = X.

Lemma 7. ([1]) Given a stimulus space X and a collection of sets U = {Ui}
n
i=1 in X, we have the

receptive field code C = C(U). For any two subsets σ, τ ⊆ [n],

xσ
∏
i∈τ

(1 + xi) ∈ JC ⇐⇒ Uσ ⊆
⋃
i∈τ

Ui.

In essence, three distinct types of receptive-field relationships (RF relationships) can be extracted
from the pseudo-monomials within a neural ideal. For further details, please refer to reference [5].

Type 1: xσ ∈ JC ⇐⇒ Uσ = ∅ (where σ , ∅).

Type 2: xσ
∏
i∈τ

(1 + xi) ∈ JC ⇐⇒ Uσ ⊆
⋃
i∈τ

Ui (where σ, τ , ∅).

Type 3:
∏
i∈τ

(1 + xi) ∈ JC ⇐⇒ X ⊆
⋃
i∈τ

Ui (where τ , ∅), so X =
⋃
i∈τ

Ui.

In the present work, we identify additional types of receptive field relationships that stem from
non-pseudo-monomials.

Definition 8. Let JC be a neural ideal. Then its canonical form, indicated as CF(JC), is the set of all
minimal pseudo-monomials of JC.

Next, we will give the algorithm of the CF(JC).

3. Main results

We will present the main results of our paper in this section.

Theorem 9. If xi1 xi2 . . . xin + xin+1 + · · · + xin+m + 1 ∈ JC ⇐⇒ (
n⋂

k=1
Uik) ∪

(
m⋃

l=1
Uil

)
= X and Ui1 , . . . ,Uin+m

are pairwise disjoint.

Proof. “ ⇐ ” Suppose that (
n⋂

k=1
Uik)

⋃(
m⋃

l=1
Uil

)
= X and M = {in+1, ..., im+n},N = {i1, ..., in}. Then

n⋂
k=1

Uik = ∅ as Ui1 , . . . ,Uin are pairwise disjoint, and it follows that X =
m⋃

l=1
Uil . By the Type 3 relation,

we know that
∏
i∈M

(1+xi) ∈ JC,whereas
∏
i∈M

(1+xi) =
∑
τ⊆M

xτ. Furthermore, considering that Uin+1 , . . . ,Uin+m

are pairwise disjoint, by the Type 1 relation, xτ ⊆ JC for all τ ⊆ M where|τ| ≥ 2. Therefore,∏
σ⊆N

xσ
∑
τ⊆M

xτ +
∑

τ⊆M |τ|≥2
xτ =

∏
σ⊆N

xσ
∑

τ⊆M |τ|<2
xτ = 1 + xin+1 + · · · + xin+m + xi1 xi2 . . . xin ∈ JC.

“ ⇒ ” Let h = xi1 xi2 ...xin + xin+1 + xin+2 + ... + xim+n + 1, r ∈ X, then c(r) ∈ C. Next, we just need to

prove r ∈
(

n⋂
k=1

Uik

)⋃ (
m⋃

l=1
Uil

)
.

Then h(c(r)) = 0 as h ∈ JC, it follows:

c(r)i1c(r)i2 ...c(r)in + c(r)in+1 + c(r)in+2 + ... + c(r)im+n + 1 = 0,

Electronic Research Archive Volume 32, Issue 5, 3162–3170.

3166

so:

(1) There exist k ∈ [n], p ∈ [m], such that c(r)ip = 0 and c(r)ik = 1, where k is odd, or
(2) c(r)is = 1 for all s ∈ {1, ..., n} and c(r)in+1 + c(r)in+2 + ... + c(r)im+n = 0.

It follows that r ∈ Uil when (1) is correct, and r ∈ (
n⋂

l=1
Uil)

⋃
(

m⋃
k=1

Uik).

If (2) is true, then r ∈ ∩m
k=1Uik , similarly obtained r ∈ (

n⋂
l=1

Uil)
⋃

(
m⋃

k=1
Uik).

We can extend the above theorem from ideal JC to a larger ideal I(C).

Theorem 10. If xi1 xi2 . . . xin + xin+1 + · · ·+ xin+m +1 ∈ I(C)⇐⇒ (
n⋂

k=1
Uik)∪

(
m⋃

l=1
Uil

)
= X and Ui1 , . . . ,Uin+m

are pairwise disjoint.

Proof. Having established the validity of the reverse directions via the theorem above and the
inclusion relation JC ⊆ I(C), our remaining task is to establish the forward implications.

However, the demonstration procedure for the forward implications parallels that of the above the-
orem, with the sole modification being the substitution of “h ∈ JC” for “h ∈ I(C)”.

It can be gleaned from the above- mentioned theorem that JC and I(C) yield equivalent information
with regards to the stimulus space.

Definition 11. Let m1,m2 ∈ F2[x1, . . . , xn] be two pesudo-monomials. We say m1 and m2 share an
index i if xi divides one of them and 1 + xi divides the other. If a single pesudo-monomial is divisible
by xi(1 + xi), we do not count this as sharing an index with itself.

For example, x5(1 + x6) and x7(1 + x5) share the index 5. However, x5(1 + x6) and x5(1 + x7) share
no index, even though x5 divides both.

Before introducing the following theorem, let us first briefly review the algorithm mentioned in [10].
In [10], they must consider the product of f (which is a pseudo-monomial) with every possible linear
term (x j − c j) as a potential candidate for CF(JC); however, they also have to eliminate any such prod-
ucts deemed redundant. The process of scrutinizing each product individually results in significant
redundancy, which not only demands substantial memory usage but also reduces computational effi-
ciency. In the following, we introduce some criteria that can be used not only to swiftly identify which
pseudo-monomial products with (x j − c j) need not be computed but also to directly discern which of
these products are superfluous.

Theorem 12. Let f ∈ F2[x1, . . . , xn]. If f and (xi−ci) share indices i, then there is no need to calculate
their product.

Proof. Set f =
∏
i∈σ

xi
∏
l∈τ

(1 + xl), then there exists a specific index i ∈ τ or i ∈ σ such that under one

condition where (1 + xi)| f , xi also divides (xi − ci); Conversely, when f can be divided by xi, in this
case (1 + xi) also divides (xi − ci). Regardless of the given conditions, f × (xi − ci) will consistently
contain both xi and (1 + xi). As such, it can safely be removed.

According to the aforementioned theorem, there is no need to individually compute the product of
f and (xi − ci) like in the original specific algorithm; instead, we only need to compute the products
of f and (xi − ci) that do not share any indices. Furthermore, in the original specific algorithm after
calculating the product of f and (xi − ci), we still need to verify whether (xi − ci − 1) divides f or not.

Electronic Research Archive Volume 32, Issue 5, 3162–3170.

3167

Next, we present another determining condition under which verification of whether (xi−ci−1) divides
f becomes unnecessary.

Theorem 13. Let f ∈ F2[x1, . . . , xn], lt(f), (xi − ci) share no indices and gcd(lt(f), xi − ci) = 1, then
(xi−ci−1) ∤ f , where lt(f) refers to the leading term of the polynomial f under a given monomial order.

Proof. Using proof by contradiction, suppose (xi − ci − 1)| f , in that case, (xi − ci − 1)|lt(f); hence,
(xi − ci) shares indices with lt(f), which contradicts the premise.

4. Algorithm and example

Based on the above theorem, in this section we have presented an improved specific algorithm and
clearly illustrated its modifications using a concrete example.

To further improve the efficiency of the specific algorithm given in [10], we propose some criteria to
detect the useless production of f and (xi−ci). First, we propose the conception of sharing an index and
prove that the production is useless if lt(f) and (xi− ci) share an index. Second, we propose the leading
term coprime to detect not only useless production but also eliminate the process of examining whether
f is divisible by (xi−ci−1). Hence, the proposed algorithm has the potential to significantly enhance the
computational efficiency of the initial, specific algorithm. We refer to the improved, specific algorithm
in Figure 1.

An improvement specific algorithm for canonical form
Input: CF(JC) = { f1, ..., fk}, a codeword c ∈ {0, 1}n.
Output: CF(JC∪{c}).
Variables: L← { },M ← { },N ← { }
step 1: Compute f j(c) where j from 1 to k

step 1a:if f j(c) = 0 then L← L ∪ { f j};
step 1b: if f j(c) , 0 then M ← M ∪ { f j};

step 2: Take any f j ∈ M where j ranges from 1 to k.
step 2a: if lt(f j) and (xi − ci) share indices i then go to step 2,

where i from 1 to n. (The same applies for i below.)
step 2b: if lt(f j) and (xi−ci) share no indices and gcd(lt(f j), (xi−

ci)) = 1 then go to step 2;
step 2c: if lt(f j) and (xi−ci) share no indices and gcd(lt(f j), (xi−

ci)) , 1 then compute f j(xi − ci).
step 2c1: if f j(xi − ci) is not divisible by any element of L then

N ← N ∪ { f j(xi − ci)}, go to step 2;
step 2c2: if f j(xi − ci) can be divisible by some element of L

then delete it, go to step 2.
Until: M = ∅.
return: L ∪ N = CF(JC∪{c})

Figure 1. An improvement- specific algorithm for canonical forms.

Electronic Research Archive Volume 32, Issue 5, 3162–3170.

3168

Subsequently, we shall furnish a demonstration of the specific algorithm’s validity.

Lemma 14. The set L ∪ N in the specific algorithm does not contain elements that are multiples of
each other.

Proof. We will complete the proof from four aspects.
(1) The set L does not contain elements that are multiples of each other. According to the specific

algorithm, set L belongs to CF(JC), so it is evident that there are no elements in L that are multiples of
each other.

(2) According to the specific algorithm, we discard them if they are a multiples of anything in L, so
the elements in N cannot be multiples of the elements in L.

(3) There are no elements in N that are multiples of any other elements in N.
We shall employ proof by contradiction to demonstrate that this scenario is untenable.
Suppose f (xi−ci), h(xk−ck) ∈ N, and there is a pseudo-monomial m, such that f (xi−ci) = mh(xk−ck),

then it follows that i , k as f ∤ h and h ∤ f , so (xk − ck) | f , and furthermore f (xk − ck) = f . Similarly,
if h(xi − ci) = h, then:

f f (xi − ci) = mh(xk − ck) f ⇒ f (xi − ci) = mh

and

f (xi − ci)h = mhh⇒ f = mh,

which is a contradiction. So (3) is correct.
(4) There are no elements in L that are multiples of any other elements in N.
Assuming that f (xi− ci)m = h, where f (xi− ci) ∈ N, h ∈ L, and m is a pseudo-monomial, then f | h;

however, this is impracticable due to the fact that f , h ∈ CF(JC).
In summary, the lemma holds.

Theorem 15. If C, c ∈ {0, 1}n, and L, N are the sets mentioned pertain to those described in the specific
algorithm, then L ∪ N = CF(JC∪{c}).

Proof. First, we show L ∪ N ⊂ CF(JC∪{c}). For any h ∈ L ∪ N, there exist f j ∈ CF(JC) and
(xi − ci) ∈ CF(J{c}) such that h = f j(xi − ci). It follows that h ∈ JC as f j | h and h ∈ J{c} as (xi − ci) | h.
Then h(c

′

) = 0 for any c
′

∈ C ∪ {c}, which means h ∈ JC∪{c}. Thus, there exists f
′

i ∈ CF(JC∪{c}), such
that h = h1 f

′

i . But as there are no elements in L ∪ N that are multiples of any other elements in L ∪ N,
h = f

′

i , furthermore, h ∈ CF(JC∪{c}).
For the converse inclusion, let us postulate h ∈ CF(JC∪{c}), then there is some f j ∈ CF(JC), such

that h = h1 f j as JC∪{c} ⊂ JC, where h1 is a pseudo-monomial. Similarly, there are some elements of
CF(J{c}), and let us just assume it is (xi − ci) such that h = (xi − ci)h2, where h2 is a pseudo-monomial.
So h is a multiple of f j(xi−ci). Therefore, f j(xi−ci) either belongs to L∪N or is a multiple of elements
in L ∪ N. But as h ∈ CF(JC∪{c}), h can-not be a multiple of elements in L ∪ N. Then h ∈ L ∪ N, and
CF(JC∪{c}) ∈ L ∪ N.

Next, we will illustrate the operational steps and improvements of the new specific algorithm
through a specific example.

Example 1: Let C = (001, 010, 110), then the canonical form of it is CF(JC) = (x1x2, (1 + x1)(1 +
x2), x0(1 + x1), x0x2), and we denote them as f1, f2, f3, f4, respectively.

Electronic Research Archive Volume 32, Issue 5, 3162–3170.

3169

Now add a new code c = (111).
Next, we calculate CF(JC∪{c}) according to the specific algorithm.

f1(c) = 1, f2(c) = 0, f3(c) = 0, f4(c) = 1.

Add f2, f3 to L and f1, f4 to M. Chose f1 from M, then lt(f1) = x1x2. Besides, (xi − ci) is (x0 −

1), (x1 − 1), and (x2 − 1), respectively. After verification, it was found that lt(f1) and x1 − 1, x2 − 1,
share indicators, respectively. Therefore, according to Theorem 3.3, there is no need to calculate the
product of them.

gcd(lt(f1), x0 − 1) = 1 and f1(x0 − 1) = x1x2(x0 − 1), which cannot be expressed as the product of an
elemental constituent of the set L, so add it to N and label it as f5.

We chose f4, which shares indicators respectively with (x0 − 1) and (x2 − 1), as a result, it would
be unnecessary to proceed with calculating the product between them. Hence, we will simply skip
this step.

But gcd(lt(f4), (x1 − 1)) = 1, therefore, we need to calculate the product of them,

f4(x1 − 1) = x0x2(x1 − 1),

which is not divisible by any element of L, so add it to N, label it as f6.
Finally, we obtained the CF(JC) = (f2, f3, f5, f6).
Remark To further clarify, the aforementioned calculation examples demonstrate the benefits of

reducing the number of multiplication operations required for calculating the products of f1 and (x1 −

1), (x2 − 1), as well as f2 and (x0 − 1), (x2 − 1). and we also do not need to verify whether (x j −

c j − 1) divides fi. By eliminating these additional multiplication calculations and simplifying the
process, we achieve improved efficiency and significantly reduce the amount of time required for the
overall computation.

5. Conclusions

In this study, we introduce an improved, specific algorithm for computing canonical forms of neural
ideals. This new specific algorithm provides several criteria, resulting in a reduction of computational
requirements and increased efficiency. Moreover, we introduce a new RF-relation and extend it from
JC to I(C). Identifying such receptive field relationships is an interesting direction for future work.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This research was supported by the National Natural Science Foundation of China under Grant
Nos. 12201204, 11971161, and 12271154, and the Natural Science Foundation of Hunan Provincial
under Grant Nos. 2022JJ30234 and 2023JJ40275, Scientific Research Fund of Hunan Province Edu-
cation Department under Grant Nos. 21A0299 and 22A0334.

Electronic Research Archive Volume 32, Issue 5, 3162–3170.

3170

Conflict of interest

The authors declare there is no conflict of interest.

References

1. C. Curto, V. Itskov, A. Veliz-Cuba, N. Youngs, The neural ring: an algebraic tool for an-
alyzing the intrinsic structure of neural codes, Bull. Math. Biol., 75 (2013), 1571–1611.
https://doi.org/10.1007/s11538-013-9860-3

2. C. Curto, N. Youngs, Neural ring homomorphisms and maps between neural codes, in Topological
Data Analysis, (2020), 163–180. https://doi.org/10.1007/978-3-030-43408-3 7

3. C. Giusti, E. Pastalkova, C. Curto, V. Itskov, Clique topology reveals intrin-
sic geometric structure in neural correlations, PNAS, 112 (2015), 13455–13460.
https://doi.org/10.1073/pnas.1506407112

4. C. S. Gunturkun, J. Jeffries, J. Sun, Polarization of neural rings, J. Algebra Appl., 19 (2020),
2050146. https://doi.org/10.1142/S0219498820501467

5. H. Geller, R. G. Rebecca, Canonical forms of neural ideals, preprint, arXiv:2209.09948.

6. D. Li, J. Liu, L. Zheng, A zero-dimensional valuation ring is 1-Gröbner , J. Algebra, 484 (2017),
334–343. https://doi.org/10.1016/j.jalgebra.2017.04.015

7. L. Zheng, D. Li, J. Liu, An improvement for GVW, J. Syst. Sci. Complexity, 35 (2022), 427–436.
https://doi.org/10.1007/s11424-021-9051-5

8. L. Zheng, D. Li, J. Liu, Some improvements for the specific algorithm of Gröbner
bases over dual valuation domain, Electron. Res. Arch., 31 (2023), 3999–4010.
https://doi.org/10.3934/era.2023203

9. A. Morvant, Strengthening relationships between neural ideals and receptive fields, preprint,
arXiv:1803.03204.

10. E. Petersen, N. Youngs, R. Kruse, D. Miyata, R. Garcia, L. D. G. Puente, Neural ideals in Sage-
Math, in Mathematical Software – ICMS 2018, (2018), 182–190. https://doi.org/10.1007/978-3-
319-96418-8 22

11. A. R. Perez, L. F. Matusevich, A. Shiu, Neural codes and the factor complex, Adv. Appl. Math.,
114 (2020), 101977. https://doi.org/10.1016/j.aam.2019.101977

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 32, Issue 5, 3162–3170.

http://dx.doi.org/https://doi.org/10.1007/s11538-013-9860-3
http://dx.doi.org/https://doi.org/10.1007/978-3-030-43408-3_7
http://dx.doi.org/https://doi.org/10.1073/pnas.1506407112
http://dx.doi.org/https://doi.org/10.1142/S0219498820501467
http://dx.doi.org/https://doi.org/10.1016/j.jalgebra.2017.04.015
http://dx.doi.org/https://doi.org/10.1007/s11424-021-9051-5
http://dx.doi.org/https://doi.org/10.3934/era.2023203
http://dx.doi.org/https://doi.org/10.1007/978-3-319-96418-8_22
http://dx.doi.org/https://doi.org/10.1007/978-3-319-96418-8_22
http://dx.doi.org/https://doi.org/10.1016/j.aam.2019.101977
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Main results
	Algorithm and example
	Conclusions

