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Abstract: Random environment and human activities have important effects on the survival of listeria.
In this paper, treating infected people and removing bacteria from the environment as control strategies,
we developed a listeriosis model that considers random noise and spatial diffusion. By constructing a
Lyapunov function, we demonstrated the existence and uniqueness of the global positive solution of
the model. However, it was a challenging task to realize the optimal control of the model by solving
the Pontryagin random maximum principle with the lowest control cost. Therefore, our study on
near-optimal controls is of great significance for controlling the spread of listeriosis. Initially, we gave
some adjoint equations and a priori estimates. Subsequently, the Pontryagin random maximum principle
was utilized to establish the sufficient and necessary conditions for achieving near-optimal controls.
Ultimately, the theoretical findings are corroborated through numerical analysis.
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spatial diffusion

1. Introduction

Listeriosis is a serious foodborne bacterial infection in humans and animals, caused by Listeria
monocytogenes [1, 2]. Listeria is mostly found in soil, unclean water (lakes, rivers), plants, refrigerators,
and food [3]. Listeriosis in humans is caused by eating food contaminated with inappropriate listeria or
by direct contact with bacteria in the environment. Animals that eat plants and water contaminated with
listeria are susceptible to listeriosis. Listeriosis can present as bacteremia, meningitis or meningoen-
cephalitis [4]. The World Health Organization reports that the 2017–2018 listeriosis outbreak in South
Africa is the largest global outbreak recorded to date, with 978 confirmed cases reported by the National
Institute of Communicable Diseases between 1 January 2017 and 14 March 2018 [5]. Listeriosis is a
rare disease, with a reported occurrence of 0.1 to 10 cases per 1 million people annually, depending on
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the geographic location and the prevalence of infection [6]. Nevertheless, the substantial fatality rate
and the expenses related to its treatment underscore its importance as a significant public health concern.
Therefore, the study of listeriosis has attracted the attention of many scholars.

Mathematical models are essential in the examination of the dynamic characteristics of listeriosis. So
far, several ordinary differential listeriosis models have been established and their dynamic behavior has
been discussed in detail [7–10]. For example, Asamoah et al. [7] established the presence and singular
nature of the solutions, and conducted an examination of their stability using the Hyers-Ulam method.
Chukwu et al. [8] considered the factors of listeria cross-contamination in food processing plants,
determined the pollution threshold and performed a time-dependent sensitivity analysis. Osman et al. [9]
conducted a study to investigate the presence of a disease-free equilibrium point and the basic reproduc-
tion number. They employed sensitivity analysis to assess the impact of individual parameters on the
basic reproduction number. Chukwu et al. [10] identified food contamination thresholds, discussed local
stability, and performed numerical simulations to assess the impact of media campaigns on listeriosis
transmission. The references [7–10] discussed above does not consider the effects of random noise and
spatial diffusion. Indeed, it is understood that the dissemination of listeria is influenced by stochastic
variables such as temperature, humidity, and meteorological conditions. When the environment is
suitable for the growth of Listeria, Listeria will multiply and spread rapidly. A great deal of research
has been done on the effects of random noise on infectious diseases [11–13] . On the other hand, we
know that listeria mainly attaches to food and water. With the rapid development of modern logistics
and transportation, food flows between regions are becoming more and more frequent, which promotes
the spread of listeria in different regions. Therefore, it is necessary to consider random noise and spatial
diffusion during modeling.

From the perspective of control, when a disease breaks out, in order to minimize the cost of health
care, we tend to artificially add some control measures, such as isolation treatment, vaccination, etc.
Studies on listeriosis mainly focus on dynamic behavior, and there are few studies on this disease
control, such as [14, 15]. They use Pontryagin maximum principle to give the expression of the optimal
control theoretically. Compared with near-optimal control, first of all, the optimal control is sensitive to
the disturbance of the external random environment, while the near-optimal control has a larger range
and is more inclusive to the disturbance of the random environment. Second, the optimal control can
generally be obtained by solving Hamilton-Jacobi-Bellman equation, but its exact solution is difficult to
obtain, so the most feasible method is to determine the near-optimal control by numerical calculation.
Furthermore, it is possible that an optimal control solution may not be attainable. As an illustration,
scholars have discussed in [16] that in the optimal production plan of a manufacturing system, in the
random scenario, it is not possible to determine the most effective approach for the zero-inventory
strategy. Finally, from a practical point of view, the optimal control [17] is to prevent and control all
susceptible people, but it will cause more waste of medical resources in real life, and the solution that is
close to the optimal can meet the prevention and control purpose of decision makers.

In light of the preceding discourse, we present a listeriosis model that incorporates the impacts of
stochastic noise and spatial diffusion. The study aims to obtain the sufficient and necessary conditions
for the near-optimal controls of listeriosis. Initially, the existence and uniqueness of the global positive
solution are established through the utilization of a Lyapunov function. Subsequently, the adjoint
equation and prior estimates are presented. Ultimately, the Pontryagin maximum principle is employed
to derive the sufficient and necessary conditions for near-optimal controls. Below, we provide a concise
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overview of the major contributions presented in this article:

• Taking into account the impact of environmental variables, including temperature, humidity,
weather, and human factors such as logistics, a model for listeriosis is developed. This model
incorporates stochastic noise and spatial diffusion, building upon the framework discussed in
the reference [4].
• The Pontryagin maximum principle is utilized to derive both the sufficient and necessary conditions,

and a computational algorithm is provided. The resulting conclusion pertains to the expansion of
the findings in the referenced work by [14].

The subsequent sections of this article are structured in the following manner. In Section 2, the model
is established and the objective function is constructed. In Section 3, the existence and uniqueness
of global positive solutions are demonstrated, and the adjoint equations of stochastic systems are
given, along with the provision of some preliminary estimates. In Section 4, the research investigates
the sufficient and necessary conditions for near-optimal controls in models of listeriosis with spatial
diffusion and stochastic noise. In Section 5, numerical simulations are presented to prove the theoretical
results. Ultimately, the paper concludes with the findings presented in Section 6.

2. Model formulation

In this section, we will describe the process of building the model and give some assumptions. In
recent years, models of various forms of listeriosis have been established, for example [4, 7–10]. In [4],
Chukwu et al. mentioned the listeriosis model.

dS(t)
dt
= Λ + θLRL(t) − (µ + βLL(t))S (t),

dIL(t)
dt
= βLL(t)S (t) − (σL + δL + µ)IL(t),

dRL(t)
dt

= σLIL(t) − (θL + µ)RL(t),

dL(t)
dt
= rLL(t)(1 −

L(t)
KL

) − (ε + r)L(t),

(2.1)

where S (t), IL(t), RL(t), L(t) represent the population density of susceptible, infected, recovered persons
and the listeria contaminated environment at time t, respectively. The other parameters of the model as
Table 1.

Observations show that the system (2.1) does not take into account the effects of spatial diffusion.
However, it is understood that the scope of human activities is not static. On the other hand, in modern
society, logistics and transportation are convenient, and Listeria is generally attached to meat, vegetables,
and other foods, which accelerates the spread of Listeria between regions. Listeria also exists in large
quantities in water and soil, and the flow of water can also cause the spread of listeria. Because bacteria
can flow through humans and the environment, we introduce spatial diffusion to the system (2.1) using
the same method as in article [17].
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Table 1. Parameter values of numerical experiments for system (2.1).

Parameter Meaning
Λ the migration rate
σL the transfer rate from IL to RL

µ the natural death rate of a person
βL the infection rate of listeriosis
rL the growth rate of listeria
KL the carrying capacity of listeria
δL the mortality rate of listeriosis
θL the listeriosis immunity loss rate
ε the mortality rate of bacteria in the environment
r the hygiene clearance rate



∂S (x, t)
∂t

= d1∆S (x, t) + Λ + θLRL(x, t) − (µ + βLL(x, t))S (x, t),

∂IL(x, t)
∂t

= d2∆IL(x, t) + βLL(x, t)S (x, t) − (σL + δL + µ)IL(x, t),

∂RL(x, t)
∂t

= d3∆RL(x, t) + σLIL(x, t) − (θL + µ)RL(x, t),

∂L(x, t)
∂t

= d4∆L(x, t) + rLL(x, t)(1 −
L(x, t)

KL
) − (ε + r)L(x, t),

(2.2)

with boundary condition

∂S (x, t)
∂ν

=
∂IL(x, t)
∂ν

=
∂RL(x, t)
∂ν

=
∂L(x, t)
∂ν

= 0, x ∈ ∂Ω, t > 0, (2.3)

and initial condition

S (x, 0) = S 0(x) ≥ 0, IL(x, 0) = IL,0(x) ≥ 0,RL(x, 0) = RL,0(x) ≥ 0, L(x, 0) = L0(x) ≥ 0, (2.4)

where Ω represents a bounded field with smooth boundary; ∆ is Laplacian; the variables S (x, t), IL(x, t),
and RL(x, t) denote the population density of individuals who are susceptible, infected, and recovered at
location x and time t; L(x, t) stands for the density of the contaminated environment; d1, d2, and d3 are
human diffusion coefficients; and d4 represents the diffusion coefficient of bacteria in the environment.

For listeria, both climatic and human factors can cause changes in the number of bacteria in the
environment. For example, high-temperature disinfection can effectively reduce the number of bacteria
in the environment; for humans, areas with high concentrations of listeria have higher rates of disease
and increased mortality. Hence, the mortality rate of bacteria in the environment, denoted as ε, and the
inherent mortality rate of humans, denoted as µ, will be disrupted. We express the disturbance in the
following form:

µdt = µdt + ξ1dB1(t), εdt = εdt + ξ2dB2(t). (2.5)

The variable ξi for i = (1, 2) represents the noise intensity, while Bi(t) for i = (1, 2) denotes
independent standard Brownian motion. We can express system (2.2) in the following form:
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dS (x, t) = [d1∆S (x, t) + Λ + θLRL(x, t) − (µ + βLL(x, t))S (x, t)]dt − ξ1S (x, t)dB1(t),
dIL(x, t) = [d2∆IL(x, t) + βLL(x, t)S (x, t) − (σL + δL + µ)IL(x, t)]dt − ξ1IL(x, t)dB1(t),
dRL(x, t) = [d3∆RL(x, t) + σLIL(x, t) − (θL + µ)RL(x, t)]dt − ξ1RL(x, t)dB1(t),

dL(x, t) = [d4∆L(x, t) + rLL(x, t)(1 −
L(x, t)

KL
) − (ε + r)L(x, t)]dt − ξ2L(x, t)dB2(t).

(2.6)

Next, incorporate control variables into the system. If U denotes a closed set that is both bounded
and nonempty, and for a specified terminal time T , the control u(·) : [0,T ] ×Ω→ U is Ft-predictable.
Then, we denote U ∈ R as admissible. Assuming u(·) = ui(x, t) = (u1(x, t), u2(x, t))T , where ui(x, t) ∈
Uad(Ω× [0,T ]), i = 1, 2, where Uad(Ω× [0,T ]) is an allowable control set. The function u1(x, t) denotes
the proportion of individuals who are infected. To study the effect of sanitary removal on bacteria in the
environment, we may wish to consider replacing sanitary removal r with u2(x, t) to better highlight the
impact of control measures on disease transmission, where u2(x, t) indicates the extent to which sanitary
measures remove bacteria, 0 ≤ ui(x, t) ≤ 1, i = 1, 2. According to reference [18], the number of people
who have recovered due to medication treatment is cu1(x,t)IL(x,t)

1+αIL(x,t) , where c > 0, α ≥ 0. Therefore, we have
the following random system:

dS (x, t) = [d1∆S (x, t) + Λ + θLRL(x, t) − (µ + βLL(x, t))S (x, t)]dt − ξ1S (x, t)dB1(t),

dIL(x, t) = [d2∆IL(x, t) + βLL(x, t)S (x, t) − (σL + δL + µ)IL(x, t) −
cu1(x, t)IL(x, t)

1 + αIL(x, t)
]dt − ξ1IL(x, t)dB1(t),

dRL(x, t) = [d3∆RL(x, t) + σLIL(x, t) − (θL + µ)RL(x, t) +
cu1(x, t)IL(x, t)

1 + αIL(x, t)
]dt − ξ1RL(x, t)dB1(t),

dL(x, t) = [d4∆L(x, t) + rLL(x, t)(1 −
L(x, t)

KL
) − (ε + u2(x, t))L(x, t)]dt − ξ2L(x, t)dB2(t),

Z(0) = Z0.
(2.7)

Remark 1. At the end of the modeling process, the final system (2.7) is based on the system (2.1), which
adds the influence of random noise and spatial diffusion, and introduces the control variables u1(x, t)
and u2(x, t). We know that in the real environment, temperature, humidity, climate, and other factors are
important factors affecting the growth of Listeria, and logistics transportation will also speed up the
spread of Listeria between regions. On the other hand, it is very meaningful to study how to control the
spread of infectious diseases, so we introduce control variables u1(x, t) and u2(x, t) in the model.

The set Uad[0,T ] denotes the collection of permissible controls, where the control u(·) ∈ Uad[0,T ],
and the system described by Eq (2.7) possesses a solution that is adapted to the filtration Ft. ∥ ·
∥ represents the Euclidean space norm, where ∥x∥2 =

√
⟨x, x⟩. For convenience, define Z(x, t) =

(S (x, t), IL(x, t),RL(x, t), L(x, t))T .
The objective function is represented as follows:

J(0,Z0; u1(x, t), u2(x, t)) = E{
∫ T

0

∫
Ω

Y(Z(x, t), u1(x, t), u2(x, t))dxdt +
∫
Ω

h(Z(x,T ))dx}, (2.8)
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where Y(Z(x, t), u1(x, t), u2(x, t))= B1IL(x, t) + B2L(x, t) + 1
2 B3u2

1(x, t) + 1
2 B4u2

2(x, t).
∫ T

0

∫
Ω

( 1
2 B3u2

1(x, t) +
1
2 B4u2

2(x, t))dxdt represents the total cost of using the control policy.
∫ T

0

∫
Ω

(B1IL(x, t)+B2L(x, t))dxdt in-
dicates the number of infected people and contaminated environments.

∫
Ω

h(Z(x,T ))dx indicates
the number of infected individuals at terminal time T and the number of contaminated environ-
ments at that time. The variables Bi(i = 1, 2, 3, 4) represent the weights assigned to the functions
IL(x, t), L(x, t), u1(x, t), and u2(x, t). Ultimately, the primary challenge in the control problem lies in
identifying an admissible control that minimizes the objective function J(0,Z0; u1(x, t), u2(x, t)) for
u1(x, t), u2(x, t) ∈ Uad. The value function is formally defined as

V(0,Z0) = inf
u1,u2∈Uad

J(0,Z0; u1(x, t), u2(x, t)). (2.9)

Figure 1 depicts the schematic representation of the system described by Eq (2.7), designed to
minimize the prevalence of illness and environmental pollution.

Figure 1. Schematic diagram of system (2.7).

In this article, the the stated assumptions are considered to be valid.
(H1): For all 0 ≤ t ≤ T , Z(x, t), Z̄(x, t) ∈ R4

+. The function Z(x, t) and Z̄(x, t) are continuous, and there
exists a constant C satisfying the given condition.

| h(Z(x, t)) − h(Z̄(x, t)) |≤ C | Z(x, t) − Z̄(x, t) |,

and
| hZ(x,t)(Z(x, t)) − hZ̄(x,t)(Z(x, t)) |≤ C | Z(x, t) − Z̄(x, t) |,

(H2): The set of controls, denoted asUad, exhibits convexity.
In the above, we mainly established a listeriosis model (2.7) and established the objective func-

tion (2.8), so as to study the near-optimal controls theory. Since (2.7) is a newly established model, it is
imperative to demonstrate the existence and uniqueness of the positive solution.
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3. Existence and uniqueness of the global positive solution and some prior estimates

Before determining the sufficient and necessary conditions for near-optimal controls, it is crucial to
verify the existence and uniqueness of the global positive solution. Therefore, we present the following
lemma. Then, we give the adjoint equations and some lemmas, which lay the foundation for the
subsequent proof.

3.1. Existence and uniqueness of the global positive solution

Lemma 3.1. For any initial data (S 0, IL,0,RL,0, L0), the solution Z(x, t) = (S (x, t), IL(x, t),RL(x, t), L(x, t))
of system (2.7) satisfies that

lim sup
t→∞

((S (x, t), IL(x, t),RL(x, t), L(x, t)) < ∞. (3.1)

The evidence is presented in Appendix A1.
Subsequently, we establish the existence and uniqueness of the global positive solution for the system

represented by Eq (2.7).

Theorem 3.1. For any given initial data set (S 0, IL,0,RL,0, L0) > 0, there exists a singular positive
solution (S (x, t), IL(x, t),RL(x, t), L(x, t)) to system (2.7) for t > 0 on Ω.

Proof. The coefficients of system (2.7) satisfy the local Lipschitz condition, guaranteeing the existence
of a unique local solution t ∈ [0, τe), where τe denotes the explosion time. Let l0 > 1, such that it is
sufficiently large to ensure that every initial value falls within the range of 1

l0
to l0. For every integer

l > l0, establish the stopping time.

τl = inf{t ∈ [0, τe] : min(S (x, t), IL(x, t),RL(x, t), L(x, t)) ≤
1
l

or max(S (x, t), IL(x, t),RL(x, t), L(x, t)) ≥ l}.
(3.2)

The empty set is assigned a value of infinity, which is represented as in f ∅ = ∞, with ∅ indicating
the empty set. As the parameter l approaches infinity, the function τl is increasing. τ∞ = lim

l→∞
τl, then

τ∞ < τe, a.s. In the subsequent analysis, it is necessary to demonstrate that τ∞ = ∞ almost surely.
Therefore, using the Itô formula, the following formula can be obtained

d(∥S (x, t)∥2 + ∥IL(x, t)∥2 + ∥RL(x, t)∥2 + ∥L(x, t)∥2)
= {2⟨S (x, t), d1∆S (x, t) + Λ + θLRL(x, t) − (µ + βLL(x, t))S (x, t)⟩ + 2⟨IL(x, t), d2∆IL(x, t)

+ βLL(x, t)S (x, t) − (σL + δL + µ)IL(x, t) −
cu1(x, t)IL(x, t)

1 + αIL(x, t)
⟩ + 2⟨RL(x, t), d3∆RL(x, t)

+ σLIL(x, t) − (θL + µ)RL(x, t) +
cu1(x, t)IL(x, t)

1 + αIL(x, t)
⟩ + 2⟨L(x, t), d4∆L + rLL(x, t)(1 −

L(x, t)
KL

)

− εL(x, t)⟩ + ξ2
1(t)∥S (x, t)∥2 + ξ2

1(t)∥IL(x, t)∥2 + ξ2
1(t)∥RL(x, t)∥2 + ξ2

2(t)∥L(x, t)∥2}dt

+ 2⟨S (x, t),−ξ1(t)S (x, t)dB1(t)⟩ + 2⟨IL(x, t),−ξ1(t)IL(x, t)dB1(t)⟩
+ 2⟨RL(x, t),−ξ1(t)RL(x, t)dB1(t)⟩ + 2⟨L(x, t),−ξ2(t)L(x, t)dB2(t)⟩.

(3.3)
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May as well assume l > l0 and T > 0; Next, we will perform the integration of both sides of Eq (3.3)
from 0 to τl ∧ T and subsequently calculate the expectations.

E[∥S (x, τl ∧ T )∥2 + ∥IL(x, τl ∧ T )∥2 + ∥RL(x, τl ∧ T )∥2 + ∥L(x, τl ∧ T )∥2] − (∥S 0∥
2 + ∥IL,0∥

2 + ∥RL,0∥
2 + ∥L0∥

2)

≤ E
∫ τl∧T

0
{−2⟨∇S (x, s), d1∇S (x, s)⟩ + 2⟨Λ, S (x, s)⟩ + 2⟨θLIL(x, s), S (x, s)⟩ − 2⟨∇IL(x, s), d2∇IL(x, s)⟩

+ 2⟨IL(x, s), βLL(x, s)S (x, s)⟩ − 2⟨∇RL(x, s), d3∇RL(x, s)⟩ + 2⟨RL(x, s), σLIL(x, s)⟩

+ 2⟨RL(x, s),
cu1(x, s)IL(x, s)

1 + αIL(x, s)
⟩ − 2⟨∇L(x, s), d4∇L(x, s)⟩ + 2⟨L(x, s), rLL(x, s)(1 −

L(x, s)
KL

)⟩

+ ξ21∥S (x, s)∥2 + ξ21∥IL(x, s)∥2 + ξ21∥RL(x, s)∥2 + ξ22∥L(x, s)∥2}ds

≤ E
∫ τl∧T

0
{−2d1λ0∥S (x, s)∥2 + 2⟨Λ, S (x, s)⟩ + 2⟨θLRL(x, s), S (x, s)⟩ − 2d2λ0∥IL(x, s)∥2

+ 2⟨IL(x, s), βLL(x, s)S (x, s)⟩ − 2d3λ0∥RL(x, s)∥2 + 2⟨L(x, s), σLIL(x, s)⟩ + 2⟨RL(x, s),
cu1(x, s)IL(x, s)

1 + αIL(x, s)
⟩

− 2d4λ0∥L(x, s)∥2 + 2⟨L(x, s), rLL(x, s)(1 −
L(x, s)

KL
)⟩ + ξ21∥S (x, s)∥2

+ ξ21∥IL(x, s)∥2 + ξ21∥RL(x, s)∥2 + ξ22∥L(x, s)∥2}ds,

where λ0 = infu∈H ∥∇u(x, s)∥2/∥u(x, s)∥2.
Then according to Lemma 3.1 and fundamental inequality, we have

E[∥S (x, τl ∧ T )∥2 + ∥IL(x, τl ∧ T )∥2 + ∥RL(x, τl ∧ T )∥2 + ∥L(x, τl ∧ T )∥2]

≤ (∥S 0∥
2 + ∥IL,0∥

2 + ∥RL,0∥
2 + ∥L0∥

2) + E
∫ τl∧T

0
{−2d1λ0∥S (x, s)∥2 + Λ2 + 2∥S (x, s)∥2 + θ2L∥RL(x, s)∥2

− 2d2λ0∥IL(x, s)∥2 + β2
LS 2∥L(x, s)∥2 + ∥IL(x, s)∥2 − 2d3λ0∥RL(x, s)∥2 + 2∥RL(x, s)∥2 + σ2

L∥IL(x, s)∥2

+ c2u1(x, s)∥IL(x, s)∥2 − 2d4λ0∥L(x, s)∥2 + ∥L(x, s)∥2 + rL∥L(x, s)∥2 + ξ21∥S (x, s)∥2 + ξ21∥IL(x, s)∥2

+ ξ21∥RL(x, s)∥2 + ξ22∥L(x, s)∥2}ds

≤ M2 + M3E
∫ τl∧T

0
∥S (x, s)∥2 + ∥IL(x, s)∥2 + ∥RL(x, s)∥2 + ∥L(x, s)∥2ds,

where

M2 = ∥S 0∥
2 + ∥IL,0∥

2 + ∥RL,0∥
2 + ∥L0∥

2 + Λ2τl,

M3 = max{(2+ξ2
1−2d1λ0), (1+σ2

L+ξ
2
1+c2u2

1−2d2λ0), (2+ξ2
1+θ

2
L−2d3λ0), (1+β2

LM2
1+rL+ξ

2
2−2d4λ0)}.

By the Gronwall inequality

E[∥S (x, τl ∧ T )∥2 + ∥IL(x, τl ∧ T )∥2 + ∥RL(x, τl ∧ T )∥2 + ∥L(x, τl ∧ T )∥2] ≤ M2eM3T . (3.4)

Define

λl = inf
∥Z(x,t)∥>l,0<t<∞

(∥S (x, t)∥2 + ∥IL(x, t)∥2 + ∥RL(x, t)∥2 + ∥L(x, t)∥2), f or any l > l0. (3.5)

Combine Eqs (3.4) and (3.5) to get

λlP(τl ≤ T ) ≤ M2eM3T . (3.6)
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Because lim
l→∞
λl = ∞, for inequality (3.6), let l→ ∞,we can get P(τ∞ ≤ T ) = 0, namely,

P(τl ≥ T ) = 1. (3.7)

The evidence has been effectively demonstrated, thereby confirming the presence of a unique
worldwide positive solution for the system delineated by Eq (2.7).

3.2. Some prior estimates

In this article, the focus has been on the examination of near-optimal controls as opposed to optimal
control, and a number of fundamental definitions have been outlined to differentiate between the two.

Definition 3.2. [19] An admissible pair {Z∗(·), u∗(·)} or an admissible control u∗(·) is referred to as an
optimal control if it minimizes the value of J(0,Z0; u∗(·)).

Definition 3.3. [19] For any value of ε > 0, an admissible pair {Zε(·), uε(·)} or an admissible control
uε(·) is called ε-optimal, if

|J(0,Z0; uε(·)) − V(0,Z0)| ≤ ϵ.

Definition 3.4. [19] A set of admissible pairs {Zε(·), uε(·)} is indexed by the parameter ε > 0. Any
member uε(·) within this set is referred to as near-optimal if

|J(0,Z0; uε(·)) − V(0,Z0)| ≤ δ(ε).

This statement remains valid for a sufficiently small value of ε, where δ is a function of ε satisfying
δ(ε) → 0 as ε → 0. The value δ(ε) is referred to as a bound for the error. If δ(ε) = aεm, where a is a
constant and m > 0, then uε(·) is referred to as near-optimal with an order of εm.

Next, we give Clark’s generalized gradient definition and Ekland’s variational principle.

Definition 3.5. [20] Let D be a convex set in Rd and let V(·) : D→ R1 be a locally Lipschitz function.
The generalized gradient of the function V at the point x̂ ∈ Y , denoted as ∂xV(x̂), is defined as a specific
set according to the following formulation:

∂xV(x̂) = {p ∈ Rd|p · ξ ≤ V0(x̂; ξ), f or any ξ ∈ Rd},

where V0(x̂; ξ) = lim supx∈D,x+hξ∈D,x→x̂,h→0
V(x+hξ)−V(x)

h .

Lemma 3.2. [21] Let (P, d) represent a complete metric space, and let k(·) : P→ R be a function that
is both bounded from below and has lower-semicontinuity. For any value ε ≥ 0, suppose there is a
function uε(·) ∈ p that satisfies the following condition:

k(uϵ(·)) ≤ inf
u(·)∈p

k(u(·)) + ϵ.

For any value of ϕ > 0, there is a corresponding element uϕ ∈ P such that

k(uϕ(·)) ≤ k(uε(·)), d(uϕ(·), uε(·)) ≤ ϕ and k(uϕ(·)) ≤ k(u(·)) +
ε

ϕ
d(u(·), uϕ)(·).
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Based on the preceding discussion, it can be inferred that u(·) ∈ Uad[0,T ]. This implies the existence
of a solution pair (p(·, t), q(·, t)) ∈ L2

F
(Ω × [0,T ]; R4) × L2

F
(Ω × [0,T ]; R4), where L2

F
(Ω × [0,T ]; R4)

represents the Hilbert space of Ft-adapted processes. This solution pair satisfies the adjoint equation
as follows: 

dp1(x, t) = −g1(Z(x, t), u1(x, t), u2(x, t), p(x, t), q(x, t))dt + q1(x, t)dB1(t),
dp2(x, t) = −g2(Z(x, t), u1(x, t), u2(x, t), p(x, t), q(x, t))dt + q2(x, t)dB1(t),
dp3(x, t) = −g3(Z(x, t), u1(x, t), u2(x, t), p(x, t), q(x, t))dt + q3(x, t)dB1(t),
dp4(x, t) = −g4(Z(x, t), u1(x, t), u2(x, t), p(x, t), q(x, t))dt + q4(x, t)dB2(t),
p1(x,T ) = hS (S (x,T )), p2(x,T ) = hIL(IL(x,T )), p3(x,T ) = hRL(RL(x,T )),
p4(x,T ) = hL(L(x,T )),

(3.8)

where

g1(Z(x, t), u1(x, t), u2(x, t), p(x, t), q(x, t)) =[d1∆ − µ − βLL(x, t)]p1(x, t) + βLL(x, t)p2(x, t) − ξ1q1(x, t),

g2(Z(x, t), u1(x, t), u2(x, t), p(x, t), q(x, t)) =[d2∆ − (σL + δL + µ) −
cu1(x, t)

(1 + αIL(x, t))2 ]p2(x, t) + [σL

+
cu1(x, t)

(1 + αIL(x, t))2 ]p3(x, t) − ξ1q2(x, t),

g3(Z(x, t), u1(x, t), u2(x, t), p(x, t), q(x, t)) =θL p1(x, t) + [d3∆ − (θL + µ)]p3(x, t) − ξ1q3(x, t),
g4(Z(x, t), u1(x, t), u2(x, t), p(x, t), q(x, t)) = − βLS (x, t)p1(x, t) + βLS (x, t)p2(x, t) + [d4∆ + rL

−2
rLL(x, t)

KL
− (ε + u2(x, t))]p4(x, t) − ξ2q4(x, t).

(3.9)
Subsequently, in order to establish the sufficient and necessary conditions for the listeriosis model

to near-optimal controls, it is important to make appropriate conclusions about the state and adjoint
equations in connection with the control variables. Next, we demonstrate that the system described by
Eq (2.7) is limited in its behavior.

Lemma 3.3. For any p ≥ 0, if u1(x, t), u2(x, t) ∈ Uad(Ω × [0,T ]), there is a constant C such that the
following inequality holds:

E sup
0≤t≤T

∫
Ω

{|S (x, t)|p + |IL(x, t)|p + |RL(x, t)|p + |L(x, t)|p}dx ≤ C. (3.10)

Proof. Similar to Theorem 3.1, we can conclude that the inequality (3.10) is true.

Lemma 3.4. For any u1(x, t), u2(x, t) ∈ Uad(Ω×[0,T ]), provided that the solution of the adjoint equation
displays the following feature.

4∑
i=1

E{ sup
0≤t≤T

∫
Ω

|pi(x, t)|2dx} +
4∑

i=1

E
∫ T

0

∫
Ω

|qi(x, t)|2dxdt ≤ C, (3.11)

where C is a constant.
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The evidence is presented in Appendix A2.
To obtain the necessary conditions for the near-optimal controls of system (2.7), we introduce the

following two lemmas to evaluate the difference between the equation of state and the adjoint equation.
Initially, we must establish a definition for distance within the space of admissible control in order for
(Uad, d) to form a comprehensive metric space. For any u(x, t),ū(x, t) ∈ Uad(Ω × [0,T ]), we set

d(u(t), ū(t)) = E[mes(Z, t) ∈ Ω × [0,T ] : u(Z, t) , ū(Z, t)].

The symbol “mes” represents the Lebesgue measure. Additionally, it is also confirmed that the
pair (Uad, d) constitutes a fully complete metric space [22]. Following this, we introduce the lemma
regarding the continuity of the state process in relation to the metric distance d.

Lemma 3.5. For any η ≥ 0 and a value of k ∈ (0, 1) such that kη < 1, there exists a constant C = C(η, k)
such that for any functions u(x, t) and ū(x, t) in the set Uad(Ω × [0,T ]), and their corresponding
trajectories Z(x, t) and Z̄(x, t), the following equation is satisfied:

E{ sup
0≤t≤T

∫
Ω

(|S (x, t) − S̄ (x, t)|2η + |IL(x, t) − ĪL(x, t)|2η + |RL(x, t) − R̄L(x, t)|2η + |L(x, t) − L̄(x, t)|2η)dx}

≤ C[d(u1(x, t), ū1(x, t))kη + d(u2(x, t), ū2(x, t))kη].
(3.12)

The evidence is presented in Appendix A3.

Lemma 3.6. For any value 1 < η < 2, and 0 < κ < 1 that satisfies the condition (1+κ)η < 2, there exists
a constant C = C(η, κ) such that for any functions u(x, t) and ū(x, t) belonging to the set Uad(Ω× [0,T ]),
along with their corresponding trajectories (Z(x, t), Z̄(x, t)) and the solution of the corresponding adjoint
equation, the following inequality holds:

4∑
i=1

∫ T

0

∫
Ω

(|pi(x, t) − p̃i(x, t)|η + |qi(x, t) − q̃i(x, t)|η)dxdt ≤ Cd(u(x, t), ū(x, t))
κη
2 . (3.13)

The evidence is presented in Appendix A4.
The theorems and lemmas outlined previously provide a theoretical foundation for establishing the

sufficient and necessary conditions for near-optimality. Subsequently, we will initially establish the
sufficient conditions for near-optimality, followed by the demonstration of the necessary conditions.

4. Sufficient and necessary conditions of near-optimal

4.1. Sufficient conditions of near-optimal

In this particular section, our objective is to establish sufficient conditions for near-optimality.
Subsequently, the functions outlined can be derived based on the definition of the Hamiltonian function
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as described in the work by [23].

H(Z(x, t), u1(x, t), u2(x, t), p(x, t), q(x, t))
= [d1∆S (x, t) + Λ + θLRL(x, t) − (µ + βLL(x, t))S (x, t)]p1(x, t) + [d2∆IL(x, t) + βLL(x, t)S (x, t)

− (σL + δL + µ)IL(x, t) −
cu1(x, t)IL(x, t)

1 + αIL(x, t)
]p2(x, t) + [d3∆RL(x, t) + σLIL(x, t) − (θL + µ)RL(x, t)

+
cu1(x, t)IL(x, t)

1 + αIL(x, t)
]p3(x, t) + [d4∆L(x, t) + rLL(x, t)(1 −

L(x, t)
KL

) − (ε + u2(x, t))L(x, t)]p4(x, t)

− ξ1S (x, t)q1(x, t) − ξ1IL(x, t)q2(x, t) − ξ1RL(x, t)q3(x, t) − ξ2L(x, t)q4(x, t) + B1IL(x, t) + B2L(x, t)

+
1
2

B3u2
1(x, t) +

1
2

B4u2
2(x, t).

(4.1)
Subsequently, by employing the Eq (4.1) presented below, we derive sufficient conditions for the

near-optimality of the system (2.7), as follows Theorem 4.1.

Theorem 4.1. Suppose (H1) and (H2) hold and H(Z(x, t), u1(x, t), u2(x, t), p(x, t), q(x, t)) and h is convex,
for any ε > 0, let uε be represent an admissible control, and (pε(x, t), qε(x, t)) denote the adjoint Eq (3.8)
associated with uε,

inf
u1,u2∈Uad

E{
∫ T

0

∫
Ω

(
1
2

B3(u1(x, t))2 +
1
2

B4(u2(x, t))2 +
cu1(x, t)IεL(x, t)

1 + αIεL(x, t)
(pε3(x, t) − pε2(x, t))

− u2(x, t)Lε(x, t)pε4(x, t))dxdt}

≥ E
∫ T

0

∫
Ω

(
1
2

B3(uε1(x, t))2 +
1
2

B4(uε2(x, t))2 +
cuε1(x, t)IεL(x, t)

1 + αIεL(x, t)
(pε3(x, t) − pε2(x, t))

− uε2(x, t)Lε(x, t)pε4(x, t))dxdt − ε,

(4.2)

then we have
J(0,Z0; uε(x, t)) ≤ inf

u1,u2∈Uad
J(0,Z0; u(x, t)) +Cε

1
2 , (4.3)

where B3 and B4 represent the weights that control u1(x, t) and u2(x, t).

Proof. First, redefine a new metric d̄ on Uad so that Hu(Zε(x, t), uε1(x, t), uε2(x, t), pε(x, t), qε(x, t)) can be
estimated in terms of ε. The new metric d̄ is as follows:

d̄(u, ũ) = E
∫ T

0

∫
Ω

Zε(x, t)|u(x, t) − ũ(x, t)|dxdt,

where

Zε(x, t) = 1 +
4∑

i=1

|pεi (x, t)| +
4∑

i=1

|qεi (x, t)|.

Clearly, the metric d̄ fulfills the condition Zε(x, t) > 1, and it is a complete metric when considered
as a weighted L1 norm.

Based on the objective function 2.8 and the Hamiltonian function 4.1 previously established, the
estimation of J(0,Z0; uε(x, t)) − J(0,Z0; u(x, t)) can be conducted using the approach outlined in the
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work of [24].

J(0,Z0; uε(x, t)) − J(0,Z0; u(x, t))

≤ E
∫ T

0

∫
Ω

(−
cIεL(x, t)

1 + αIεL(x, t)
pε2(x, t) +

cIεL(x, t)
1 + αIεL(x, t)

pε4(x, t) + B3uε1(x, t))(uε1(x, t) − u1(x, t))

+ (−Lε(x, t)pε4(x, t) + B4uε2(x, t))(uε2(x, t) − u2(x, t))dxdt.

(4.4)

Afterward, in order to determine the numerical value of the expression presented on the right side of
Eq (4.4), a function M(·) : Uad[0,T ]→ R is introduced.

M(u(x, t)) = E
∫ T

0

∫
Ω

H(Zε(x, t), u(x, t), pε(x, t), qε(x, t))dxdt.

According to hypothesis (H1), the function M(·) exhibits continuity on the matrix d̄. As a result,
based on the criteria specified in Theorem 4.1 and the Ekeland principle, there is a ūε ∈ Uad that fulfills
the specified conditions.

d̄(uε(x, t), ūε(x, t)) ≤ ε
1
2 and F(ūε(x, t)) − F(u(x, t) ≤ ε

1
2 d̄(u(x, t), ūε(x, t)). (4.5)

Thus

E
∫ T

0

∫
Ω

{−
cūε1(x, t)IεL(x, t)

1 + αIεL(x, t)
pε2(x, t) +

cūε1(x, t)IεL(x, t)
1 + αIεL(x, t)

pε3(x, t) − ūε2(x, t)Lε(x, t)pε4(x, t)

+
1
2

B3(ūε1(x, t))2 +
1
2

B4(ūε2(x, t))2}dxdt

= min
u1,u2∈Uad[0,T ]

E
∫ T

0

∫
Ω

{−
cu1(x, t)IεL(x, t)

1 + αIεL(x, t)
pε2(x, t) +

cu1(x, t)IεL(x, t)
1 + αIεL(x, t)

pε3(x, t) − u2(x, t)Lε(x, t)pε4(x, t)

+
1
2

B3u2
1(x, t) +

1
2

B4u2
2(x, t) + ε

1
2 Zε(x, t)|u1(x, t) − ūε1(x, t) + ε

1
2 Zε(x, t)|u2(x, t) − ūε2(x, t)|}dxdt.

Applying in [25], can be obtained

0 ∈ −
cIεL(x, t)

1 + αIεL(x, t)
pε2(x, t) +

cIεL(x, t)
1 + αIεL(x, t)

pε3(x, t) + B3ū1
ε(x, t) − Lε(x, t)pε4(x, t) + B4ū2

ε(x, t)

⊂ −
cIεL(x, t)

1 + αIεL(x, t)
pε2(x, t) +

cIεL(x, t)
1 + αIεL(x, t)

pε3(x, t) + B3ū1
ε(x, t) − Lε(x, t)pε4(x, t) + B4ū2

ε(x, t)

+ [−ε
1
2 Zε(x, t), ε

1
2 Zε(x, t)].

(4.6)

Since the Hamiltonian function equation H(Z(x, t), u1(x, t), u2(x, t), p(x, t), q(x, t)) is differentiable in
u1(x, t), u2(x, t), therefore Eq (4.6) implies that there exists τε(x, t) ∈ [−ε

1
2 Zε(x, t), ε

1
2 Zε(x, t)] such that

−
cIεL(x, t)

1 + αIεL(x, t)
pε2(x, t) +

cIεL(x, t)
1 + αIεL(x, t)

pε3(x, t) + B3ū1
ε(x, t) − Lε(x, t)pε4(x, t) + B4ū2

ε(x, t)

+ τε(x, t) = 0.
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This can be proved using hypothesis (H1)

| −
cIεL(x, t)

1 + αIεL(x, t)
pε2(x, t) +

cIεL(x, t)
1 + αIεL(x, t)

pε3(x, t) + B3uε1(x, t) − Lε(x, t)pε4(x, t) + B4uε2(x, t)|

≤ |B3(uε1(x, t) − ūε1(x, t)) + B4(uε2(x, t) − ūε2(x, t))| + | −
cIεL(x, t)

1 + αIεL(x, t)
pε2(x, t) +

cIεL(x, t)
1 + αIεL(x, t)

pε3(x, t)

+ B3ūε1(x, t) − Lε(x, t)pε4(x, t) + B4ūε2(x, t)|
≤ CZε(x, t)|u1(x, t) − ū1(x, t)| + Zε(x, t)|u2(x, t) − ū2(x, t)|) + τε(x, t)

≤ C(Zε(x, t)|u1(x, t) − ū1(x, t)| + Zε(x, t)|u2(x, t) − ū2(x, t)|) + 2ε
1
2 Zε(x, t).

(4.7)
By utilizing Lemma 3.4 in conjunction with the definition of d̄, the intended outcome can be derived

from Eqs (4.4) and (4.7).

Remark 2. As can be seen from Eq (4.2), the sufficient conditions near-optimal is affected by the
parameters of the system. When ε = 0, we can obtain the exact optimality of system (2.7), in simpler
terms, Theorem 4.1 represents the necessary conditions for achieving optimal control.

4.2. Necessary conditions of near-optimal

In this segment, we utilize Lemmas 3.5 and 3.6 to establish the necessary conditions for the system
described in Eq (2.7) to near-optimal controls.

Theorem 4.2. Given that conditions (H1) and (H2) are satisfied, it is established that the pair
(pε(x, t), qε(x, t)) serves as the solution to the adjoint Eq (3.8) corresponding to uε(x, t). For any
η ∈ [0, 1), there is a positive constant C, for any ε > 0 and any ε-optimal pair (Zε(x, t), uε(x, t)), the
given condition holds.

inf
u1,u2∈Uad

E{
∫ T

0

∫
Ω

(
1
2

B3(u1(x, t))2 +
1
2

B4(u2(x, t))2 +
cu1(x, t)IεL(x, t)

1 + αIεL(x, t)
(pε3(x, t) − pε2(x, t))

− u2(x, t)Lε(x, t)pε4(x, t))dxdt}

≥ E
∫ T

0

∫
Ω

(
1
2

B3(uε1(x, t))2 +
1
2

B4(uε2(x, t))2 +
cuε1(x, t)IεL(x, t)

1 + αIεL(x, t)
(pε3(x, t) − pε2(x, t))

− uε2(x, t)Lε(x, t)pε4(x, t))dxdt −Cε
η
3 ,

(4.8)

where B3 and B4 represent the weights that control u1(x, t) and u2(x, t).

Proof. According to hypothesis (H1), it is evident that the function J(0,Z0; u(x, t)) : Uad → R remains
continuous with respect to the metric d. In accordance with Ekeland’s variational principle, it is
established that there is a feasible pair (Zε(x, t), uε(x, t)) that satisfies the given conditions,

d(uε(x, t), ūε(x, t)) ≤ ε
2
3 , and J̄(0,Z0; ūε(x, t)) ≤ J̄(0,Z0; u(x, t)), f or u(x, t) ∈ Uad, (4.9)

where

J̄(0,Z0; u(x, t)) = J(0,Z0; u(x, t)) + ε
1
3 d(u(x, t), ūε(x, t)).
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This indicates that the pair (Z̄ε(x, t), ūε(x, t)) represents the optimal solution for the system described
by Eq (2.7). Next, we will push out a necessary condition of (Z̄ε(x, t), ūε(x, t)) by defining a spike
variation. Select ρ > 0 and t̄ ∈ [0,T ], we define ūε(x, t) ∈ Uad[0,T ] as follows:

uρ(x, t) =

u(x, t), if (x, t) ∈ Ω × [t̄, t̄ + ρ],
ūε(x, t), if (x, t) ∈ [0,T ]\[t̄, t̄ + ρ] ×Ω.

(4.10)

The pair (Zρ(x, t), uρ(x, t)) denotes the solution to the system described by Eq (2.7). In accordance
with Eq (4.9), it follows that

d(uρ(x, t), ūε(x, t)) ≤ ρ, and J̄(0,Z0; ūε(x, t)) ≤ J̄(0,Z0; uρ(x, t)). (4.11)

Hence

J(0,Z0; ūε(x, t)) = J̄(0,Z0; ūε(x, t)) ≤ J̄(0,Z0; uρ(x, t)) = J(0,Z0; uρ(x, t)) + ρε
1
3 . (4.12)

It follows from Eq (4.12), Lemma 3.5 and Taylor’s expansion that

− ρε
1
3 ≤ J(0,Z0; uρ(x, t)) − J(0,Z0; ūε(x, t))

= E
∫ T

0

∫
Ω

[B1IρL(x, t) + B2Lρ(x, t) +
1
2

B3(uρ1(x, t))2 +
1
2

B4(uρ2(x, t))2 − B1 ĪεL(x, t)

− B2L̄ε(x, t) −
1
2

B3(ūε1(x, t))2 −
1
2

B4(ūε2(x, t))2]dxdt + E
∫
Ω

[h(Zρ(x,T )) − h(Z̄ε(x,T ))]dx

≤ E
∫ T

0

∫
Ω

{B1(IρL(x, t) − ĪεL(x, t)) + B2(Lρ(x, t) − L̄ε(x, t))}dxdt

+ E
∫ t̄+ρ

t̄

∫
Ω

{
1
2

B3(u2
1(x, t)) −

1
2

B3(ūε1(x, t))2 +
1
2

B4(u2
2(x, t)) −

1
2

B4(ūε2(x, t))2}dxdt

+ E
∫
Ω

{[hS (S ρ(x,T ) − S̄ ε(x,T ))dx] + [hIL(IρL(x,T ) − ĪεL(x,T ))dx]

+ [hRL(RρL(x,T ) − R̄εL(x,T ))dx] + [hL(Lρ(x,T ) − L̄ε(x,T ))dx]} + ◦(ρ).

(4.13)

The following formula is obtained using Itô’s formula for
∑4

i=1 p̄εi (x, t)[S ρ(x, t) − S̄ ε(x, t) + IρL(x, t) −
ĪεL(x, t) + RρL(x, t) − R̄εL(x, t) + S ρ(x, t) − S̄ ε(x, t)],

E
∫
Ω

{hS [S ρ(x,T ) − S̄ ε(x,T )] + hIL[IρL(x,T ) − ĪεL(x,T )] + hRL[RρL(x,T ) − R̄εL(x,T )]

+ hL[Lρ(x,T ) − L̄ε(x,T )]}dx

≤ E
∫ t̄+ρ

t̄

∫
Ω

[(
cūε1(x, t)

1 + αĪεL(x, t)
ĪεL(x, t) −

cuρ1(x, t)
1 + αIρL(x, t)

IρL(x, t)) p̄ε2(x, t) + (
cuρ1(x, t)

1 + αIρL(x, t)
IρL(x, t)

−
cūε1(x, t)

1 + αĪεL(x, t)
ĪεL(x, t))p̄ε3(x, t) + (ūε2(x, t)L̄ε(x, t) − uρ2(x, t)Lρ(x, t)) p̄ε4(x, t)]dxdt

− E
∫ T

0

∫
Ω

{B1(IρL(x, t) − ĪεL(x, t)) + B2(Lρ(x, t) − L̄ε(x, t))}dxdt.

(4.14)
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Together with Eqs (4.13) and (4.14), we have

− ρε
1
3 ≤ J(0,Z0; uρ(x, t)) − J(0,Z0; ūε(x, t))

≤ E
∫ t̄+ρ

t̄

∫
Ω

{
1
2

B3(u1(x, t))2 −
1
2

B3(ū1
ε(x, t))2 +

1
2

B4(u2(x, t))2 −
1
2

B4(ū2
ε(x, t))2}dxdt

+ E
∫ t̄+ρ

t̄

∫
Ω

[(
cūε1(x, t)

1 + αĪεL(x, t)
ĪεL(x, t) −

cuρ1(x, t)
1 + αIρL(x, t)

IρL(x, t)) p̄ε2(x, t)

+ (
cuρ1(x, t)

1 + αIρL(x, t)
IρL(x, t) −

cūε1(x, t)

1 + αĪεL(x, t)
ĪεL(x, t)) p̄ε3(x, t)

+ (ūε2(x, t)L̄ε(x, t) − uρ2(x, t)Lρ(x, t))p̄ε4(x, t)]dxdt + ◦(ρ).

(4.15)

By dividing both sides of Eq (4.15) by the variable ρ and then taking ρ→ 0.

− ε
1
3 ≤ E[

1
2

B3(u1(x, t))2 −
1
2

B3(ūε1(x, t))2 +
1
2

B4(u2(x, t))2 −
1
2

B4(ūε2(x, t))2]

+ E[(
cūε1(x, t)

1 + αĪεL(x, t)
ĪεL(x, t) −

cuρ1(x, t)
1 + αIρL(x, t)

IρL(x, t)) p̄ε2(x, t)

+ (
cuρ1(x, t)

1 + αIρL(x, t)
IρL(x, t) −

cūε1(x, t)

1 + αĪεL(x, t)
ĪεL(x, t)) p̄ε3(x, t) + (ūε2(x, t)L̄ε(x, t) − uρ2(x, t)Lρ(x, t)) p̄ε4(x, t)].

(4.16)

Furthermore, we compute a component from the right-hand side of Eq (4.16) and replace
(Z̄ε(x, t), ūε(x, t)) with (Zε(x, t), uε(x, t)). Subsequently, we assess the estimation.

E
∫ T

0

∫
Ω

[(
cūε1(x, t)

1 + αĪεL(x, t)
ĪεL(x, t) −

cuρ1(x, t)
1 + αIρL(x, t)

IρL(x, t)) p̄ε2(x, t) − (
cuε1(x, t)

1 + αIεL(x, t)
IεL(x, t)

−
cuρ1(x, t)

1 + αIρL(x, t)
IρL(x, t))pε2(x, t)]dxdt

= E
∫ T

0

∫
Ω

(
cūε1(x, t)

1 + αĪεL(x, t)
ĪεL(x, t) −

cuε1(x, t)
1 + αIεL(x, t)

IεL(x, t))pε2(x, t)dxdt

+ E
∫ T

0

∫
Ω

(
cūε1(x, t)

1 + αĪεL(x, t)
ĪεL(x, t) −

cuρ1(x, t)
1 + αIρL(x, t)

IρL(x, t))( p̄ε2(x, t) − pε2(x, t))dxdt

= I1 + I2.

(4.17)

According to Lemma 3.6 and Eq (4.9), and applying the Holder inequality, it is possible to derive
that for any values of k and η within the ranges of 0 < k < 1 and 1 < η < 2, respectively, and satisfying
the condition (1 + k)η < 2, there exists an indeterminate parameter C,

I1 ≤ C{E
∫ T

0

∫
Ω

|pε2(x, t)|2dxdt}
1
2 {E
∫ T

0

∫
Ω

|ūε1(x, t) − uε1(x, t)|2χuε,ūε(x, t)dxdt}
1
2

≤ C{E
∫ T

0

∫
Ω

(|uε1(x, t)|4 + |ūε1(x, t)|4)dxdt}
1
4 E
∫ T

0

∫
Ω

(χuε,ūε(x, t)dxdt)
1
4

≤ C[d(u(x, t), ū(x, t))]
1
4

≤ Cε
η
3 ,

(4.18)
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and

I2 ≤ {E
∫ T

0

∫
Ω

|
cuε1(x, t)

1 + αIεL(x, t)
IεL(x, t) −

cuρ1(x, t)

1 + αIρL(x, t)
IρL(x, t)|

η
η−1 dxdt}

η−1
η {E
∫ T

0

∫
Ω

| p̄ε2(x, t) − pε2(x, t)|ηdxdt}
1
η

≤ C[d(u(x, t), ū(x, t))
κη
2 ]

1
η {E
∫ T

0

∫
Ω

|
cuε1(x, t)

1 + αIεL(x, t)
IεL(x, t)|

η
η−1 + |

cuρ1(x, t)

1 + αIρL(x, t)
IρL(x, t)|

η
η−1 dxdt}

η−1
η

≤ Cε
η
3 .

(4.19)

Therefore

E
∫ T

0

∫
Ω

[(
cūε1(x, t)

1 + αĪεL(x, t)
ĪεL(x, t) −

cuρ1(x, t)
1 + αIρL(x, t)

IρL(x, t)) p̄ε2(x, t) − (
cuε1(x, t)

1 + αIεL(x, t)
IεL(x, t)

−
cuρ1(x, t)

1 + αIρL(x, t)
IρL(x, t))pε2(x, t)]dxdt

≤ Cε
η
3 .

(4.20)

In the same way, we can estimate

E
∫ T

0

∫
Ω

[(ūε2(x, t)L̄ε(x, t) − uρ2(x, t)Lρ(x, t)) p̄ε4(x, t) − (uε2(x, t)Lε(x, t) − uρ2(x, t)Lρ(x, t))pε4(x, t)]dxdt

≤ Cε
η
3 .

(4.21)

Similarly

E
∫ T

0

∫
Ω

1
2

B3(u1(x, t))2 +
1
2

B4(u2(x, t))2 −
1
2

B3(ūε1(x, t))2 −
1
2

B4(ūε2(x, t))2dxdt ≤ Cε
η
3 . (4.22)

Utilizing the definition of the Hamiltonian function and combining Eqs (4.16) and (4.20)–(4.22), the
inequality (4.8) can be obtained.

Remark 3. In practical terms, when an outbreak of listeriosis occurs, it is imperative to promptly
implement measures to contain the spread of the disease. Theoretically, if we take the ε between optimal
control and near-optimal controls to be larger, then in reality, our control scope will be larger, and it
will be easier to find near-optimal controls, thus curbing the spread of the disease. Thus, depending on
the extent of the outbreak, we take a different value of ε.

5. Numerical simulations

In order to confirm the aforementioned findings, the numerical simulation of the solution to the sys-
tem (2.7) is conducted. Employing Milstein’s method as described in the work by [26], the discretization
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of system (2.7) yields the subsequent equation.

S (i, j+1) = S (i, j) + [d1
S (i, j+1) − 2S (i, j) + S (i, j−1)

(∆x)2 + Λ + θLRL(i, j)

− µS (i, j) − βLL(i, j)S (i, j)]∆t − ξ1S (i, j)ςi

√
∆t −

1
2
ξ2

1S (i, j)(ς2
i − 1)∆t,

IL(i, j+1) = IL(i, j) + [d2
IL(i, j+1) − 2IL(i, j) + IL(i, j−1)

(∆x)2 + βLL(i, j)S (i, j)

− (σL + δL + µ)IL(i, j) −
cu1

1 + αIL(i, j)
IL(i, j)]∆t − ξ1IL(i, j)ςi

√
∆t −

1
2
ξ2

1IL(i, j)(ς2
i − 1)∆t,

RL(i, j+1) = RL(i, j) + [d3
RL(i, j+1) − 2RL(i, j) + RL(i, j−1)

(∆x)2 + σLIL(i, j)

− (θL + µ)RL(i, j) +
cu1

1 + αIL(i, j)
IL(i, j)]∆t − ξ1RL(i, j)ςi

√
∆t −

1
2
ξ2

1RL(i, j)(ς2
i − 1)∆t,

L(i, j+1) = L(i, j) + [d4
L(i, j+1) − 2L(i, j) + L(i, j−1)

(∆x)2 + rLL(i, j)(1 −
L(i, j)

KL
)

− (ε + u2)L(i, j)]∆t − ξ2L(i, j)ςi

√
∆t −

1
2
ξ2

2L(i, j)(ς2
i − 1)∆t,

(5.1)

where ςi i = 1, 2, · · · , n, are independent Gaussian random variables N(0, 1).
The calculation algorithm is shown as follows:

Algorithm 1
Step 1:
Choose an initial u0 = (u1,0, u2,0), an initial step size S 0,and stopping tolerances T1 and T2

initial states (S 0, IL,0,RL,0, L0)
initial adjoints p0 = (p1(0), p2(0), p3(0), p4(0)), q0 = (q1(0), q2(0), q3(0), q4(0))
gradient of J, i.e., g∗0 = B3u1,0 +

cu1,0IL

1+αIL
(p3(x, 0) − p2(x, 0)), g0 = B4u2,0 − Lp4(x, 0)

anti-gradient J, i.e., d∗0 = −g∗0, d0 = −g0

Step 2:
control, i.e., uk+1 = uk + skdk

states (S k + 1, IL,k+1,RL,k+1, Lk+1) = (S uk+1 , IL,uk+1 ,RL,uk+1 , Luk+1)
by solving the discrete form of system (2.7),
adjoints (pk+1, qk+1) = (pS k+1,IL,k+1,RL,k+1,Lk+1 , qS k+1,IL,k+1,RL,k+1,Lk+1),
by solving the discrete form of system (4.1),
gradient of J, i.e., g∗k+1 = B3u1,k+1 +

cu1,k+1ILk+1
1+αILk+1

(p3k+1 − p2k+1), gk+1 = B4u2,k+1 − Lk+1 p4k+1 .
Step 3:
Stop if ∥g∗k+1∥ < T1, ∥gk+1∥ < T1 or ∥JK+1 − Jk∥ ≤ T2.
Compute the conjugate direction ϖk+1 according to one of the updated formulas [27, 28],
dk+1 = −gk+1 +ϖk+1dk. Select step size S k+1 in terms of some standard options.
Set k =: k + 1 and go to Step 1.

The selection of parameter values is as follows:
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Table 2. Parameter values of numerical experiments for system (2.7).

Parameter Value units Source of date Parameter Value units Source of date
Λ 1 people Assumed σL 0.034 day−1 people−1 [29]
µ 0.25 day−1 Assumed βL 0.085 day−1 Assumed
rL 0.32 day−1 [29] KL 0.08 CFU/cm [29]
δL 0.02 day−1 [4] θL 0.2 day−1 [29]
α 0.04 n.a. Assumed c 0.05 n.a. Assumed
ε 0.2406 day−1 [4] r 0.0094 mg/L [30]
ξ1 0.15 n.a. Assumed ξ2 0.1 n.a. Assumed
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Figure 2. State variable comparison diagram of without control, near-optimal controls uεi and
optimal control u∗i (i = 1, 2).

In Figure 2, we show the contrast plots of variables not under control, versus near-optimal controls
and optimal control, with curves of different colors representing changes in different Spaces. The values
of the diffusion coefficient are d1 = 0.02, d2 = 0.024, d3 = 0.025, d4 = 0.036. Before treatment of
infected persons and elimination of environmental bacteria, the number of susceptible persons increased
first and then leveled off. The number of infected people remained stable; because the number of
infected people has remained roughly the same, the number of recovered people is getting smaller and
smaller. Due to the limited survival time of bacteria and the competition between bacteria, the amount
of contaminated environment first decreases and then remains stable. After the infected person is treated
and the bacteria in the environment are removed, it can be seen from the observation that, the number of
susceptible people is higher than the number of people without control means, because after the infected
person is treated and the bacteria in the environment are removed, the number of sick people is reduced
and the number of susceptible people is increased. Second, for infected people, both kinds of control
make the number of susceptible people increase first and then decrease, and the number of sick people
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decreases significantly around 60 days, and the number of sick people gradually approaches 0 after 180
days of near optimal control, and gradually approaches 0 after 300 days of optimal control. Then, for
the recovery, because the number of infected people is decreasing, the number of recovery people is also
decreasing, and gradually approaches 0 after 200 days; finally, removing bacteria from the environment
can reduce the spread of bacteria and thus reduce the polluted environment. As can be clearly seen
from the picture above, treating infected people and removing germs in the environment can effectively
inhibit the spread and spread of the disease; Moreover, we find that the effect of near-optimal controls at
the same time is better than that of optimal control.

In Figure 3, we show the paths of S (x, t), IL(x, t),RL(x, t), L(x, t) for the system (2.7). Add controls
to the system (2.7), i.e., treatment of the patient u1(x, t) and removal of germs from the environment
u2(x, t). By observing Figure 3, it can be found that after increasing control, the number of susceptible
people first increases and then becomes stable; control u1(x, t) is to treat infected people, and the number
of infected people decreases after treatment; as the number of infected persons decreases, so does the
number of recovered persons; and controlling u2(x, t) is removing bacteria from the environment, so
the bacteria in the environment are constantly decreasing, so the amount of polluted environment is
also decreasing.

Figure 3. The path of S , IL, RL, L for system (2.7).

The discrepancies in optimal control and near-optimal controls are illustrated in Figure 4. Optimal
control of u1(x, t) and u2(x, t) at ε = 0.5 indicates that the infected person and the virus in the environment
have different optimal processing rates at different times. For the control variable u1(x, t), both the
optimal control and near-optimal control intensity are large when a disease breaks out, and the control
intensity decreases when the number of sick people begins to decrease. For the control variable u2(x, t),
the optimal control of bacteria in the environment first increases and then gradually levels off. Due to
the wide distribution range of bacteria in the environment, it is impossible to measure accurately, and
the near-optimal control is always smooth control strategy. It is not difficult to find that the approximate
optimal is easier to realize than the optimal, and also more in line with the real conditions. The
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discrepancy in the optimal and near-optimal controls of u1(x, t) is below 1, while the discrepancy in
u2(x, t) is below 0.018.
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Figure 4. If ε = 0.5, u∗i and uεi are the optimal control and near-optimal controls, respectively;
uδi indicates the error (where uδi = uεi − u∗i )(i = 1, 2).

6. Conclusions

In this paper, we develop a listeriosis model (2.7) that takes into account random noise and spatial
diffusion by treating infected people and removing bacteria from the environment as control strategies.
Under the goal of controlling the lowest medical cost, we establish the objective function (2.8). Next,
Theorem 3.1 proves the existence and uniqueness of the global positive solution of system (2.7). In order
to investigate the sufficient and necessary conditions for achieving near-optimal controls, we also provide
the adjoint equations and prior eatimates in Section 3. The Lemmas 3.3 and 3.4 lay the foundation for
proving sufficient conditions for near-optimality. Lemmas 3.5 and 3.6 make theoretical preparations for
proving the conditions necessary for near-optimality. In Section 4, we establish both the sufficient and
necessary conditions for near-optimal, as detailed in Theorems 4.1 and 4.2. When ε = 0, the conditions
outlined in Theorems 4.1 and 4.2 are both sufficient and necessary for achieving optimal control.
Ultimately, through numerical simulation, the transmission of listeriosis can be effectively inhibited by
treating infected persons and removing bacteria in the environment at the lowest medical cost.

In the future work, the following two questions are worth addressing:

• The best survival temperature of listeria is 30–37 degrees Celsius, as too high and too low
temperature will make Listeria perish [8]. In the previous models, the influence of temperature on
bacteria was not considered. In the system (2.7), we only considered white noise, and we could
also consider introducing color noise.
• Whether event triggers can be used to control the optimal control of nonlinear stochastic sys-

tems [31] to determine how to control the spread of disease.
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Appendix

A1. Proof of Lemma 3.1

Proof. Let

Z(t) =
∫
Ω

[(S (x, t), IL(x, t),RL(x, t), L(x, t)]dx.

It can be obtained by system (2.7)

∂Z(x, t)
∂t

=

∫
Ω

[
∂S (x, t)
∂t

+
∂IL(x, t)
∂t

+
∂RL(x, t)
∂t

+
∂L(x, t)
∂t

]dx

=

∫
Ω

[d1∆S (x, t) + Λ + θLRL(x, t) − (µ + βLL(x, t))S (x, t) − ξ1(t)S (x, t)Ḃ1(t) + d2∆IL(x, t)

+ βLL(x, t)S (x, t) − (σL + δL + µ)IL(x, t) −
cu1(x, t)IL(x, t)

1 + αIL(x, t)
− ξ1(t)IL(x, t)Ḃ1(t)

+ d3∆RL(x, t) + σLIL(x, t) − (θL + µ)RL(x, t) +
cu1(x, t)IL(x, t)

1 + αIL(x, t)
− ξ1(t)RL(x, t)Ḃ1(t)

+ d4∆L(x, t) + rLL(x, t)(1 −
L(x, t)

KL
) − (ε + u2(x, t))L(x, t) − ξ2(t)L(x, t)Ḃ2(t)]dx.

Electronic Research Archive Volume 32, Issue 5, 3059–3091.

https://dx.doi.org/https://doi.org/10.1145/1132973.1132979
https://dx.doi.org/https://doi.org/10.1155/2020/9207403
https://dx.doi.org/https://doi.org/10.1134/S2070048221040116
https://dx.doi.org/https://doi.org/10.1007/s11071-021-06624-8
https://dx.doi.org/https://doi.org/10.1007/s11071-021-06624-8
https://dx.doi.org/https://doi.org/10.1533/9780857099402


3083

Next, we continue our process,

∂Z(x, t)
∂t

≤ d1

∫
∂Ω

(
∂S (x, t)
∂ν

)dx + d2

∫
∂Ω

(
∂IL(x, t)
∂ν

)dx + d3

∫
∂Ω

(
∂RL(x, t)
∂ν

)dx

+ d4

∫
∂Ω

(
∂L(x, t)
∂ν

)dx +
∫
Ω

[Λ − µS (x, t) − (δL + µ)IL(x, t)

− µRL(x, t) + rLL(x, t)(1 −
L(x, t)

KL
) − (ε + u2(x, t))L(x, t) − ξ1(t)S (x, t)Ḃ1(t)

− ξ1(t)IL(x, t)Ḃ1(t) − ξ1(t)RL(x, t)Ḃ1(t) − ξ2(t)L(x, t)Ḃ2(t)]dx

= d1

∫
∂Ω

(
∂S (x, t)
∂ν

)dx + d2

∫
∂Ω

(
∂IL(x, t)
∂ν

)dx + d3

∫
∂Ω

(
∂RL(x, t)
∂ν

)dx

+ d4

∫
∂Ω

(
∂L(x, t)
∂ν

)dx +
∫
Ω

[Λ + rLL(x, t)(1 −
L(x, t)

KL
) − µS (x, t) − (δL + µ)IL(x, t)

− µRL(x, t) − (ε + u2(x, t))L(x, t)]dx −
∫
Ω

[ξ1(t)S (x, t)Ḃ1(t)

+ ξ1(t)IL(x, t)Ḃ1(t) + ξ1(t)RL(x, t)Ḃ1(t) + ξ2(t)S (x, t)Ḃ2(t)]dx

≤ [Λ + rLL(x, t)(1 −
L(x, t)

KL
)]|Ω| − BZ(t) −

∫
Ω

[ξ1(t)S (x, t)Ḃ1(t)

+ ξ1(t)IL(x, t)Ḃ1(t) + ξ1(t)RL(x, t)Ḃ1(t) + ξ2(t)L(x, t)Ḃ2(t)]dx,

where |Ω| denotes the volume of Ω , B = min{µ, ε}. The solution to the given stochastic differential
equation is represented by the variable X(t).

dX(t) = [Λ + rLL(x, s)(1 −
L(x, s)

KL
− BX(t))]dt −

∫
Ω

ξ1(s)S (x, s)dxdB1(s) −
∫
Ω

ξ1(s)IL(x, s)dxdB1(s)

−

∫
Ω

ξ1(s)RL(x, s)dxdB1(s) −
∫
Ω

ξ2(s)L(x, s)dxdB2(s),

X(0) = Z(0).
(A1)

We can get the solution of Eq (A1) as follows

X(T ) =
Λ + rLm4(1 − L(x,t)

KL
)

B
+ (X(0) −

Λ + rLL(x, t)(1 − L(x,t)
KL

)

B
)e−Bt + F(t), (A2)

where

F(t) = −
∫

0
te−B(t−s)

∫
Ω

ξ1(s)S (x, s)dxdB1(s) −
∫

0
te−B(t−s)

∫
Ω

ξ1(s)IL(x, s)dxdB1(s)

−

∫
0

te−B(t−s)
∫
Ω

ξ1(s)RL(x, s)dxdB1(s) −
∫

0
te−B(t−s)

∫
Ω

ξ2(s)L(x, s)dxdB2(s).
(A3)

The function F(t) is a continuous local martingale with the initial value at L(x, 0) = 0 almost surely.
As per the stochastic comparison theorem, it can be inferred that the process Z(t) ≤ X(t) . Let us proceed
to define

X(t) = X(0) +G(t) − U(t) + F(t). (A4)
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Among them G(t) =
Λ+rLL(x,t)(1− L(x,t)

KL
)

B (1 − e−Bt) and U(t) = X(0)(1 − e−Bt). Clearly, for all values of
t ≥ 0 , the functions G(t) and U(t) exhibit continuity, adaptability, and a monotonically increasing
behavior. Additionally, at the initial time t = 0, it holds that G(0) = U(0) = 0. Apply the non-
negative semimartingale convergence theorem [32], lim

t→∞
X(t) < ∞ can be obtained, a.s. Therefore,

lim sup
t→∞

Z(t) < ∞, a.s. The evidence has been finalized.

A2. Proof of Lemma 3.4

Proof. Initially, we proceed by combining the left and right sides of the initial equation in the adjoint
Eq (3.8) over the interval from t to T , resulting in the following expression.

p1(x,T ) − p1(x, t) = −
∫ T

t
g1(Z(x, s), u1(x, s), u2(x, s), p(x, s), q(x, s))ds +

∫ T

t
q1(x, s)dB1(s), (A5)

the above formula is equivalent to

p1(x, t) +
∫ T

t
q1(x, s)dB1(s) = p1(x,T ) +

∫ T

t
g1(Z(x, s), u1(x, s), u2(x, s), p(x, s), q(x, s))ds. (A6)

Then square it, take the expectation, and integrate x on both sides on Ω,we can get

E|p1(x, t)|2 + E
∫ T

t
|q1(x, s)|2ds

≤ CE|p1(x,T )|2 +C(T − t)E
∫ T

t
|g1(Z(x, s), u1(x, s), u2(x, s), p(x, s), q(x, s)|2ds

≤ CE|p1(x,T )|2 +C(T − t)
2∑

i=1

E
∫ T

t
|pi(x, s)|2ds +C(T − t)E

∫ T

t
|q1(x, s)|2ds.

(A7)

In the same way

E|p2(x, t)|2 + E
∫ T

t
|q2(x, s)|2ds

≤ CE|p2(x,T )|2 +C(T − t)E
∫ T

t
|g2(Z(x, s), u1(x, s), u2(x, s), p(x, s), q(x, s)|2ds

≤ CE|p2(x,T )|2 +C(T − t)
3∑

i=2

E
∫ T

t
|pi(x, s)|2ds +C(T − t)E

∫ T

t
|q2(x, s)|2ds,

(A8)

E|p3(x, t)|2 + E
∫ T

t
|q3(x, s)|2ds

≤ CE|p3(x,T )|2 +C(T − t)E
∫ T

t
|g3(Z(x, s), u1(x, s), u2(x, s), p(x, s), q(x, s)|2ds

≤ CE|p3(x,T )|2 +C(T − t)E
∫ T

t
|p1(x, s)|2ds

+C(T − t)E
∫ T

t
|p3(x, s)|2ds +C(T − t)E

∫ T

t
|q3(x, s)|2ds,

(A9)
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and

E|p4(x, t)|2 + E
∫ T

t
|q4(x, s)|2ds

≤ CE|p4(x,T )|2 +C(T − t)E
∫ T

t
|g4(Z(x, s), u1(x, s), u2(x, s), p(x, s), q(x, s)|2ds

≤ CE|p4(x,T )|2 +C(T − t)E
∫ T

t
|p1(x, s)|2ds +C(T − t)E

∫ T

t
|p2(x, s)|2ds

+C(T − t)E
∫ T

t
|p4(x, s)|2ds +C(T − t)E

∫ T

t
|q4(x, s)|2ds.

(A10)

Combine Eqs (A7)–(A10), we can obtain

4∑
i=1

E|pi(x, t)|2 +
4∑

i=1

E
∫ T

t
|qi(x, t)|2ds

≤ C
4∑

i=1

E|pi(x,T )|2 +C(T − t)
4∑

i=1

∫ T

t
|pi(x, s)|2ds +C(T − t)

4∑
i=1

E
∫ T

t
|qi(x, s)|2ds.

(A11)

4∑
i=1

E|pi(x, t)|2 +
1
2

4∑
i=1

E
∫ T

t
|qi(x, s)|2ds,

≤ C
4∑

i=1

E|pi(x,T )|2 +C(T − t)
4∑

i=1

E
∫ T

t
|pi(x, s)|2ds,

(A12)

where t ∈ [T − ε,T ], and ε = 1
2C . Apply the Gronwall’s inequality and integrate them Ω, from Eq (A12),

the following formula can be obtained

4∑
i=1

E sup
0≤t≤T

∫
Ω

|pi(x, t)|2dx ≤ C and
4∑

i=1

E
∫ T

0

∫
Ω

|qi(x, s)|2dxds ≤ C. (A13)

For any value of t ∈ [T − 2ε,T ], the procedure outlined in Eqs (A7)–(A9) should be repeated. To
achieve the Eq (A12) for all values of t within the interval [0,T ], the aforementioned procedures should
be reiterated. Furthermore, Eq (A6) can be expressed as follows:

p1(x, t) = p1(x,T ) +
∫ T

t
g1(Z(x, s), u1(x, s), u2(x, s), p(x, s), q(x, s))ds

−

∫ T

0
q1(x, s)dB1(s) +

∫ t

0
q1(x, s)dB1(s).

(A14)

Using Eq (A14), we have

|p1(x, t)|2

≤ C[|p1(x,T )|2 +
∫ T

0
(

2∑
i=1

|pi(x, s)|2 + |q1(x, s)|2)ds + (
∫ T

0
q1(x, s)dB1(s))2 + (

∫ t

0
q1(x, s)dB1(s))2],

(A15)
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|p2(x, t)|2

≤ C[|p2(x,T )|2 +
∫ T

0
(

3∑
i=2

|pi(x, s)|2 + |q2(x, s)|2)ds + (
∫ T

0
q2(x, s)dB1(s))2 + (

∫ t

0
q2(x, s)dB1(s))2],

(A16)
|p3(x, t)|2

≤ C[|p3(x,T )|2 +
∫ T

0
(|p1(x, s)|2 + |p3(x, s)|2 + |q3(x, s)|2)ds + (

∫ T

0
q3(x, s)dB1(s))2

+ (
∫ t

0
q3(x, s)dB1(s))2],

(A17)

and

|p4(x, t)|2

≤ C[|p4(x,T )|2 +
∫ T

0
(|p1(x, s)|2 + |p2(x, s)|2 + |p4(x, s)|2 + |q4(x, s)|2)ds + (

∫ T

0
q4(x, s)dB2(s))2

+ (
∫ t

0
q4(x, s)dB2(s))2].

(A18)
Combining Eqs (A15)–(A18) gives the following equation

4∑
i=1

|pi(x, t)|2

≤ C[
4∑

i=1

|pi(x,T )|2 +
∫ T

0
(

4∑
i=1

|pi(x, s)|2 +
4∑

i=1

|qi(x, s)|2)ds +
4∑

i=1

(
∫ T

0
qi(x, s)dB(s))2

+

4∑
i=1

(
∫ t

0
qi(x, s)dB(s))2].

(A19)

Initially, compute the expectations of both sides of Eq (A19), followed by the application of the
Burkhold-Davis-Gondy inequality, resulting in the subsequent equation.

4∑
i=1

E sup
0≤t≤T
|pi(x, t)|2

≤ C[
4∑

i=1

E|pi(x,T )|2 +
4∑

i=1

E{
∫ T

0
sup

0≤s≤T
|pi(x, s)|2}ds

+

4∑
i=1

E{
∫ T

0
sup

0≤s≤T
|qi(x, s)|2}ds].

(A20)

By utilizing Gronwall’s inequality and performing integration across the domain Ω, we obtain the
outcome as expressed in Eq (3.11). This establishes the completion of the proof.

Electronic Research Archive Volume 32, Issue 5, 3059–3091.



3087

A3. Proof of Lemma 3.5

Proof. If η ≥ 1. For any r > 0, an estimate of |S (x, t) − S̄ (x, t)|2η can be obtained as follows

E sup
0≤t≤r

∫
Ω

|S (x, t) − S̄ (x, t)|2ηdx

≤ CE
∫ r

0

∫
Ω

[(d1∆ − µ)2η|S (x, t) − S̄ (x, t)|2η + β2η
L |S (x, t)L(x, t) − S̄ (x, t)L̄(x, t)|2η

+ ξ
2η
1 |S (x, t) − S̄ (x, t)|2η + θ2ηL |RL(x, t) − R̄L(x, t)|]dxdt

≤ CE[
∫ r

0

∫
Ω

(|S (x, t) − S̄ (x, t)|2η + |RL(x, t) − R̄L(x, t)|2η + |L(x, t) − L̄(x, t)|2η)dxdt].

(A21)

Let q̄ = 1
kη > 1,p̄ > 1 satisfy that 1

p̄ +
1
q̄ = 1, then we can obtain

E sup
0≤t≤r

∫
Ω

|IL(x, t) − ĪL(x, t)|2ηdx

≤ CE
∫ r

0

∫
Ω

[(d2∆ − σL − δL − µ)2η|IL(x, t) − ĪL(x, t)|2η + c2η|
u1IL(x, t)

1 + αIL(x, t)
−

u1 ĪL(x, t)
1 + αĪL(x, t)

|2η

+ β
2η
L |S (x, t)L(x, t) − S̄ (x, t)L̄(x, t)|2η + ξ2η

1 |IL(x, t) − ĪL(x, t)|2η]dxdt

≤ CE
∫ r

0

∫
Ω

(|S (x, t) − S̄ (x, t)|2η + |IL(x, t) − ĪL(x, t)|2η + |L(x, t) − L̄(x, t)|2η)dxdt

+C[E
∫ r

0
1 p̄]

1
p̄ [E
∫ r

0
mu1(t),ū1(t)(t)dt]

1
q̄

≤ C[E
∫ r

0

∫
Ω

(|S (x, t) − S̄ (x, t)|2η + |IL(x, t) − ĪL(x, t)|2η + |L(x, t) − L̄(x, t)|2η)dxdt

+ d(u1(x, t), ū1(x, t))kη].

(A22)

We can get this by doing something similar

E sup
0≤t≤r

∫
Ω

|RL(x, t) − R̄L(x, t)|2ηdx

≤ CE
∫ r

0

∫
Ω

[(d3∆ − θL − µ)2η|RL(x, t) − R̄L(x, t)|2η + σ2η
L |IL(x, t) − ĪL(x, t)|2η

+ c2η|
u1IL(x, t)

1 + αIL(x, t)
−

u1 ĪL(x, t)
1 + αĪL(x, t)

|2η + ξ
2η
1 |RL(x, t) − R̄L(x, t)|2η]dxdt

≤ CE
∫ r

0

∫
Ω

(|IL(x, t) − ĪL(x, t)|2η + |RL(x, t) − R̄L(x, t)|2η)dxdt +C[E
∫ r

0
1 p̄dt]

1
p̄ [E
∫ r

0
wu1(t),ū1(t)(t)dt]

1
q̄

≤ C[E
∫ r

0

∫
Ω

(|IL(x, t) − ĪL(x, t)|2η + |RL(x, t) − R̄L(x, t)|2η)dxdt + d(u1(x, t), ū1(x, t))kη],

(A23)
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E sup
0≤t≤r

∫
Ω

|L(x, t) − L̄(x, t)|2ηdx

≤ CE
∫ r

0

∫
Ω

[(d4∆ − ε)2η|L(x, t) − L̄(x, t)|2η

+ r2η
L |L(x, t) − L̄(x, t)|2η + ξ2η

L |L(x, t) − L̄(x, t)|2η + |u2(x, t) − ū2(x, t)|2η]dxdt

≤ CE
∫ r

0

∫
Ω

(|L(x, t) − L̄(x, t)|2η)dxdt +C[E
∫ r

0
1 p̄dt]

1
p̄ [E
∫ r

0
wu2(t),ū2(t)(t)dt]

1
q̄

≤ C[E
∫ r

0

∫
Ω

(|L(x, t) − L̄(x, t)|2η)dxdt + d(u2(x, t), ū2(x, t))kη].

(A24)

From Eq (A21) to (A24), the following formula is true

E{ sup
0≤t≤r

∫
Ω

(|S (x, t) − S̄ (x, t)|2η + |IL(x, t) − ĪL(x, t)|2η + |RL(x, t) − R̄L(x, t)|2η + |L(x, t) − L̄(x, t)|2η)}dx

≤ C[
∫ r

0

∫
Ω

E(|S (x, t) − S̄ (x, t)|2η + |IL(x, t) − ĪL(x, t)|2η + |RL(x, t) − R̄L(x, t)|2η

+ |L(x, t) − L̄(x, t)|2η)dxdt + d(u1(x, t), ū1(x, t))kη + d(u2(x, t), ū2(x, t))kη].
(A25)

Subsequently, we examine the scenario where 0 ≤ η ≤ 1(kη < 1). By applying Cauchy-Schwartz’s
inequality, we obtain the following result

E{ sup
0≤t≤r

∫
Ω

(|S (x, t) − S̄ (x, t)|2η + |IL(x, t) − ĪL(x, t)|2η + |RL(x, t) − R̄L(x, t)|2η + |L(x, t) − L̄(x, t)|2η)}dx

≤ C
∫ r

0

∫
Ω

E(|S (x, t) − S̄ (x, t)|2η + |IL(x, t) − ĪL(x, t)|2η + |RL(x, t) − R̄L(x, t)|2η

+ |L(x, t) − L̄(x, t)|2η)dxdt ≤ C[d(u1(x, t), ū1(x, t))kη + d(u2(x, t), ū2(x, t))kη].
(A26)

The lemma’s proof is concluded by utilizing the aforementioned inequalities and the Gronwall inequality.

A4. Proof of Lemma 3.6

Proof. Let p̄i(x, t) = pi(x, t) − p̃i(x, t), q̄i(x, t) = qi(x, t) − q̃i(x, t), (i = 1, 2, 3, 4), then according to the
adjoint Eq (3.8), we have

dp̄1(x, t) = −[(d1∆ − µ − βLL)p̄1(x, t) + βLLp̄2(x, t) − ξ1q̄1(x, t) + f̂1]dt + q̄1(x, t)dB1,

dp̄2(x, t) = −{[d2∆ − (σL + δL + µ) −
cu1(x, t)

(1 + αIL)2 ]p̄2(x, t) + [σL +
cu1(x, t)

(1 + αIL)2 ]p̄3(x, t)

− ξ1q̄2(x, t) + f̂2}dt + q̄2(x, t)dB1,

dp̄3(x, t) = −{θL p̄1(x, t) + [d3∆ − (θL + µ)] p̄3(x, t) − ξ1q̄3(x, t) + f̂3}dt + q̄3(x, t)dB1,

dp̄4(x, t) = −{−βLS p̄1(x, t) + βLS p̄2(x, t) + [d4∆ + rL −
2rLL

kL
− (ε + u2(x, t))] p̄4(x, t) − ξ2q̄4(x, t)

+ f̂4}dt + q̄4(x, t)dB2,
(A27)
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where 

f̂1 = βL(L̄(x, t) − L(x, t))(p̃1(x, t) − p̃2(x, t)),

f̂2 = σL(p̃2(x, t) − p̃3(x, t)) + c(
ū1(x, t)

(1 + αĪL)2
−

u1(x, t)
(1 + αIL)2 )(p̃2(x, t) − p̃3(x, t)),

f̂3 = −θL( p̃1(x, t) − p̃2(x, t)),

f̂4 = βL(S̄ (x, t) − S (x, t))( p̃1(x, t) − p̃2(x, t)) + p̃4(x, t)(ū2(x, t) − u2(x, t)).

(A28)

Let us consider the function ϕ(x, t) = (ϕ1(x, t), ϕ2(x, t), ϕ3(x, t), ϕ4(x, t))T as the solution to the given
linear stochastic differential equation.

dϕ1(x, t) = [(d1∆ − µ − βLL)ϕ1(x, t) + θLϕ3(x, t) − βLSϕ4(x, t) + |p̄1(x, t)|η−1sgn(p̄1(x, t))]dt

+ [−ξ1ϕ1(x, t) + |q̄1(x, t)|η−1sgn(q̄1(x, t))]dB1,

dϕ2(x, t) = {βLLϕ1(x, t) + [d2∆ − (σL + δL + µ) −
cu1(x, t)

(1 + αIL)2 ]ϕ2(x, t) + βLSϕ4(x, t)

+ |p̄2(x, t)|η−1sgn(p̄2(x, t))}dt + [−ξ1ϕ2(x, t) + |q̄2(x, t)|η−1sgn(q̄2(x, t))]dB1,

dϕ3(x, t) = [(σL +
cu1(x, t)

(1 + αIL)2 )ϕ2(x, t) + [d3∆ − (θL + µ)]ϕ3(x, t) + | p̄3(x, t)|η−1sgn( p̄3(x, t))]dt

+ [−ξ1ϕ3(x, t) + |q̄3(x, t)|η−1sgn(q̄3(x, t))]dB1,

dϕ4(x, t) = {[d4∆ + rL − 2
rLL
KL
− (ε + u2(x, t))]ϕ4(x, t)

+ |p̄4(x, t)|η−1sgn( p̄4(x, t))}dt + [−ξ2ϕ4(x, t) + |q̄4(x, t)|η−1sgn(q̄4(x, t))]dB2.

(A29)

The function sgn(·) is a symbolic function. Drawing from the premise and the lemma denoted as
Lemma 3.5, it can be deduced that the Eq (A29) possesses a unique solution.

E
∫ T

0

∫
Ω

(∥ p̄1(x, t)|η−1sgn( p̄1(x, t)))|2 + ∥ p̄2(x, t)|η−1sgn(p̄2(x, t))|2

+ ∥p̄3(x, t)|η−1sgn( p̄3(x, t))|2 + ∥ p̄4(x, t)|η−1sgn(p̄4(x, t))|2 + ∥q̄1(x, t)|η−1sgn(q̄1(x, t))|2

+ ∥q̄2(x, t)|η−1sgn(q̄2(x, t))|2 + ∥q̄3(x, t)|η−1sgn(q̄3(x, t))|2 + ∥q̄4(x, t)|η−1sgn(q̄4(x, t))|2 < +∞.

(A30)

Because 1 < η < 2, there exist η1 > 2 and 1
η
+ 1
η1
= 1. Using Cauchy-Schwartz’s inequality

4∑
i=1

E sup
0≤t≤T
|ϕi(x, t)|η1 ≤ E{

∫ T

0

∫
Ω

(| p̄1(x, t)|(η−1)η1 + |p̄2(x, t)|(η−1)η1 + | p̄3(x, t)|(η−1)η1 + | p̄4(x, t)|(η−1)η1

+ |q̄1(x, t)|(η−1)η1 + |q̄2(x, t)|(η−1)η1 + |q̄3(x, t)|(η−1)η1 + |q̄4(x, t)|(η−1)η1)dxdt}

= E{
∫ T

0

∫
Ω

(| p̄1(x, t)|η + | p̄2(x, t)|η + | p̄3(x, t)|η + | p̄4(x, t)|η + |q̄1(x, t)|η

+ |q̄2(x, t)|η + |q̄3(x, t)|η + |q̄4(x, t)|η)dxdt}

= E
∫ T

0

∫
Ω

( f̂1(x, t)ϕ1(t) + f̂2(x, t)ϕ2(t) + f̂3(x, t)ϕ3(t) + f̂4(x, t)ϕ4(t))dxdt

≤ C
∫ T

0

∫
Ω

(| f̂1(t)|η + | f̂2(t)|η + | f̂3(t)|η + | f̂4(t)|η)dxdt.

(A31)
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In order to derive the outcome of the lemma, we establish the function V( p̄, ϕ) =
∑4

i=1 p̄i(x, t)ϕi(x, t),
and utilize Itô’s formula and the martingale theorem to obtain the result.

4∑
i=1

E
∫ 4

i=1

∫
Ω

| p̄i(x, t)|ηdxdt +
4∑

i=1

E
∫ 4

i=1

∫
Ω

|q̄i(x, t)|ηdxdt

=

4∑
i=1

E
∫ T

0

∫
Ω

f̂i(x, t)ϕi(x, t)dxdt + E
∫
Ω

{ϕi(x,T )[hS (x,t)(Z(x,T )) − hS̄ (x,t)(Z̄(x,T ))]

+ ϕi(x,T )[hIL(x,t)(Z(x,T )) − hĪL(x,t)(Z̄(x,T ))] + ϕi(x,T )[hRL(x,t)(Z(x,T )) − hR̄L(x,t)(Z̄(x,T ))]
+ ϕi(x,T )[hL(x,t)(Z(x,T )) − hL̄(x,t)(Z̄(x,T ))]}dx

≤

4∑
i=1

[E
∫ T

0
|

∫
Ω

f̂i(x, t)|η)
1
η (E
∫ T

0
|

∫
Ω

ϕi(x, t)|η1)
1
η1 ]dxdt + E

∫
Ω

{[|hS (x, t)(Z(x,T )) − hS̄ (x,t)(Z̄(x,T ))|η]
1
η ,

+ [|hIL(x, t)(Z(x,T )) − hĪL(x,t)(Z̄(x,T ))|η]
1
η + [|hRL(x, t)(Z(x,T )) − hR̄L(x,t)(Z̄(x,T ))|η]

1
η

+ [|hL(x, t)(Z(x,T )) − hL̄(x,t)(Z̄(x,T ))|η]
1
η }dx,

(A32)
where

(E|ϕi(x,T )|η1)
1
η1 dx

≤ C(
4∑

i=1

E
∫ T

0

∫
Ω

|p̄i(x, t)|ηdxdt +
4∑

i=1

∫ T

0

∫
Ω

|q̄i(x, t)|ηdxdt)
1
η1 × {

4∑
i=1

(E
∫ T

0

∫
Ω

| f̂i|
ηdxdt)

1
η

+ E
∫
Ω

[|hS (x, t)(Z(x,T )) − hS̄ (x, t)(Z̄(x,T ))|ηdx]
1
η + [|hIL(x, t)(Z(x,T )) − hĪL(x, t)(Z̄(x,T ))|ηdx]

1
η

+ [|hRL(x, t)(Z(x,T )) − hR̄L(x, t)(Z̄(x,T ))|ηdx]
1
η + [|hL(x, t)(Z(x,T )) − hL̄(x, t)(Z̄(x,T ))|ηdx]

1
η }.

(A33)

Both sides of Eq (A32) are multiplied by the exponent η, resulting in the following expression.

4∑
i=1

E
∫ T

0

∫
Ω

| p̄i(x, t)|ηdxdt +
4∑

i=1

E
∫ T

0

∫
Ω

|q̄i(x, t)|ηdxdt

≤

4∑
i=1

(E
∫ T

0

∫
Ω

| f̂i(x, t)|ηdxdt) + E
∫
Ω

{[|hS (x, t)(Z(x,T )) − hS̄ (x, t)(Z̄(x,T ))|ηdx]
1
η

+ [|hIL(x, t)(Z(x,T )) − hĪL(x, t)(Z̄(x,T ))|ηdx]
1
η + [|hRL(x, t)(Z(x,T )) − hR̄L(x, t)(Z̄(x,T ))|ηdx]

1
η

+ [|hL(x, t)(Z(x,T )) − hL̄(x, t)(Z̄(x,T ))|ηdx]
1
η }.

(A34)

Following this, we proceed with the computation of the value of the expression located on the
right-hand side of inequality (A34). Utilizing hypothesis (H1) and referencing Lemma 3.5, we derive
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the subsequent equation.

E[|hS (x,t)(Z(x,T )) − hS̃ (x,t)(Z̄(x,T ))|η + |hIL(x,t)(Z(x,T )) − hĨL(x,t)(Z̄(x,T ))|η

+ |hRL(x,t)(Z(x,T )) − hR̃L(x,t)(Z̄(x,T ))|η + |hL(x,t)(Z(x,T )) − hL̃(x,t)(Z̄(x,T ))|η]
≤ CηE{|S (x,T ) − S̄ (x,T )|η + |IL(x,T ) − ĪL(x,T )|η + |RL(x,T ) − R̄L(x,T )|η + |L(x,T ) − L̄(x,T )|η}

≤ Cd(u, ũ)
κη
2 .

(A35)
Considering the Cauchy-Schwartz inequality, it follows that

E
∫ T

0

∫
Ω

| f̂1(x, t)|ηdxdt

≤ CE[
∫ T

0

∫
Ω

|L(x, t) − L̄(x, t)|η(|p̄1(x, t)η| + | p̄2(x, t)|η)]dxdt

≤ CE[
∫ T

0

∫
Ω

|L(x, t) − L̄(x, t)|
2η

2−ηdxdt]1− η2 (
∫ T

0

∫
Ω

(| p̄1(x, t)|2 + |p̄2(x, t)|2)dxdt)
η
2 .

(A36)

Note that 2η
1−η < 1 , 1 − η2 >

kη
2 and d(u, ū) < 1. In the same way

E
∫ T

0

∫
Ω

| f̂2(x, t)|ηdxdt ≤ Cd(u(x, t), ū(x, t))
κη
2 , (A37)

E
∫ T

0

∫
Ω

| f̂3(x, t)|ηdxdt ≤ Cd(u(x, t), ū(x, t))
κη
2 , (A38)

and

E
∫ T

0

∫
Ω

| f̂4(x, t)|ηdxdt ≤ Cd(u(x, t), ū(x, t))
κη
2 , (A39)

then the following can be obtained

4∑
i=1

∫ T

0

∫
Ω

(| p̄i(x, t)|η)dxdt

≤ CE
4∑

i=1

∫ T

0

∫
Ω

(| f̂i(x, t)|ηdxdt)

≤ C[d(u(x, t), ū(x, t))]
κη
2 .

(A40)
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