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Abstract: Imbalanced data distribution and label correlation are two intrinsic characteristics of multi-
label data. This occurs because in this type of data, instances associated with certain labels may be 
sparse, and some labels may be associated with others, posing a challenge for traditional machine 
learning techniques. To simultaneously adapt imbalanced data distribution and label correlation, this 
study proposed a novel algorithm called compensation-based correlated k-labelsets (CCkEL). First, for 
each label, the CCkEL selects the k-1 strongest correlated labels in the label space to constitute multiple 
correlated k-labelsets; this improves its efficiency in comparison with the random k-labelsets (RAkEL) 
algorithm. Then, the CCkEL transforms each k-labelset into a multiclass issue. Finally, it uses a fast 
decision output compensation strategy to address class imbalance in the decoded multi-label decision 
space. We compared the performance of the proposed CCkEL algorithm with that of multiple popular 
multi-label imbalance learning algorithms on 10 benchmark multi-label datasets, and the results show 
its effectiveness and superiority. 

Keywords: multi-label learning; class imbalance; random k-labelsets; label correlation; decision 
output compensation 
 

1. Introduction 

Multi-label learning, specifically used to classify instances that simultaneously relate to multiple 
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class labels, is a popular machine learning paradigm. In real life, an object with multiple labels is 
common. For instance, a photograph may simultaneously picture mountains, snow, clouds, and the sky, 
a news article may involve several different topics, and a piece of music may express many emotions. 
In recent years, multi-label learning was turned into a hotspot in the field of machine learning [1]; 
meanwhile, this technique has also been widely used to retrieve images [2,3], classify text [4,5], predict 
drug-induced pathology in multi-organ systems [6], study proteins subcellular localization [7,8], 
recognize protein functions [9], and construct recommendation systems [10]. 

Many algorithms have been proposed to classify multi-label data; these could be roughly divided into 
two different groups: problem transformation and algorithm adaption. The former transforms the multi-
label learning task into one or more single-label learning tasks [11] or label-ranking (LR) tasks [12]. 
Algorithm adaption aims to adapt traditional machine learning algorithms to directly handle multi-
label data [13,14]. 

Alternatively, researchers may consider the order of correlations among labels to categorize 
algorithms, dividing all multi-label learning algorithms into three groups: first-order approaches, 
which treat each label independently [15], second-order methods, which take advantage of pairwise 
relations between labels to address multi-label learning issues [12], and high-order algorithms, which 
utilize high-order relations among labels to classify multi-label data [16,17]. In comparison to first- and 
second-order approaches, high-order methods can generally yield a better performance, as most real-
world applications have high-order relations among their labels [1]. The classifier chains (CC) [16] and 
random k-labelsets (RAkEL) [17] algorithms are two of the most popular high-order multi-label 
learning algorithms. The former gradually adds labels into a feature space to train the binary classifier 
into predicting the next label; the RAkEL randomly divides the label space into multiple k-label 
subspaces, transforming each to be a multi-class learning task based on the combination of these k-
labels. Then, it trains a multi-class classifier on each multi-class task. Specifically, the RAkEL effectively 
addresses two problems simultaneously: the excessive number of classes being transformed by the label 
powerset (LP) method, and sparse instances for each class. However, due to the RAkEL always randomly 
selecting k-label sets, it cannot be guaranteed to focus on the boundaries between labels. 

In addition to label correlation, imbalanced data distribution is also an intrinsic characteristic of 
multi-label data [18]. In general, for any one specific label, there are more instances correlated with it 
than those that are not. For example, in the Google image repository, the number of images containing 
the mountains label is certainly much lower than the number of images excluding that label. Such an 
imbalanced class distribution tends to make those traditional multi-label learning models ineffective in 
recognizing real active labels in a test instance. Therefore, it is necessary to focus on this issue when a 
multi-label learning algorithm is designed. In single-label learning, there are several techniques dealing 
with this class imbalance problem, including resampling [19–22], cost-sensitive learning [23–25], 
decision output compensation [26,27], and ensemble learning [28–33]. However, these single-label class 
imbalance learning algorithms cannot be directly used on multi-label data due to the existence of 
complex label correlations. Some recent studies focused on this problem and provided several 
solutions by borrowing the idea of single-label class imbalance learning techniques, including ML-
RUS [34], ML-ROS [34], ML-SMOTE [35], COCOA [36], ECCRU [37], and LDAML-IMB [38]. We 
note that these emerging multi-label imbalance learning algorithms either fail to properly take 
advantage of label correlations or require very-high time complexity. 

In this study, we propose an improved RAkEL algorithm, called compensation-based correlated 
k-labelsets (CCkEL), which simultaneously amends the flaw of RAkEL and considers how to address 
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the class imbalance problem. Specifically, the CCkEL first adopts the Jaccard coefficient [39] as a 
similarity metric to find the k-1 strongest correlated labels with each label existing in a label space to 
create the corresponding k labelset. This replaces the random strategy used by RakEL; by selecting 
correlated labels, it forces the learning model to pay more attention to the boundary details among k 
strongly correlated labels. Then, the CCkEL transforms each k-label learning task into a multi-class 
learning task, in which each class represents a unique label combination. Next, considering that the 
transformed multi-class datasets might be very skewed, a rapid decision output compensation strategy 
is designed to enhance the predicted accuracy of active labels during the final decision. The 
performance of the proposed CCkEL is compared here with several popular multi-label imbalance 
learning algorithms on 10 benchmark multi-label datasets, and the results show that the proposed 
CCkEL has excellent classification performance and low time complexity, indicating its effectiveness 
and superiority. 

The key contributions of this study are as follows: 
1) A correlated label-selection strategy relying on the Jaccard coefficient is proposed to replace the 

random label-selection strategy used by the RAkEL algorithm, which makes the learning model 
focus more on the boundary details among correlated labels; 

2) To address the class imbalance issue in the decoded multi-label decision space, a fast decision 
output compensation strategy relying on the imbalance ratio of labels is designed. It can 
simultaneously improve the adaption of the learning model to imbalanced data distribution and 
save running time. 

3) A novel multi-label imbalance learning algorithm named CCkEL is presented. Experimental results 
show that the CCkEL algorithm acquires the lowest average rank in terms of F-micro, HammingLoss, 
and SubsetAccuracy metrics among all compared algorithms. Meanwhile, it has a moderate running 
time consumption, which is a little higher than simple baseline algorithms but clearly lower than 
several other state-of-the-art imbalance multi-label learning algorithms. 
The remainder of this paper is organized as follows. Section 2 describes the class imbalance 

problem in multi-label data, reviews the related work about multi-label imbalance learning algorithms, 
and illustrates the limitations of the RAkEL algorithm. Section 3 presents the details of the proposed 
CCkEL algorithm. In Section 4, the experimental results and analysis are presented in detail. Finally, 
Section 5 concludes the findings of this study. 

2. Problem description and related work 

2.1. Problem description 

A multi-label dataset can be represented as 𝐷 ൌ ሼሺ𝑥௜, 𝑦௜ሻ|1 ൑ 𝑖 ൑ 𝑁ሽ , where N denotes the 
number of instances, 𝑥௜ ∈ 𝑋  indicates the feature vector of the ith instance, and 𝑦௜ ⊆ 𝑌 ൌ ሼ0, 1ሽ௤ 
represents the q-dimensional label vector corresponding to the ith instance. Derived by the multi-label 
dataset 𝐷 , a multi-label learning model can be induced aiming to 𝑓: 𝑋 ↦ 𝑌 , i.e., constructing a 
mapping between the feature space 𝑋 and the label space 𝑌. 

As indicated in [18], for any one label 𝑙௜, the number of instances correlated (active) with that 
label always tends to be lower than the number of instances that are not correlated (inactive) with it. 
Therefore, each binary classification task corresponding to an independent label existing in the label 
space is always imbalanced. Here, we use |𝐷௜

ା| and |𝐷௜
ି| to denote the number of active and inactive 
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instances corresponding to the label 𝑙௜ , respectively. Obviously, we have |𝐷௜
ା| ൅ |𝐷௜

ି| ൌ 𝑁 . Then, 
several quantized metrics [34] to describe the class imbalance level of a multi-label dataset are drawn 
as follows: 

Cardሺ𝐷ሻ ൌ
∑ ห஽೔

శห೜
೔సభ

ே
                                                                       (1) 

Densሺ𝐷ሻ ൌ େୟ୰ୢሺ஽ሻ

௤
                                                                      (2) 

IR௜ ൌ
ห஽೔

షห

ห஽೔
శห

                                                                             (3) 

MeanIR ൌ
∑ ୍ୖ೜

೔సభ

௤
                                                                      (4) 

It is clear that the metrics Card, Dens, and MeanIR reflect the imbalance level of the whole multi-label 
dataset, while IR௜ only denotes the imbalance level of the ith label. The smaller Card and Den and the 
larger MeanIR are, the higher is the class imbalance level. 

Taking the Yeast dataset as an example, we counted the active instances on each label and further 
calculated the corresponding IR௜ and MeanIR (Figure 1). It is noteworthy that, to some extent, there is 
a class imbalance problem on each class label. Specifically, Label 2 has the lowest IR (1.33), while 
Label 14  presents the highest IR (70.09); the MeanIR reaches 8.95, indicating that the class imbalance 
is a non-negligible problem when constructing multi-label learning models. 

 

Figure 1. Distribution of minority samples and imbalance ratios in the Yeast dataset. 

2.2. A brief review of related work on multi-label imbalance learning algorithms 

In recent years, researchers have focused on the class imbalance problem of multi-label data and 
tried to propose several solutions considering their characteristics. As indicated in the precious section, 
there are two differences between single- and multi-label imbalance learning tasks. First, in multi-label 
data, it is difficult to precisely distinguish majority and minority instances, since each instance 
simultaneously correlates with multiple class labels. Additionally, that are correlations among labels 
that cannot be easily isolated. 

In the context of sampling, Charte et al. [34] proposed the ML-RUS (multi-label random 
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undersampling) and ML-ROS (multi-label random oversampling) algorithms. In their design, only the 
class label with a lower IR than the MeanIR is considered to be handled. Based on this principle, we 
either randomly remove the majority instances or copy the minority instances. To promote the 
robustness of sampling, Charte et al. [35] further proposed the ML-SMOTE (multi-label SMOTE) 
algorithm, which generates synthetic minority instances between two adjacent minority instances. 
These algorithms alleviate the class imbalance problem to some extent but fail to focus on label 
correlations. In other words, it is difficult to distinguish minority and majority instances, since a so-
called majority instance on one label may be the minority instance on another label. When the instance 
is removed, it would be beneficial for the first label but harmful for the second label. To address this 
problem, Liu and Tsoumakas [37] integrated the sampling techniques into the framework of the 
classifier chain [16] and proposed the ECC-RU. This algorithm executes random undersampling on 
each label independently to deal with the class imbalance problem and adopts a classifier chain to 
address label correlation problems. In comparison with several other multi-label sampling algorithms, 
the ECC-RU shows significant superiority [37]. 

Besides sampling, the multi-label class imbalance problem can also be addressed in other terms. 
Zhang et al. [36] proposed an ensemble solution named cross-coupling aggregation (COCOA), which 
uses a pairwise strategy to exploit label correlations and a threshold strategy to deal with class 
imbalance. Specifically, for each label pair ൏ 𝑙௜, 𝑙௝ ൐, it first transforms all instances into one of three 
classes according to their label values on the label pair: the first class contains all instances belonging 
to 𝑙௜, the second class covers all instances neither belonging to 𝑙௜ nor 𝑙௝, and the third class includes the 
remainder instances. Then, a calibrating multi-class learning model is trained on the transformed task, 
and the corresponding threshold needs to be determined by an optimization procedure. Finally, the 
predicted label set for a test example is obtained by querying the predictive models of all label pairs. The 
COCOA algorithm is robust but is also extremely time consuming, as it requires training 𝐾 ൈ 𝑞 triple-
class models in total, where 𝐾 denotes a preset number of correlated labels for each label. In [38], Peng 
et al. proposed an algorithm called LDAML-IMB that adopts the latent Dirichlet allocation (LDA) 
model to explore label correlations. Specifically, the LDAML-IMB treats each instance as a document 
and each label as a word in the document. It takes advantage of the LDA to determine the distribution 
of topics, which reflects the label correlations; then, it integrates the topic information to extend the 
original feature space and finally decides the predicted set of labels for each instance according to 
the corresponding topic probabilities. The LDAML-IMB adopts a similar method than COCOA to 
tackle the class imbalance problem; thus, it is noteworthy that the LDAML-IMB algorithm is 
relatively time consuming. 

2.3. Random k-labelsets and its limitations 

The random k-labelsets (RAkEL) algorithm was initially proposed to overcome the problem of 
generating an excessive number of classes in the label powerset (LP) algorithm, further improving the 
robustness of the learning model [17]. It firstly randomly extracts multiple k-label subsets from the 
original label space and then transforms each of them to be a 2௞-class problem according to different 
combinations of label values. Next, for each transformed multi-class learning task 𝐷௜ , the RAkEL 
trains a corresponding learning model ℎ௜. Finally, it adopts the following rule to make a decision for 
each label 𝑙௜ of a test instance 𝑥. 
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  𝑉ሺ𝑥, 𝑙௜ሻ ൌ ൜
1, if 𝜑ሺ𝑥, 𝑙௜ሻ ൒ 𝑡
0, if 𝜑ሺ𝑥, 𝑙௜ሻ ൏ 𝑡

                                                              (5) 

where 𝑡 ∈ ሾ0,1ሿ denotes the decision threshold, which is, in general, set to be 0.5, and 

 𝜑ሺ𝑥, 𝑙௜ሻ ൌ
∑ ௛ೕሺ௫,௟೔ሻೄ

ೕసభ

ௌ
                                                                        (6) 

where S denotes the number of k-label subsets that contain the label 𝑙௜, i.e., 𝑙௜ ∈ 𝐷௝. Figure 2 presents 
an example to describe the flow path of the RAkEL algorithm. 

 

Figure 2. An example to describe the flow path of the RAkEL algorithm, where 𝑡 ൌ 0.5. 

The RAkEL can be seen as an improved version of the LP algorithm. However, we note that there 
are still two limitations in the RAkEL algorithm. Although the RAkEL considers the high-order label 
correlations, the label combinations are random, which may cause the model to only explore a rough 
boundary while neglecting some details about the classification boundary. Also, the RAkEL fails to 
solve the class imbalance problem. In this work, we will try to address both problems. 

3. Methods 

3.1. Exploring label correlations 

As stated in Section 2.3, the RAkEL algorithm randomly explores label correlations. This tends 
to generate a rough classification boundary based on the discrepancies among k irrelevant labels, 
instead of an accurate boundary determined by the differences among k closely correlated labels. In 
this study, we modified the random fashion adopted by RAkEL and proposed to constitute labelsets 
among k closely correlated labels. Specifically, considering that a multi-label classification task 
generally involves a binary label space where each element is labeled either 0 or 1, we decided to use 
the Jaccard coefficient [39] to detect label correlations. 

Suppose 𝐷௜ and 𝐷௝ store the training instances that are active on label 𝑙௜ and 𝑙௝, respectively; then, 
the Jaccard coefficient between these two labels can be calculated as follows, 

𝐽൫𝑙௜, 𝑙௝൯ ൌ |஽೔∩஽ೕ|

|஽೔∪஽ೕ|
                                                                          (7) 

It is obvious that a larger Jaccard coefficient means a closer correlation between two corresponding 
labels. For example, in an image retrieval task, the images containing sandbeach always include sea 
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but are in general irrelevant to waterfall. When training a learning model, it is more difficult but also 
useful to explore the difference between the two labels sandbeach and sea than distinguish between 
sandbeach and waterfall. 

For each label 𝑙௜ in the label space Y, the k-1 strongest correlated labels with that label can be 
found by sorting q-1 calculated Jaccard coefficients in descending order. Therefore, it only requires 
generating q k-labelsets in total. 

3.2. An empirical decision output compensation strategy 

In this study, we consider adopting a decision output compensation strategy, i.e., a threshold 
strategy, to address the imbalanced data classification problem. On the transformed multi-class datasets, 
the instances belonging to some classes might be extremely sparse, causing their distributions to not 
being precisely described, which undermines some traditional sampling or cost-sensitive learning 
methods [20]. 

Although there are several mature decision output compensation algorithms, e.g., SVM-OTHR [26] 
and ODOC-ELM [27], they are too complex and time consuming to be used in this scenario. In addition, 
these methods tend to overfit the learning model, as the optimum solution is always sought out based 
on the training data. 

 

Figure 3. The varying curve of the modified function f. 

Based on the considerations above, in this study we developed a fast decision output 
compensation strategy. Different from the addition compensation strategy adopted by SVM-OTHR 
and ODOC-ELM, our proposed strategy adopts the multiplication compensation. Specifically, it 
rewrites the decision output as 

𝜑ሺ𝑥, 𝑙௜ሻ ൌ 𝐶 ൈ 𝜑ሺ𝑥, 𝑙௜ሻ                                                                 (8) 

where the modified factor 𝐶 can be calculated by, 

  𝐶 ൌ 𝑓ሺIR௜ሻ ൌ 1 ൅ ଵ

ଵା௘షഊభሺ౅౎೔షഊమሻ                                                        (9) 

where 𝑓 denotes the modified function, IR௜ indicates the class imbalance ratio of label 𝑙௜, and 𝜆ଵ and 𝜆ଶ 
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are two constants; the former controls the varying gradient of the modified function and the latter 
indicates the inflection position of the varying curve of the modified function. In this study, we 
empirically designate 𝜆ଵ  as 0.02 and 𝜆ଶ  as 4. The setting of 𝜆ଶ  satisfies the assumption that the 
performance of a dataset is impacted by the imbalanced data distribution only when the class imbalance 
ratio is larger than 4 [20]. Similarly, in this study, when and only when the class imbalance ratio of a 
label is equal to or larger than 4, its decision output is compensated. Specifically, the modified factor C 
lies in the range (1.5, 2), and its varying curve is drawn in Figure 3. 

3.3. Description of the CCkEL algorithm 

Based on the proposed label correlation exploration strategy and the empirical decision output 
compensation strategy, the flow path of the CCkEL algorithm can be described in detail as follows. 

Input: 
Training set: D 
Size of labelset: k 
Learning model: h 
Test instance: x 

Output: 
  Predicted label set for x: 𝑦ො 
Training procedure: 
1. 𝐖 ൌ ∅; 
2. 𝐂 ൌ ∅; 
3. For i=1:q 
4.   Calculate IR௜ of the label 𝑙௜ by Eq (3); 
5.   𝐖 ൌ 𝐖 ∪ IR௜; 
6.   If IR௜ ൒ 4 
7.      Calculate 𝐶௜ by Eq (9); 
8.      𝐂 ൌ 𝐂 ∪ 𝐶௜; 
9.   End if 
10. End for 
11. 𝐐 ൌ ሾ0ሿ௤ൈ௤; 
12. For i=1:(q-1) 
13.   For j=(i+1):q 
14.  Calculate 𝐽൫𝑙௜, 𝑙௝൯ by Eq (7) and use it to replace the values of the ith line and jth column, and the jth line and 

ith column in Q; 
15.   End for 
16. End for 
17. 𝐏 ൌ ሾ0ሿ௤ൈ௞; 
18. For i=1:q 
19.    Sort all values in the ith line of Q in descending order and then find the top (k-1) labels to combine 𝑙௜ to 

constitute its k-labelset, then use their mark numbers to replace the ith line in P; 
20.    Transform the k-labelset to be the corresponding multi-class task, and train the learning model ℎ௜; 
21. End for 
Testing procedure: 
22. For i=1:q 
23.    Decode ℎ௜ሺ𝑥ሻ by visiting the ith line in P; 
24. End for 
25. For i=1:q 
26.    Calculate 𝜑ሺ𝑥, 𝑙௜ሻ by Eq (6); 
27.    If (𝐖ሺ𝑖ሻ ൒ 4) 
28.      Update 𝜑ሺ𝑥, 𝑙௜ሻ by visiting 𝐂 using Eq (8); 
29.    End if 
30.    Calculate 𝑉ሺ𝑥, 𝑙௜ሻ by using Eq (5); 
31. End for 
Output 𝑦ො, which is the predicted label set for the test instance x. 
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Specifically, 𝐖 and 𝐂 are two vectors that store the class imbalance ratio and the modified factor 
of each label, respectively. Q is a matrix to store the Jaccard coefficient between any two labels, while 
P is the matrix that stores the information about all k-labelsets. 

It is noteworthy that several state-of-the-art algorithms, including RAkEL [17], COCOA [36], 
ECCRU [37], LDAML-IMB [38], and our proposed CCkEL, all focus on high-order label correlations. 
Here, we wish to analyze their differences, further highlighting the rationality of our proposed 
algorithm. First, both RAkEL and the proposed CCkEL generate q k-labelsets and deal with them by 
label powerset strategy. However, each k-labelset in the RAkEL is generated randomly, making it 
possible to involve some irrelevant labels, further lowering the efficiency of each sub-learning model. 
In addition, the RAkEL fails to consider the potential class imbalance problems in multi-label data. In 
contrast, the CCkEL improves the efficiency of each sub-learning model, as it constructs each k-
labelset among closely correlated labels, and solves the class imbalance issue through a fast threshold 
strategy. As for COCOA, it only considers pairwise label relations; when there are multiple label 
correlations, it cannot capture these relations. Meanwhile, it conducts an optimization procedure to 
seek the optimal threshold, thus being extremely time consuming. In contrast, the CCkEL can rapidly 
capture high-order label relations and calculate an appropriate threshold. ECCRU explores high-order 
label correlations by introducing old labels into the feature space and solves the class imbalance 
problem by adopting random undersampling (RUS) strategy. In contrast to our proposed CCkEL 
algorithm, the ECCRU tends to introduce more noisy label correlations, which could destroy feature-
label mappings, while losing classification information and decreasing the quality of each sub-learning 
model, as with the adoption of the RUS technique. In comparison to several other algorithms, the 
LDAML-IMB seems to be more robust, as it can not only capture accurate high-order label correlations 
but also solve the class imbalance problem in a rational fashion. However, it is extremely time 
consuming, as both the LDA approach and optimized threshold strategy require high time complexities. 
This further explains why our proposed CCkEL algorithm may be more effective and efficient than 
these state-of-the-art algorithms. 

Regarding time complexity, the RAkEL algorithm has time complexity 𝑂ሺ𝑞 ∙ 𝐹ெሺ𝑁, 𝑑, 2௞ሻሻ for 
training and 𝑂ሺ𝑞 ∙ 𝐹ெ

ᇱ ሺ𝑑, 2௞ሻሻ  for testing, where N denotes the number of training instances, d 
represents the dimension of feature space X, 𝐹ெሺ𝑁, 𝑑, 2௞ሻ denotes the time complexity of transforming 
a k-labelset into a multi-class problem and training the corresponding classification model, and 
𝐹ெ

ᇱ ሺ𝑑, 2௞ሻ denotes the time complexity for predicting an instance by a trained multi-class learning 
model and then denoting it into the original k-label space [1]. Then, the CCkEL has two more steps 
than the RAkEL during training. One is calculating the Jaccard coefficients and sorting them with the 
time complexity 𝑂ሺ𝑞ଶ𝑁ሻ . The other one is calculating the modified factor 𝐶 , which has a time 
complexity 𝑂ሺ1ሻ . Therefore, the training time complexity of the CCkEL is 𝑂ሺ𝑞 ∙ ሺ𝑞𝑁 ൅
𝐹ெሺ𝑁, 𝑑, 2௞ሻሻሻ, and the testing time complexity of the CCkEL is 𝑂ሺ𝑞 ∙ 𝐹ெ

ᇱ ሺ𝑑, 2௞ሻሻ. 

4. Experiments and discussion 

4.1. Description of the used datasets 

In experiments, we used 10 multi-label datasets collected from two open-source data repositories: 
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OpenML1 and Mulan2. The details about these datasets are presented in Table 1, where #Instances, 
#Features, and #Labels represent the number of instances, the number of features, and the number of 
labels contained in the corresponding dataset, respectively. Card, Dens, and MeanIR are three popular 
multi-label imbalance level metrics, which have been described in Eqs (1), (2), and (4), while IR (min) 
and IR (max) denote the minimum and maximum imbalance ratios among all labels within the 
corresponding dataset. 

Table 1. Details about the used datasets. 

4.2. Experimental settings 

We compared the proposed CCkEL with the baseline algorithm RAkEL [17] and several state-of-
the-art imbalanced multi-label learning algorithms, namely ML-RUS [34], ML-ROS [34], ML-
SMOTE [35], COCOA [36], ECCRU [37], and LDAML-IMB [38]. All these algorithms were 
implemented by Python, and they all ran on a hardware environment of Intel(R) Core(TM) i5-11400H 
@ 2.70GHz. 

Specifically, we used five popular performance metrics to evaluate various algorithms, including 
Micro F-measure (F-micro), Macro F-measure (F-macro), HammingLoss, SubsetAccuracy, and 
running time. These metrics can be calculated as follows: 

F െ micro ൌ ଶൈ୔୰ୣୡ୧ୱ୧୭୬ൈୖୣୡୟ୪୪

୔୰ୣୡ୧୲୧୭୬ାୖୣୡୟ୪୪
                                                      (10) 

F െ macro ൌ ଵ

௤
∑ ଶൈ୔୰ୣୡ୧ୱ୧୭୬೔ൈୖୣୡୟ୪୪೔

୔୰ୣୡ୧୲୧୭୬೔ାୖୣୡୟ୪୪೔

௤
௜ୀଵ                                                   (11) 

HammingLoss ൌ ଵ

ே
∑

∑ 𝐈ሺ௬೔,ೕஷ௬ො೔,ೕሻ೜
ೕసభ

௤
ே
௜ୀଵ                                                   (12) 

SubsetAccuracy ൌ ଵ

ே
∑ 𝐈ሺே

௜ୀଵ 𝑦௜ ൌ 𝑦ො௜ሻ                                                  (13) 

where I is an indicator function equal to 1 when the condition is satisfied; otherwise, it is equal to 0. 
As for several other variables, they can be calculated as follows: 

 
1 https://www.openml.org 
2 https://mulan.sourceforge.net/ 

Dataset #Instances #Features #Labels Card Dens IR (min) IR (max) MeanIR
Bibtex 7395 183 159 2.402 0.015 6.097 144.000 87.699 
Birds 645 260 19 1.014 0.053 5.262 106.500 32.859 
Emotions 593 72 6 1.869 0.074 1.246 3.007 2.320 
Enron 1702 1001 53 3.378 0.064 1.009 1701.000 136.867
Flags 194 19 9 3.392 0.485 1.042 11.125 3.819 
Image 2000 135 5 1.236 0.247 2.448 3.890 3.116 
Medical 978 1449 45 1.245 0.028 2.677 977 328.069
Scene 2407 294 6 1.074 0.179 3.516 5.613 4.662 
SlashDot 3782 1079 22 1.134 0.081 5.476 1259.667 125.039
Yeast 2417 103 14 4.233 0.325 1.329 70.088 8.954 
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Precision ൌ
భ
೜

∑ ୘୔೔
೜
೔సభ

భ
೜

∑ ୘୔೔
೜
೔సభ ାభ

೜
∑ ୊୔೔

೜
೔సభ

                                                    (14) 

Recall ൌ
భ
೜

∑ ୘୔೔
೜
೔సభ

భ
೜

∑ ୘୔೔
೜
೔సభ ାభ

೜
∑ ୊୒೔

೜
೔సభ

                                                     (15) 

Precision௜ ൌ ୘୔೔

୘୔೔ା୊୔೔
                                                        (16) 

Recall௜ ൌ ୘୔೔

୘୔೔ା୊୒೔
                                                        (17) 

where TP௜, FP௜, and FN௜ represent the true positive rate, false positive rate, and false negative rate on 
the label 𝑙௜, respectively. 

To guarantee the impartiality of compared experiments, all algorithms adopted C4.5 decision 
tree [40] as the base level single-label learning model. We selected C4.5 decision tree as it has been 
widely adopted in experiments of several relevant algorithms [17,40]. In practical applications, it could 
be replaced by any other classifier according to the users’ preferences. Except for the CCkEL, all other 
algorithms used the default settings, which have been suggested in the corresponding references. The 
CCkEL empirically set 𝑘 ൌ max ሺ𝑞/3, 3ሻ . In addition, to truly reflect the performance of each 
algorithm, we conducted 10 times five-fold cross-validations and then output the average results. 

4.3. Results and discussion 

The experimental results of the five performance metrics are presented in Tables 2–6. Additionally, 
to more intuitively compare the quality of various algorithms, a bar graph depicting the average 
rankings of each algorithm on five different metrics is also provided in Figure 4. 

Table 2. F-micro performance of various algorithms, where ▣ and • indicate the best and 
the second-best results on each dataset, respectively. 

Dataset 
Algorithm 

CCkEL RAkEL COCOA ML-SMOTE ML-ROS ML-RUS ECCRU LDAML-IMB 

Bibtex 0.4101 ± 0.0007• 0.4073 ± 0.0009 0.3523 ± 0.0023 0.3601 ± 0.0022 0.3624 ± 0.0015 0.3513 ± 0.0005 0.4359 ± 0.0022▣ 0.3645 ± 0.0014

Birds 0.4507 ± 0.0186• 0.4353 ± 0.0214 0.4142 ± 0.0181 0.3967 ± 0.0208 0.3793 ± 0.0259 0.3587 ± 0.0172 0.4708 ± 0.0122▣ 0.3962 ± 0.0164

Emotions 0.5767 ± 0.0163 0.5633 ± 0.0148 0.6119 ± 0.0181• 0.5630 ± 0.0163 0.5764 ± 0.0205 0.5716 ± 0.0095 0.6312 ± 0.0098▣ 0.5941 ± 0.0137

Enron 0.5525 ± 0.0044▣ 0.5505 ± 0.0050• 0.4829 ± 0.0129 0.4749 ± 0.0057 0.4732 ± 0.0088 0.4567 ± 0.0086 0.5123 ± 0.0028 0.4749 ± 0.0071

Flags 0.6806 ± 0.0198• 0.6526 ± 0.0164 0.6915 ± 0.0129▣ 0.6405 ± 0.0215 0.6558 ± 0.0149 0.6637 ± 0.0219 0.6514 ± 0.0059 0.6596 ± 0.0212

Image 0.4790 ± 0.0157 0.4622 ± 0.0109 0.5120 ± 0.1140• 0.4500 ± 0.0204 0.4718 ± 0.0135 0.4632 ± 0.0045 0.5421 ± 0.0130▣ 0.4776 ± 0.0067

Medical 0.8187 ± 0.0055▣ 0.8128 ± 0.0031• 0.7970 ± 0.0065 0.7905 ± 0.0069 0.7795 ± 0.0066 0.7684 ± 0.0149 0.8044 ± 0.0070 0.7952 ± 0.0069

Scene 0.6376 ± 0.0144• 0.6130 ± 0.0147 0.6092 ± 0.0097 0.5959 ± 0.0145 0.5899 ± 0.0064 0.5673 ± 0.0084 0.6825 ± 0.0063▣ 0.5955 ± 0.0041

SlashDot 0.5467 ± 0.0078▣ 0.5364 ± 0.0011 0.5273 ± 0.0059 0.5207 ± 0.0082 0.5204 ± 0.0047 0.4906 ± 0.0073 0.5424 ± 0.0041• 0.5258 ± 0.0032

Yeast 0.5717 ± 0.0129 0.5629 ± 0.0047 0.5854 ± 0.0052▣ 0.5333 ± 0.0044 0.5375 ± 0.0047 0.5584 ± 0.0098 0.5844 ± 0.0119• 0.5453 ± 0.0039

Average ranking 2.1 4.0 3.3 6.4 6.1 6.7 2.2 4.7 
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Table 3. F-macro performance of various algorithms, where ▣ and • indicate the best and 
the second-best results on each dataset, respectively. 

Table 4. HammingLoss performance of various algorithms, where ▣ and • indicate the best 
and the second-best results on each dataset, respectively. 

Table 5. SubsetAccuracy performance of various algorithms, where ▣ and • indicate the 
best and the second-best results on each dataset, respectively. 

Dataset 
Algorithm 

CCkEL RAkEL COCOA ML-SMOTE ML-ROS ML-RUS ECCRU LDAML-IMB 

Bibtex 0.2281 ± 0.0011 0.2246 ± 0.0007 0.2922 ± 0.0011• 0.2808 ± 0.0033 0.2843 ± 0.0023 0.2667 ± 0.0008 0.3479 ± 0.0029▣ 0.2854 ± 0.0017 

Birds 0.2827 ± 0.0264 0.2651 ± 0.0183 0.3110 ± 0.0175• 0.2782 ± 0.0254 0.2780 ± 0.0180 0.2504 ± 0.0188 0.3453 ± 0.0137▣ 0.2917 ± 0.0217 

Emotions 0.5581 ± 0.0135 0.5478 ± 0.0191 0.6056 ± 0.0178 0.5543 ± 0.0213 0.5693 ± 0.2100 0.5577 ± 0.0129 0.6270 ± 0.0106▣ 0.5881 ± 0.0137•

Enron 0.1891 ± 0.0063 0.1850 ± 0.0046 0.1962 ± 0.0124 0.1888 ± 0.0088 0.1932 ± 0.0071 0.1718 ± 0.0077 0.2067 ± 0.0081▣ 0.1980 ± 0.0049•

Flags 0.5989 ± 0.0162▣ 0.5093 ± 0.0141 0.5810 ± 0.0250• 0.5126 ± 0.0244 0.5318 ± 0.0193 0.5424 ± 0.0266 0.5488 ± 0.0184 0.5484 ± 0.0204 

Image 0.4799 ± 0.0175 0.4642 ± 0.0130 0.5139 ± 0.0138• 0.4526 ± 0.0228 0.4739 ± 0.0137 0.4617 ± 0.0054 0.5478 ± 0.0126▣ 0.4805 ± 0.0079 

Medical 0.3767 ± 0.0145 0.3708 ± 0.0110 0.3934 ± 0.0132▣ 0.3867 ± 0.0089 0.3873 ± 0.0102 0.3467 ± 0.0283 0.3865 ± 0.0064 0.3918 ± 0.0091•

Scene 0.6482 ± 0.0140• 0.6174 ± 0.0159 0.6248 ± 0.0095 0.6057 ± 0.0147 0.6003 ± 0.0057 0.5789 ± 0.0092 0.6950 ± 0.0071▣ 0.6061 ± 0.0042 

SlashDot 0.3332 ± 0.0038 0.3162 ± 0.0069 0.3465 ± 0.0193• 0.3279 ± 0.0073 0.3311 ± 0.0115 0.3129 ± 0.0056 0.3696 ± 0.0068▣ 0.3326 ± 0.0041 

Yeast 0.3625 ± 0.0117 0.3559 ± 0.0064 0.4379 ± 0.0067▣ 0.3733 ± 0.0088 0.3870 ± 0.0101 0.3973 ± 0.0097 0.4111 ± 0.0150• 0.3963 ± 0.0043 

Average ranking 4.4 7.0 2.1 5.8 5.0 6.7 1.7 3.3 

Dataset 
Algorithm 

CCkEL RAkEL COCOA ML-SMOTE ML-ROS ML-RUS ECCRU LDAML-IMB 

Bibtex 0.0120 ± 0.0003▣ 0.0121 ± 0.0004• 0.0242 ± 0.0001 0.0199 ± 0.0001 0.0200 ± 0.0002 0.0199 ± 0.0001 0.0174 ± 0.0004 0.0199 ± 0.0001 

Birds 0.0427 ± 0.0016▣ 0.0434 ± 0.0013• 0.0771 ± 0.0046 0.0599 ± 0.0017 0.0683 ± 0.0033 0.0707 ± 0.0017 0.0615 ± 0.0018 0.0647 ± 0.0015 

Emotions 0.2347 ± 0.0078▣ 0.2401 ± 0.0088• 0.2927 ± 0.0153 0.2551 ± 0.0104 0.2649 ± 0.0091 0.2728 ± 0.0117 0.2512 ± 0.0074 0.2545 ± 0.0074 

Enron 0.0495 ± 0.0003 0.0489 ± 0.0004▣ 0.0781 ± 0.0017 0.0679 ± 0.0007 0.0689 ± 0.0014 0.0723 ± 0.0013 0.0644 ± 0.0005 0.0694 ± 0.0008 

Flags 0.2767 ± 0.0148 0.2625 ± 0.0224▣ 0.2829 ± 0.0108 0.2859 ± 0.0224 0.2796 ± 0.0114 0.2768 ± 0.0185 0.2863 ± 0.0028 0.2792 ± 0.0144 

Image 0.2184 ± 0.0067▣ 0.2323 ± 0.0135• 0.3133 ± 0.0062 0.2516 ± 0.0089 0.2679 ± 0.0075 0.2762 ± 0.0044 0.2560 ± 0.0072 0.2631 ± 0.0039 

Medical 0.0098 ± 0.0003▣ 0.0099 ± 0.0004• 0.0116 ± 0.0003 0.0117 ± 0.0004 0.0123 ± 0.0004 0.0129 ± 0.0008 0.0114 ± 0.0004 0.0115 ± 0.0004 

Scene 0.1210 ± 0.0078▣ 0.1219 ± 0.0058 0.1741 ± 0.0050 0.1386 ± 0.0042 0.1501 ± 0.0020 0.1599 ± 0.0064 0.1217 ± 0.0027• 0.1456 ± 0.0200 

SlashDot 0.0401 ± 0.0006▣ 0.0410 ± 0.0003• 0.0502 ± 0.0006 0.0461 ± 0.0015 0.0467 ± 0.0006 0.0525 ± 0.0008 0.0522 ± 0.0008 0.0463 ± 0.0004 

Yeast 0.2281 ± 0.0033▣ 0.2312 ± 0.0024• 0.3090 ± 0.0041 0.2637 ± 0.0031 0.2813 ± 0.0032 0.2788 ± 0.0049 0.2526 ± 0.0065 0.2750 ± 0.0024 

Average ranking 1.2 1.9 7.3 4.3 6.0 6.4 4.0 4.6 

Dataset 
Algorithm 

CCkEL RAkEL COCOA ML-SMOTE ML-ROS ML-RUS ECCRU LDAML-IMB 

Bibtex 0.1805 ± 0.0021▣ 0.1793 ± 0.0013• 0.0810 ± 0.0008 0.0998 ± 0.0020 0.0997 ± 0.0011 0.0893 ± 0.0022 0.1367 ± 0.0033 0.1010 ± 0.0016 

Birds 0.5054 ± 0.0167▣ 0.5020 ± 0.0096• 0.3519 ± 0.0248 0.4307 ± 0.0270 0.3833 ± 0.0236 0.3688 ± 0.0332 0.4056 ± 0.0164 0.3890 ± 0.0107 

Emotions 0.2167 ± 0.0211▣ 0.1954 ± 0.0202 0.1548 ± 0.0255 0.1651 ± 0.0221 0.1619 ± 0.0270 0.1516 ± 0.0218 0.2020 ± 0.0233• 0.1826 ± 0.0155 

Enron 0.1158 ± 0.0058• 0.1194 ± 0.0068▣ 0.0837 ± 0.0073 0.0883 ± 0.0083 0.0850 ± 0.0049 0.0741 ± 0.0118 0.1008 ± 0.0056 0.0852 ± 0.0029 

Flags 0.1438 ± 0.0204▣ 0.1057 ± 0.0206 0.0835 ± 0.0405 0.0665 ± 0.0303 0.0778 ± 0.0202 0.0912 ± 0.0274 0.1099 ± 0.0036• 0.0938 ± 0.0196 

Image 0.3042 ± 0.0162▣ 0.2841 ± 0.0146• 0.1817 ± 0.0072 0.2307 ± 0.0128 0.2220 ± 0.0170 0.2110 ± 0.0155 0.2795 ± 0.0210 0.2309 ± 0.0056 

Medical 0.6880 ± 0.0152▣ 0.6778 ± 0.0152• 0.6335 ± 0.0178 0.6263 ± 0.0077 0.6152 ± 0.0105 0.5917 ± 0.0341 0.6488 ± 0.0139 0.6315 ± 0.0117 

Scene 0.4844 ± 0.0209• 0.4703 ± 0.0188 0.3349 ± 0.0150 0.3994 ± 0.0119 0.3766 ± 0.0089 0.3444 ± 0.0245 0.4944 ± 0.0112▣ 0.3880 ± 0.0054 

SlashDot 0.3816 ± 0.0058▣ 0.3725 ± 0.0039• 0.3228 ± 0.0116 0.3304 ± 0.0088 0.3246 ± 0.0142 0.2930 ± 0.0137 0.3503 ± 0.0101 0.3303 ± 0.0051 

Yeast 0.0969 ± 0.0117• 0.0881 ± 0.0058 0.0374 ± 0.0055 0.0509 ± 0.0052 0.0426 ± 0.0070 0.0420 ± 0.0031 0.1214 ± 0.0068▣ 0.0475 ± 0.0029 

Average ranking 1.3 2.3 7.1 4.8 6.2 7.2 2.5 4.6 
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Table 6. Running time (seconds) of various algorithms, where ▣ and • indicate the best and 
the second-best results on each dataset, respectively. 

The results in Tables 2–6 and Figure 4 show that, on the first four performance metrics, the 
proposed CCkEL is superior to the RAkEL baseline algorithm, indicating that it is necessary to 
constitute strongly correlated k-labelsets and adopt a compensation strategy to deal with imbalanced 
data distributions. Clearly, we also note that the CCkEL is more time consuming than the RAkEL as it 
takes 𝑂ሺ𝑞ଶ𝑁ሻ more time to calculate Jaccard similarities and sort the corresponding k-labelsets. 

 

Figure 4. Average rankings of the algorithms compared on five different metrics. 

In addition, we observe that several complex algorithms, e.g., COCOA, ECCRU, and LDAML-
IMB, clearly perform better than those simple-sampling-based algorithms, especially on two specific 
imbalance performance metrics: F-micro and F-macro. The reason may be that they all focus on 
complex label correlations. Of course, we also note that these three algorithms are more time 
consuming than several others. 

Regarding the three simple-sampling-based algorithms, i.e., ML-RUS, ML-ROS, and ML-
SMOTE, they performed clearly worse than the others. We believe this to be because in multi-label 
spaces, it is not easy to distinguish which instances are significant or not. Meaning, adding or removing 
an instance might alleviate the class imbalance level of a label while increasing that of another label. 
Therefore, although the corresponding references [34,35] have stated that these sampling-based 
algorithms are effective, their performance improvement is not significant enough. 

It is obvious that the proposed CCkEL algorithm performs best among all comparative algorithms. 
In particular, the CCkEL has acquired the lowest average ranking in terms of F-micro, HammingLoss, 

Dataset 
Algorithm 

CCkEL RAkEL COCOA ML-SMOTE ML-ROS ML-RUS ECCRU LDAML-IMB 

Bibtex 2919.67 2826.61 1592.60 959.81• 1653.67 529.67▣ 2026.41 3342.11 

Birds 9.35 8.70 13.23 8.55 6.85• 1.75▣ 11.58 21.78 

Emotions 1.23 1.08 1.38 2.56 0.84• 0.33▣ 2.53 5.16 

Enron 49.04 46.73 51.01 41.67 37.14• 11.85▣ 64.47 290.88 

Flags 0.31 0.29 0.34 0.40 0.08• 0.07▣ 0.47 1.34 

Image 6.01 5.21• 8.82 10.88 7.71 2.89▣ 10.65 50.34 

Medical 18.63 17.02 16.14 13.02 10.27• 4.13▣ 22.38 37.62 

Scene 18.27 17.80• 27.39 26.76 23.20 8.53▣ 30.88 52.67 

SlashDot 123.75 118.74 162.40 116.56• 194.98 55.48▣ 119.89 127.87 

Yeast 20.96 19.09• 33.21 26.51 25.80 8.35▣ 42.98 48.08 

Average ranking 4.5 3.4 5.4 4.3 3.4 1.0 6.2 7.8 
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and SubsetAccuracy metrics, despite being superior in the F-macro metric to the RAkEL baseline 
algorithm and three sampling-based algorithms. In contrast to three complex ensemble learning 
algorithms, our proposed CCkEL algorithm is obviously more time saving. The observations above 
verify the rationality of our algorithm design. We believe that the CCkEL acquires superiority from 
two aspects: 1) It focuses on how to draw the boundary details by constructing k-labelsets among 
several closely correlated labels, and 2) it can adaptively amend the negative impact of skewed data 
distribution for each label by taking advantage of the prior imbalance ratio information of that label. 

We also note that the proposed CCkEL algorithm presents particular superiority on those datasets 
with high MeanIR. Specifically, in terms of the F-micro metric, which mostly reflects the quality of a 
multi-label imbalance learning algorithm, the CCkEL yielded the best results on three highly 
imbalanced datasets (i.e., Enron, Medical, and SlashDot) and the second-best results on two 
moderate imbalanced datasets (i.e., Bibtex and Birds). In contrast, on those datasets with a low 
imbalance level or few labels, the CCkEL cannot show significant superiority to other algorithms. 
We consider that, on these types of datasets, there is either a lack of label correlations or invalid 
compensations for decision thresholds. 

4.4. Significance analysis 

In order to further analyze the relative performance of the algorithms involved in this study, the 
Nemenyi test was adopted as a post-hoc test for the Friedman test [41,42]. Here, we focus on the 
relative performance between our proposed CCkEL algorithm and the other algorithms. If the 
average rank of the CCkEL and that of another algorithm differs by at least one critical difference 
(CD) unit, then we consider their performance to be significantly different. Specifically, the CD is 
calculated as follows 

𝐶𝐷 ൌ 𝑞ఈට௅ሺ௅ାଵሻ

଺ு
                                                                    (18) 

where 𝑞ఈ  denotes the significance level, 𝐿  indicates the number of compared algorithms in the 
experiments, and 𝐻 represents the number of datasets used in the experiments. In a CD diagram, if the 
average ranks of two algorithms are less than a CD unit, then they would be connected by a thick line 
to indicate that their difference is not significant at a specific significance level. Figure 5 presents the 
CD diagrams in terms of five different metrics. 

     

(a) F-micro                                                    (b) F-macro 
Continued on next page 
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(c) HammingLoss                                            (d) SubsetAccuracy 

 
(e) Running time 

Figure 5. CD diagrams of various comparative algorithms at a standard level of significance α = 0.05. 

The results in Figure 5 illustrate that the proposed CCkEL algorithm performs best on F-micro, 
HammingLoss, and SubsetAccuracy metrics, although its superiority is not significant in comparison 
to several other algorithms. Specifically, on the F-micro metric, the CCkEL is significantly superior to 
several sampling-based algorithms (i.e., ML-RUS, ML-ROS, and ML-SMOTE). On the 
HammingLoss metric, the CCkEL performs significantly better than COCOA, ML-ROS, ML-RUS, 
and LDAML-IMB algorithms. For the SubsetAccuracy metric, the proposed CCkEL algorithm not 
only significantly outperforms three sampling-based algorithms but also presents a significant 
superiority in comparison to the LDAML-IMB algorithm. Also, it is noteworthy that on the F-macro 
metric, the CCkEL algorithm performs worse than three other complex algorithms (ECCRU, COCOA, 
and LDAML-IMB), but the differences among them are not significant. On the running time metric, 
we observe that the proposed CCkEL algorithm is significantly more time consuming than the ML-
RUS algorithm but more time saving than the LDAML-IMB algorithm. In summary, the statistical 
results indicate that the proposed CCkEL algorithm is an accurate and stable solution for classifying 
imbalanced multi-label data. 

4.5. Investigation about the impact of parameters 

Finally, we investigated the impact of several key parameters used in our proposed algorithms. 
Figure 6 shows the variation of various performances with gradually increasing k on nine multi-label 
datasets, where three representative k values, 𝑘 ൌ 3, 𝑘 ൌ 𝑞/3, and 𝑘 ൌ 𝑞/2 are specifically labeled. 
Although there are some fluctuations, most curves present a common trend, i.e., the performance first 
rises with the increase of k value and then gradually declines. This means that the CCkEL algorithm is 
not appropriate for either designating a too small value or assigning an oversize k value. We believe 
that a too-small value of k tends to lose some important correlation information, while an oversized k 
can not only destroy the concentration of the learning model but also greatly add the number of classes 
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in each transformed multi-class learning model to make it more complicated and inaccurate. In addition, 
with the increment of k, the running time of the CCkEL algorithm also tends to be higher. Further, we 
observed the CCkEL algorithm to be relatively stable in the context of a specific k value. According to 
the results from Figure 6, we suggest users to designate 𝑘 as max ሺ𝑞/3, 3ሻ by a rule-of-thumb setting. 

 

Figure 6. The performance variation of the CCkEL algorithm by changing the parameter k. 

Figures 7 and 8 present the performance variance of F-micro and F-macro metrics with a joint 
change of the parameters 𝜆ଵ and 𝜆ଶ. Specifically, 𝜆ଵ varies from 0.01 to 0.20 with an increment of 0.01, 
and 𝜆ଶ varies from 1 to 20 with an increment of 1. We randomly conducted 10 experiments on each 
parameter combination and used the average result to indicate its performance. The results in 
Figures 7 and 8 present a small performance fluctuation, meaning that although these two parameters 
can influence classification performance, the influence is not large enough. We consider this to be 
associated with two reasons. The first one is that the modified factor 𝐶 varies in a moderate range (1, 2), 
which can more or less amend the skewed decision threshold, making the worst performance to also 
be acceptable. The second one is that, in multi-label data, the instances on some labels are easy to be 
classified, while it may be difficult to distinguish the instances on some other labels; thus, the 
compensation may effectively improve the classification performance on some labels but destroy that 
of some other labels. All together, the results reflect that it is relatively safe to designate a small value 
for the gradient parameter 𝜆ଵ and a moderate control parameter 𝜆ଶ. 
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Figure 7. The F-micro performance variation of the CCkEL algorithm with joint change 
of the parameters 𝜆ଵ and 𝜆ଶ. 

 

 

 

Figure 8. The F-macro performance variation of the CCkEL algorithm with joint change 
of the parameters 𝜆ଵ and 𝜆ଶ. 
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5. Conclusions and future research 

In this paper, we proposed a novel multi-label imbalance learning algorithm named CCkEL, 
which simultaneously takes advantage of the strong label correlation information existing in the label 
space and adapts the skewed data distribution in the decision space. It modifies the original RAkEL 
algorithm by extracting strongly correlated labels to make the learning model focus more on the 
boundary details. Additionally, a fast compensation-based strategy has been developed to amend the 
biases caused by skewed data distribution on the learning model trained on each transformed multi-
class dataset. The experimental results on ten benchmark multi-label datasets illustrate the 
superiority of the proposed algorithm in comparison with several state-of-the-art multi-label 
imbalance learning algorithms. Also, the running time results showed that the CCkEL is a relatively 
efficient algorithm, especially when compared with several complex ensemble-based multi-label 
imbalance learning models. 

There are two significant limitations in the proposed algorithm. First, the CCkEL is not flexible 
enough, as it limits the number of correlated labels for any one specific label once k has been 
designated. That means that if a label has none or only a few correlated labels, some noisy 
information could be introduced; on the other hand, if a label correlates with a lot of other labels, 
some useful information could be missed. Second, the compensation is adaptive but not optimum, 
as we abandon the optimized threshold strategies [26,27]. Accordingly, its computational complexity 
improves tremendously. 

In future work, we plan to explore more flexible strategies to get rid of the limitation of the 
parameter k for further improving the adaption of the algorithm. In addition, the threshold strategy 
is expected to be replaced by more effective and efficient cost-sensitive learning models to the 
transformed multi-class learning tasks. Also, we wish to extend the scalability of the experimental 
data in terms of features, instances, and labels, and adopt more real-world applications containing 
large-scale multi-label data [43–45] to further verify the effectiveness and robustness of the proposed 
CCkEL algorithm. 
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