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Abstract: An important prerequisite for improving the reliability of lung cancer surveillance and 

clinical interventions is accurate lung nodule segmentation. Although deep learning is effective at 

performing medical image segmentation, lung CT image heterogeneity, nodule size, shape, and 

location variations, convolutional localized feature extraction characteristics, the receptive field 

limitations of continuous downsampling, lesion edge information losses, fuzzy boundary segmentation 

challenges, and the low segmentation accuracy achieved when segmenting lung CT images using deep 

learning remain. An edge-enhanced multiscale Sobel coordinate attention-atrous spatial convolutional 

pooling pyramid V-Net (SCA-VNet) algorithm for lung nodule segmentation was proposed to solve 

these problems. First, a residual edge enhancement module was designed, which was used to enhance 

the edges of the original data. Using an edge detection operator in combination with a residual module, 

this module could reduce data redundancy and alleviate the gray level similarity between the 

foreground and background. Then, a 3D atrous spatial convolutional pooling pyramid module set 

different expansion rates, which could obtain feature maps under different receptive fields and capture 

the multiscale information of the segmentation target. Finally, a three-dimensional coordinate attention 

network (3D CA-Net) module was added to the encoding and decoding paths to extract channel 

weights from multiple dimensions. This step propagated the spatial information in the coding layer to 

the subsequent layers, and it could reduce the loss of information during the forward propagation 

process. The proposed method achieved a Dice coefficient of 87.50% on the lung image database 
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consortium and image database resource initiative (LIDC-IDRI). It significantly outperformed the 

existing lung nodule segmentation models (UGS-Net, REMU-Net, and multitask models) and 

compared favorably with the Med3D, CENet, and PCAM_Net segmentation models in terms of their 

Dice coefficients, which were 3.37%, 2.2%, and 1.43%, respectively. The experimental results showed 

that the proposed SCA-VNet model attained improved lung nodule segmentation accuracy and laid a 

good foundation for improving the early detection rate of lung cancer. 

Keywords: pulmonary nodule segmentation; deep learning; attention mechanism; 3D multiscale 

feature extraction; hollow-space convolution pooling; residual edge enhancement; convolutional 

neural network 

 

1. Introduction 

Lung cancer has one of the highest mortality rates worldwide. Early symptoms are mostly small 

lung nodules with diameters that are usually less than 30 mm [1]. Computed tomography (CT) imaging 

is the technique of choice for screening lung nodules due to its fast imaging speed and high image 

resolution [2]. Although CT imaging has the advantages of being intuitive and effective, CT imaging 

technology generates hundreds of lung images in one second through a single scan, and radiologists 

must individually examine CT images containing thousands of slices for diagnosis purposes; this 

process is time-consuming, labor-intensive, and prone to misdiagnoses. Therefore, proposing an 

efficient and accurate lung nodule segmentation method is highly practical for improving the early 

detection rate of lung cancer. Clinical features such as the sizes and shapes of pulmonary nodules 

(including calcification, lung lobe, and ground-glass shadow features) vary greatly at different levels. 

The edge contour shapes of pulmonary nodules vary, and their contour lines are not sufficiently 

obvious. The morphological features and gray features of pulmonary nodules observed on CT images 

are similar to those of vascular tissues, which makes it difficult to accurately segment pulmonary 

nodules. As a result, the existing pulmonary nodule segmentation methods are not sufficiently accurate 

for pulmonary nodule segmentation applications. In this paper, we leverage the efficient image feature 

extraction capabilities of convolutional neural networks in deep learning models. We integrate the 

obtained features with edge detection methods derived from traditional image processing methods to 

segment lung nodules. Additionally, we incorporate a 3D CA-Net attention mechanism to enhance the 

focus of the network on the weight information across various spatial and channel dimensions, thus 

improving the feature representation capabilities of the neural network. Furthermore, we employ an 

enhanced null-space convolutional pooling pyramid module to construct convolution kernels with 

different receptive fields based on distinct null rates. This allows us to extract image features at 

multiple scales. Inaccurately segmented lung nodule edges are improved using the above method, thus 

providing enhanced lung nodule segmentation accuracy. 

The current lung nodule image segmentation methods can be divided into two major categories: 

traditional manual feature extraction methods, such as threshold segmentation, region growth, edge 

detection, and morphological manipulation, and deep learning methods based on automatic feature 

extraction. 

Because traditional methods are strongly affected by factors such as image background noise and 

textures, their segmentation effects are not ideal. Therefore, deep learning approaches based on 
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automatic feature extraction are widely used to conduct pulmonary nodule segmentation on medical 

images. This type of method trains a deep neural network model through a large quantity of image data 

to learn the shallow and deep features of pulmonary nodules to segment them. Ronneberger et al. [3] 

proposed the UNet segmentation model, which is composed of an encoding path that captures context 

and a decoding path. The model realizes precise positioning and greatly improves the accuracy of 

medical image segmentation. Fausto et al. [4] proposed the VNet model, which uses a residual module, 

an encoding path, and a decoding path to extract features from 3D medical images. They also proposed 

the Dice loss function. Li et al. [5] proposed the REMU-Net model. They introduced a spatial attention 

module and a feature enhancement module based on atrous spatial pyramid pooling (ASPP) so that the 

network could extract more diverse and efficient information and obtain richer contextual information. 

Finally, a multiscale hopping connection was used instead of the UNet hopping connection, 

overcoming the limitation that the decoder subnetwork could accept only feature information at the 

same scale. Their approach achieved a Dice coefficient of 0.8476 on the LIDC-IDRI dataset. Prasad et 

al. [6] proposed the SquExUNet model to combine a channel attention-based UNet model with a 

segmentation model for 2D lung nodule segmentation, and they achieved a segmentation Dice 

coefficient of 0.8. However, 2D segmentation requires the input data to be sliced while ignoring the 

depth information contained in the 3D dataset. Sundaresan et al. [7] proposed a multiscale fully 

convolutional three-dimensional UNet (MF-3D UNet) model and a maximum output aggregation 

method that fuses multiscale information in the encoding path to enhance the generalization ability of 

the model, enabling it to automatically segment lung nodules in CT images. The Dice coefficient 

achieved by this method on the LIDC-IDRI dataset was 0.83+ 0.05; however, this method cannot 

effectively segment nonsolid ground-glass lung nodules with fuzzy nodule boundaries, and the model 

is not sufficiently sensitive to nodule edge details, resulting in poor nodule segmentation effects. Wang 

et al. [8] proposed a lightweight segmentation network called SKV-Net. The overall network design 

adopts the original VNet structure, and a selective convolutional kernel with soft attention is incorporated 

into the selective kernel network to extract multiscale feature information. The method attained a Dice 

coefficient of 0.796 in a lung nodule segmentation task conducted based on the LIDC-IDRI dataset. This 

method is lightweight, but its segmentation effect needs to be improved. Zhou et al. [9] proposed a 

DSCMSF method for detecting and segmenting lung nodules. In the first three stages of the framework, 

the YOLOv5 model, a candidate nodule selection (CNS) algorithm, and a multisize 3D fusion model 

are used to locate nodules. In the final segmentation stage, a multiscale attention module is integrated 

into the 3D-based UNet autoencoder to finely segment the nodule regions. This technique realized a 

Dice similarity coefficient (DSC) of 0.8675 in a nodule segmentation task implemented on the LIDC-

IDRI dataset. Zhou et al.[10] proposed an expansive convolutional neural network (MSDCNN) to 

better characterize the relationship between content and spatial information. Four parallel attentional 

expansion blocks were used to extract larger sensory field features while enhancing contextual 

information. Wang et al. [11] proposed the Attention-MVCNN model, which fuses channel attention, 

a residual structure and Mish activation to strengthen its 3D shape recognition performance. The 

excellent performance of this approach was experimentally proven on ModelNet40. Because the 

process of this network is divided into four stages, the number of required parameters is relatively 

large. The above methods use network structures that combine encoding and decoding paths, 2D or 

3D network methods for segmenting lung nodules, residual modules, attention mechanisms, and 

multiscale information fusion to improve their lung nodule segmentation effects. These methods 

currently represent the mainstream direction of lung nodule segmentation research. 
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The original lung CT image is a 3D image. Due to resource limitations and other factors, many 

scholars process 3D CT images into 2D CT slice images for lung nodule segmentation and detection, 

which leads to considerable image information loss. To retain more spatial information on the nodules, 

3D image data were used in this paper. To address problems such as loss of lesion edge information, 

fuzzy boundary segmentation, and low segmentation accuracy in deep learning-based lung nodule 

segmentation methods, this paper proposes an edge-enhanced multiscale lung nodule segmentation 

model called SCA-VNet, which can significantly improve the results of lung nodule segmentation by 

means of the edge-enhanced residuals module, the 3D CA-Net module, and the improved multiscale 

feature extraction null-space convolutional pooling pyramid. The major contributions of this study are 

as follows: 

1) A residual edge enhancement module that combines the traditional edge detection method and 

a deep learning-based convolutional neural network is proposed. The module first enhances the input 

image data with edge data using an edge detection operator. Then, the edge-enhanced image is spliced 

with the original fusion result. Finally, it is fused with the feature image extracted by a convolutional 

neural network, which increases the sensitivity of the module to the edge contours of the lung nodule, 

providing more accurate edge information for model segmentation. 

2) An optimized 3D coordinate attention (3D CA-Net) module is utilized to perceive nodule 

location information because the original 2D attention mechanism is not suitable for the 3D data used 

in this paper. The 3D CA-Net module obtained by improving the 2D attention mechanism module can 

realize multidimensional cross-channel interactions and extract multidimensional location information 

and channel weight information. Additionally, the adaptive pooling operation performed by this 

module is more flexible, and the input data are more robust so that the channel information that is 

useful for lung nodule segmentation can be considered from multiple dimensions. The generalization 

ability of the model is thus improved. 

3) Atrous spatial pyramid pooling (ASPP) improves upon the 2D-suitable ASPP module to 

obtain the feature information of lung nodules at multiple scales, and different sensory fields are 

constructed by optimizing the sampling rate of ASPP according to the characteristics of lung nodule 

images. The convolution process captures the local and global features of the image, thus improving 

the performance and robustness of the model. 

2. Related work 

This section briefly describes the research related to optimizing edge detection and coordinate 

attention mechanisms. 

2.1. Edge detection algorithms 

Lung nodules are small objects on lung CT images that have diverse clinical features (e.g., 

calcification features, lobar features, and hairy glass shadow features); moreover, their edge contours 

are variable. Additionally, their contour lines are not sufficiently obvious, which leads to inaccurate 

nodule boundary segmentation results for the existing segmentation methods. Lisowska [12] proposed 

an efficient edge detection method for focused images that uses machine learning in combination with 

an edge detection algorithm to locally filter images in a region-by-region manner using a combination 

of the k-means algorithm and edge detection to solve the problem of inaccurate edge detection results 

for images with clear foregrounds and smooth backgrounds. Borba et al. [13] used the Gambini 



3020 

Electronic Research Archive  Volume 32, Issue 5, 3016-3037. 

algorithm to extract edge information features by fusing the edge feature information extracted through 

different channels that are more useful for this task, in turn enhancing the edge features of remote 

sensing data. Hait et al. [14] proposed an edge detection algorithm based on the Bezdek breakdown 

structure (BSS) by constructing a feature image and utilizing the intensity change direction and BM-

type preaggregation operator. This method employing a combination of an edge detection operator and 

image intensity change information was validated by qualitative and quantitative evaluations to make 

it effective for image processing tasks. Wang et al. [15] proposed a boundary-based dual-path lung 

nodule segmentation model to solve this problem in 2D lung nodule segmentation tasks. This model 

uses edge detection operators in an edge detection branch and fuses the results with the outputs of the 

backbone lung nodule segmentation network, achieving good results but greatly increasing the 

complexity of the model. A lung nodule segmentation algorithm that fuses VNet and edge features was 

proposed by Jiang et al. [16]; their method uses an edge keypoint selection algorithm for edge feature 

extraction. However, this method suffers from incomplete edge connectivity and inaccurate edge 

localization during the detection process. The proposed residual edge enhancement module selects 

commonly used edge detection operators. It combines them with a residual module, enhancing the 

edge information of lung nodules without increasing the number of required model parameters. 

The most commonly used and effective edge detection operators for image segmentation are the 

Sobel, Roberts, and Canny operators [17]. The best of these three edge detection operators is chosen 

through subsequent experiments as the edge detection operator in the proposed edge residual 

enhancement module for the lung nodule segmentation task. 

2.2. Coordinate attention 

In computer vision tasks, an attention mechanism is a technical means of enhancing the 

performance of convolutional neural networks, primarily by enabling models to focus on the relevant 

regions of the input task. These mechanisms selectively address the regions of interest rather than 

treating all locations as equally important. Squeeze-and-excitation (SE) attention calculates channel 

attention weights based on global information; however, this approach is less than ideal for some target 

tasks involving local feature information or small-scale information. Spatial attention focuses more on 

spatial information but ignores important channel and location information. The coordinate attention 

network (CA-Net) [18] mechanism dynamically weights the feature responses of different channels 

and spatial locations by learning the correlations between channels to enhance the attention given to 

important features. An et al. [19] proposed a novel deep framework that incorporates a new hybrid 

spatial channel attention module to facilitate cross-age face recognition tasks. Simultaneously 

executing average pooling and maximum pooling along the channel dimensions yields improved 

efficiency by optimizing the global maximum pooling operation in the channel attention mechanism 

to more efficiently capture the weights of each channel and compress the spatial dimensions of the 

feature map. Chen et al. [20] proposed an efficient two-gate attentional module to implement their 

dual-attention mechanism in the frequency domain. This approach yields improved deblurring 

performance and simultaneously reduces the computational cost of the model by avoiding redundant 

convolutions and feature channels. Li et al. [21] incorporated a global and local attention mechanism 

(GAL) into their model to provide an in-depth modeling approach for input images. This approach 

focuses on combining fine-grained local feature analysis with global contextual information processing, 

enabling the model to take both aspects into account to more accurately and comprehensively interpret 

images. Cao et al. [22] designed a ResSCBlock module based on the compression excitation 
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mechanism and a coordinate attention mechanism (ResNet). The fusion of the compression excitation 

module and the coordinate attention mechanism fully enables the model to make full use of the channel 

and location information of lung nodules to attain improved detection accuracy. In summary, attention 

mechanisms can improve the accuracy achieved in computer vision tasks. Considering the specifics of 

this study, we improve the coordinate attention mechanism. The original coordinate attention 

mechanism was proposed for 2D image data, and the dimensionality of CA-Net is improved in this 

paper so that it can be used in 3D image segmentation tasks. The core idea is to weigh the input feature 

map according to the observed spatial position and channel importance information. Then, the weighted 

feature map is input into the next layer of the network, and adaptive average pooling-based convolution 

is used on the three dimensions of the 3D data to more accurately locate the position and spatial 

information of the target nodule in the 3D image according to the channel information. This method 

enables the model to better focus on the lesion area. 

3. The proposed method 

3.1. Model structure design 

The proposed SCA-VNet segmentation model is obtained by improving VNet, a three-

dimensional fully convolutional neural network that adopts a U-shaped structure and is divided into 

an encoder, a decoder, and jump connections. The encoder and decoder correspond to image feature 

extraction and feature map resolution recovery processes, respectively. The most important feature of 

this network is that to achieve improved feature utilization, a residual module is used to realize jump 

connections for the output feature maps of different convolutional layers. The overall design of VNet 

is desirable for feature extraction; however, because only 5 × 5 × 5 convolutional kernels are present 

in the VNet module, the sensing field is relatively singular, more detailed features are not considered, 

and splicing the same input data channels in the input module increases the number of channels, 

resulting in some information redundancy. 

The improved SCA-VNet segmentation model uses VNet as its main model. A residual edge 

enhancement module is added at the beginning of the model to fully extract the edge contour 

information of the input image. The residual edge enhancement module also alleviates the information 

redundancy of the input module and better utilizes the input data. Adding the 3D CA-Net module to 

the encoding and decoding areas to model the relationships between channels allows the information 

interactions between channels to be captured more fully. This helps to mine the feature representations 

and better locate lesion information in the image. 

A 3D atrous spatial convolutional pooling pyramid module is used between the encoding and 

decoding areas. This module can extract lesion information at different scales and thus achieve 

multiscale information extraction. The area between the encoder and decoder is a key location in the 

model, where adding ASPP can integrate a larger range of contextual information into the feature 

extraction process, thus yielding improved segmentation performance. To better adapt to the feature 

characteristics of lung nodules, this study optimizes the parameters of the convolution kernel in the model 

to 3 × 3 × 3 for feature extraction. The overall structural design of the model is shown in Figure 1. 
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Figure 1. General structural design of the proposed model. 

3.2. Residual edge enhancement module 

Edge detection helps identify salient features and structures in an image, reduce complex textures 

and background noise to a certain extent, enhance the contours and features of the image, and separate 

the boundaries of different objects to locate the boundaries more accurately, all of which improve 

segmentation accuracy. The traditional segmentation algorithms are simple but less effective at 

segmenting nodules with complex backgrounds. Deep learning methods utilize convolutional neural 

networks to perform feature extraction; after continuously applying downsampling, the model loses 

boundary information, resulting in low model attention. The SCA-VNet segmentation model combines 

the traditional edge segmentation algorithm with the deep learning approach. First, an edge detection 

operator is used to sharpen the edges of the original image, which reduces the similarity between the 

foreground and background grayscales by strengthening the edge features. Then, the edge-enhanced 

image and the original image are spliced together, which ensures that the original image features are 

not lost. Finally, the residual module is used to fuse the spliced image with the convolved feature 

extraction map. This approach can strengthen the edge detail information while retaining the global 

feature information of the original image. Moreover, it can alleviate the redundancy of the information 

in the input module of the baseline VNet model used in this paper and make full use of the input 

information. Figure 2 shows the structure of the residual edge enhancement module. 
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Figure 2. Residual edge enhancement module. 

3.3. 3D coordinate attention module 

Coordinate attention embeds position information into channel attention, models channel 

correlations and remote dependencies, complements channel- and direction-related position 

information, and enhances the ability of the model to express input features. The 2D coordinate 

attention mechanism decomposes the observed channel information into two 1D feature encoding 

processes that aggregate features in different directions. This approach has the advantage of capturing 

long-range dependencies along one spatial direction and retaining precise position information along 

the other direction. The resulting feature maps are subsequently encoded separately to form a pair of 

direction-aware and location-sensitive feature maps, which can be complementarily applied to the 

input feature map to enhance the representation of the target of interest. 

To adapt this type of mechanism to the 3D lung nodule segmentation task, we use a three-

dimensional channel attention module (CA-Net). This module performs an average pooling operation 

on each dimension of the feature map based on adaptive 3D pooling convolution to efficiently extract 

the weight information of each channel dimension. The weights are used between the channels to 

measure the importance of the mapped convolutional features so that the important and useful features 

are reinforced during the feature extraction process to improve the accuracy of the model. 

The CA attention mechanism first inputs channel information. It aggregates the input features in 

each three-dimensional direction into three separate direction-aware feature maps using a 3D adaptive 
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average pooling operation. For an input X, three perceptual feature maps are first generated by 

encoding each channel in the horizontal and vertical depth directions using pooling kernels with 

dimensions of (d,1,1), (1,h,1), and (1,1,w). 

The output depth expression for the cth channel with a depth of d is shown in Eq (1) below: 

𝑍𝑐
𝑑(𝑑) =

1

𝑤 ×ℎ   
∑ 𝑋𝑐(𝑑, 𝑖)0≤𝑖≤( 𝑤 ×ℎ   )                                 (1) 

The output height expression for the cth channel with a height of h is shown in Eq (2) below: 

𝑍𝑐
ℎ(ℎ) =

1

 𝑤 × 𝑑  
∑ 𝑋𝑐(ℎ, 𝑗)0≤𝑗≤( 𝑤 × 𝑑  )                                 (2) 

The output width expression of the cth channel with a width of w is shown in Eq (3) below: 

𝑍𝑐
𝑤(𝑤) =

1

ℎ×𝑑  
∑ 𝑋𝑐(𝑤, 𝑘)0≤𝑘≤( ℎ×𝑑 )                                 (3) 

The three feature maps generated above are cascaded, and then a shared 1 × 1 × 1 convolution is 

used to perform a transformation F_1 to generate intermediate feature maps for spatial information 

acquisition in the depth, height, and width directions f. This transformation is expressed as shown in 

Eq (4) below: 

𝑓 = 𝛿(𝐹1([𝑍𝑑 , 𝑍ℎ , 𝑍𝑤]))                                    (4) 

Then, f is sliced into three separate tensors 𝑓𝑑, 𝑓ℎ and 𝑓𝑤 along the spatial dimension, and the 

sizes of 𝑓𝑑, 𝑓ℎ and 𝑓𝑤 are increased to the number of input data channels using the three 1 × 1 × 

1 convolutions 𝑓𝑑, 𝑓ℎ and 𝑓𝑤, respectively, as shown in Eqs (5)−(7): 

𝑔𝑑 = 𝜎 (𝐹𝑑(𝑓𝑑))                                        (5) 

𝑔ℎ = 𝜎 (𝐹ℎ(𝑓ℎ))                                        (6) 

𝑔𝑤 = 𝜎(𝐹𝑤(𝑓𝑤))                                        (7) 

Finally, after executing the activation function with 𝑔𝑑 , 𝑔ℎ and 𝑔𝑤 as the attention weights, the 

final output of the 3D channel attention module can be expressed as shown in Eq (8): 

𝑦𝑐(𝑖, 𝑗, 𝑘) = 𝑥𝑐(𝑖, 𝑗, 𝑘) × 𝑔𝑐
𝑑(𝑖) × 𝑔𝑐

ℎ(𝑗) × 𝑔𝑐
𝑤(𝑘)                     (8) 

c represents the channel, 𝑥𝑐 represents the feature graph matrix for channel c, and this formula 

represents the output of 3D CA-Net for channel c. 

Adaptive average pooling (AAP) does not require a preset pooling kernel size or additional 

parameters to adapt to inputs with different sizes. It reduces the number of model parameters needed 

to retain more global and local spatial information, helps to reduce the risk of model overfitting, and 

improves the generalizability of the model. Figure 3 shows the structural diagram of the 3D CA-Net 

module. 
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3.4. Atrous spatial convolutional pooling pyramid 

The ASPP module is a neural network module for image semantic segmentation tasks that was 

originally proposed for use with DeepLabV2 [23]. It aims to capture semantic information at different 

sensory field scales. The main idea of the ASPP module is to perform feature extraction with different 

null convolution rates to capture contextual information at different scales and then fuse these features. 

This helps the model better understand the objects and structures of an image at different scales. 
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Figure 4. Improved ASPP module. 
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ASPP was proposed to address the problem that traditional convolutional networks only focus on 

a single class of lesion feature information in segmentation tasks while ignoring the contextual 

information of different lesion classes. ASPP enhances the sensory field of the model and thus 

improves the output segmentation results by performing convolutional operations in parallel at 

different nulling rates (known as expansion rates), thus obtaining contextual information at multiple 

scales. Smaller expansions are used to capture local details, medium expansions are used to capture 

local structures and targets, and larger expansions are used to capture global contextual information. 

Moreover, combined with the small sizes of the input image blocks in lung nodule segmentation tasks, 

a 3 × 3 × 3 convolution kernel is used, and the expansion rates are set to 1, 6, 12, and 18. Then, the 

branches with the largest expansion rate are removed to adapt to and extract the image features related 

to the lung nodule; the improved ASPP module is shown in Figure 4. 

4. Experimental results and analysis 

This section describes the employed dataset, data processing method, evaluation metrics, and 

experimental setup before presenting the experimental results. 

4.1. Introduction to the dataset 

We used the lung image database consortium and image database resource initiative (LIDC-IDRI) [24], 

the largest publicly available dataset of lung CT images in existence. This dataset consists of 1018 

study cases derived from seven academic centers. Up to four physicians labeled the lesion information 

in the study cases. The screening process applied to the data samples in this paper followed the sample 

screening strategy of the Luna16 dataset, excluding 9 patients with inconsistent slice spacing or missing 

slices. To facilitate data analysis to effectively detect lung nodules with diameters exceeding 3 mm, the 

experiments in this paper excluded 121 patients with CT layer thickness values that were greater than 

2.5 mm and screened 888 available patients [25] for a total of 1186 training samples of lung nodules [26]. 
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Figure 5. Image preprocessing flowchart. 
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Before conducting the experiments, data preprocessing was performed on the LIDC-IDRI dataset. 

The preprocessing steps were as follows. (1) The lung parenchyma was extracted, and lung nodule 

segmentation was performed to obtain labeled images. (2) The data were resampled, and the pixel 

intervals were standardized. Due to the different collection sources of the dataset, the pixel intervals 

of all the data were standardized to prevent experimental errors. (3) The pixel values of the data were 

normalized and de-meaned. To facilitate the model calculation process, the value range of the adjusted 

lung window for CT was set to [−1000,400], and the image pixel values were linearly transformed to be 

within the range of [0,1] using deviation normalization. Finally, a de-meaning operation was performed 

on the normalized data. Due to the computational resource limitations, 16 × 96 × 96 data blocks were 

used as model inputs [8]. Figure 5 shows the image preprocessing flowchart. 

4.2. Evaluation methodology 

The accuracy (Acc), positive predictive value (PPV), Dice similarity coefficient (Dice), 

intersection over union (IoU), and sensitivity (SEN) evaluation indices [27] were used, among which 

the Dice coefficient was the most important. The formula for each index is as follows: 

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                                        (9) 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                          (10) 

𝐷𝑖𝑐𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
                                        (11) 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
                                        (12) 

𝑆𝐸𝑁 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                         (13) 

TP is the number of correctly predicted positive samples, that is, true positives; TN is the number 

of negative samples predicted as negative, that is, true negatives; FN is the number of positive samples 

predicted as negative, that is, false negatives; and FP is the number of negative samples predicted as 

positive, that is, false positives [27]. 

4.3. Experimental settings 

In this paper, the above network model was used to segment the lung nodules observed in lung 

CT images. The experiment used the LIDC-IDRI dataset for model training and increased the number 

of training samples by translation, rotation, and other methods to improve the robustness of the network. 

The PyTorch1.12.1 framework was used to construct the network model. During the experiment, the 

initial learning rate was set to 0.001, 10% of the dataset was used for testing, 90% of the dataset was 

used for training the network model, and the cross-entropy loss function and Adam optimizer were 

employed [28]. 
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4.4. Experimental results and analysis 

4.4.1. Verification of the edge detection operators 

The edge enhancement operation was performed on the original LIDC-IDRI dataset using 

different edge detection operators on to select the most appropriate edge detection operator. Figure 6 

visualizes the results obtained for the unprocessed LIDC-IDRI image and the edge-enhanced images 

generated by different edge detection operators. 
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Figure 6. Visualization of the original image and the edge-enhanced images generated by 

edge detection operators. 

As Figure 6 shows, both the Sobel and Roberts operators have strong abilities to sharpen the edges 

of different types of lung nodules. When the highest gray level threshold of the Canny operator was 

set to 650 and the lowest gray level threshold was set to 500, the edges of the nodules were clearly 

identified, and the background was effectively screened. Additionally, the edge boundaries of solitary, 

calcified, needle and some solid nodules were more clearly detected. However, the edge detection 

effect attained for nonsolid ground-glass nodule structures was poor, and their boundaries could not be 

identified. 

To select the most suitable edge detection operator for lung nodule segmentation, an ablation 

experiment was designed on the LIDC-IDRI dataset. In the experiment, the original VNet was selected 

as the basic model. The Sobel, Roberts and Canny operators were used in the residual edge 

enhancement module, and the corresponding models are represented as VNet+Sobel, VNet+Roberts, 

and VNet+Canny, respectively. 
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Table 1. Comparison among the segmentation results produced by different edge 

enhancement operators on the LIDC-IDRI dataset. 

The segmentation results are shown in Table 1. The segmentation results show that the residual 

edge enhancement module impacted the segmentation results obtained for the lung nodules. The best 

edge enhancement operator was the Sobel operator, and its segmentation Dice coefficient and IoU 

were greater than those of the basic model. This means that the residual edge enhancement module 

based on the Sobel operator could compensate for the loss of edge information during the segmentation 

process of the original model to a certain extent. The integrity of the lung nodule segmentation 

procedure was ensured. The segmentation results of the VNet+Canny model were worse than those of 

the VNet+Sobel and VNet+Roberts models because some types of pulmonary nodule boundaries, such 

as nonsolid ground-glass pulmonary nodules, have fuzzy boundaries. The Canny operator could not 

detect them, and the model could not obtain the edge information of some pulmonary nodules with 

fuzzy edges during training. Compared with that of the basic model in the input module, the fuzzy 

edge feature information of the input data enhanced by the Canny operator was reduced, so the 

resulting segmentation effect was slightly worse than that of the basic model. The experimental results 

showed that the Sobel operator was the most suitable edge detection operator for lung nodule 

segmentation, and the edge detection operators used in the residual edge enhancement module in 

subsequent experiments were all Sobel operators. 

4.4.2. Validation of the proposed optimization module 

To verify that the proposed module contributes to improving the segmentation accuracy achieved 

for lung nodules, ablation experiments involving the proposed SCA-VNet model were performed on 

the LIDC-IDRI dataset. The original VNet was chosen as the baseline network, and ablation 

experiments were performed on each module to prove its effectiveness. In this group of experiments, 

Experiment 1 considered the base model. Experiment 2 added the residual edge enhancement module 

to the base model. Experiment 3 added the residual edge enhancement module and the 3D CA-Net 

module. Experiment 4 added all the proposed modules, i.e., the proposed SCA-VNet model. The 

specific segmentation results are shown in Table 2. 

  

Model Acc (%) Dice (%) IoU (%) Sen (%) PPV (%) 

VNet 99.77 85.98 75.41 88.43 83.71 

VNet+Sobel 99.80 86.76 76.62 85.15 88.47 

VNet+Roberts 99.78 86.47 76.17 86.19 86.84 

VNet+Canny 99.78 85.91 75.30 85.59 86.28 
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Table 2. Results of ablation experiments conducted for each module on the LIDC-IDRI dataset. 

Model Acc Dice IoU Sen PPV 

Baseline Edge-enhanced 3D CA-Net Improved ASPP (%) (%) (%) (%) (%) 

√    99.77 85.98 75.41 88.43 83.71 

√ √   99.80 86.76 76.62 85.15 88.47 

√ √ √  99.80 87.02 77.02 85.04 89.13 

√ √ √ √ 99.81 87.50 77.80 86.80 88.32 

Table 2 shows that the proposed module facilitated lung nodule segmentation. Additionally, the 

proposed module increased the lung nodule segmentation accuracy of the model. The experimental 

results show that the Dice index, IoU and Acc improved with the addition of each module proposed in 

this paper. The IoU index of the SCA-VNet model was 2.39% greater than that of the baseline model. 

The Sen index of the baseline model was higher than that of the model proposed in this paper, while 

its PPV index was lower than that of the model proposed in this paper. This indicates that the baseline 

model is more sensitive to positive sample data, but its segmentation accuracy is not as good as that of 

the SCA-VNet model. The above experiments prove that the model proposed in this paper effectively 

segments lung nodules. 

4.4.3. Comparison with the existing methods 

Table 3 compares the results of the existing lung nodule segmentation methods in the literature 

with those of the method proposed in this paper. It also summarizes the models, datasets, input sizes, 

numbers of samples, segmentation metrics, and lung nodule sample selection strategies used by the 

different methods [27]. Among the existing lung nodule segmentation methods, the UGS-Net, REMU-

Net, and multitask methods achieved better segmentation results in the lung nodule segmentation task. 

The method proposed in this paper selected the LIDC-IDRI dataset for training to validate its 

segmentation effect. It achieved 87.50% accuracy, and its segmentation results were better than those 

of the existing lung nodule segmentation methods in the literature. 

4.4.4. Comparison with the existing models 

To further verify the effectiveness of the proposed method, this paper compared it with the open-

source VNet, PCAM_Net [36], Med3D [37], and CENet [38] models that were developed in recent 

years for 3D medical image segmentation tasks. The segmentation results of each model are shown in 

Table 4. Among the open-source segmentation models, the PCAM_Net model yielded the best 

segmentation effect, with its Dice and IoU indices reaching 86.07% and 75.55%, respectively. The 

Med3D model had poorer segmentation effects than those of the other models, with Dice and IoU 

metrics reaching 84.13% and 72.61%, respectively. The Dice and IoU indices of the proposed method 

were 1.49% and 2.25% greater than those of the PCAM_Net model, respectively. The Dice and IoU 

metrics achieved in this paper were 3.37% and 5.19% greater than those of the Med3D model, 

respectively. 
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Table 3. Comparison among different lung nodule segmentation methods. IS indicates the 

size of the input data, NS denotes the number of data samples for model training, and NSS 

indicates the lung nodule selection strategy applied on the dataset. 

Method Dataset IS NS Dice 

(%) 

NSS 

UGS-Net [29] LIDC-IDRI 64 × 64 1859 86.12 Number of doctors ＞ 1 

REMU-Net [5] LIDC-IDRI 64 × 64 1487 84.76 Number of doctors ＞ 2 

SAtUNet [30] LIDC-IDRI 64 × 64 3132 81.10 All data in LIDC-IDRI 

ResAANet [31] Private1 256 × 256 565(train)  ─ CT layer thickness = 0.625-3.0 mm, 

ground-glass structure 

LIDC-IDRI 145(test) 83.36 CT layer thickness = 0.45−5.0 mm, 

ground-glass structure 

Private2 84(test) 83.46 CT layer thickness 0.625−1.0 mm, 

ground-glass structure 

LeisionNet [32] LIDC-IDRI 128 × 128× 128 1131 80.89 Nodule diameter ≥ 3 mm, marked by 

at least three doctors 

CRU2Net [27] LIDC-IDRI 64 × 64× 64 1186 83.83 Nodule diameter ≥ 3 mm, CT layer 

thickness ＜ 2.5 mm 

MS-UNet [33] LIDC-IDRI 64 × 96× 96 1625 77.40 Number of doctors ＞ 3 

LNDb 1968 70.62 All data in LNDb 

Private 6864 79.62 2 mm ＜ Nodule diameter ＜ 64 

mm 

H-DL [26] LIDC-IDRI 64 × 64× 64 2885 75+13.5 7 mm ＜ Nodule diameter ＜ 45 

mm, Number of doctors ≥ 2 

CSE-GAN [34] Luna16 64 × 64× 64 888 80.74 CT layer thickness ＜ 2.5 mm, CT 

with missing slices removed 

Private 113 76.36 3 mm ＜ Nodule diameter ＜ 30 

mm, CT with missing slices 

removed 

Multitask [35] LIDC-IDRI 3 × 96× 96 2616 86.43 ─ 

Method of this 

paper(SCA-VNet) 

LIDC-IDRI 16 × 96× 96 1186 87.50 Nodule diameter ≥ 3 mm, CT layer 

thickness < 2.5 mm 

Table 4. Comparison between the segmentation results of the proposed method with those 

of open-source 3D medical image segmentation models. 

Model Acc (%) Dice (%) IoU (%) Sen (%) PPV (%) 

VNet 99.77 85.98 75.41 88.43 83.71 

PCAM_Net 99.79 86.07 75.55 86.23 86.02 

Med3D 99.76 84.13 72.61 82.81 85.51 

CENet 99.78 85.30 74.40 81.10 90.07 

SCA-Vnet 99.81 87.50 77.80 86.80 88.32 
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Figures 7 and 8 show box plots of the obtained Dice and IoU indicators, respectively, for 

evaluating the segmentation results of the proposed method and different open-source 3D 

segmentation models. From these plots, we can see that among the models tested in this paper, the 

PCAM_Net and Med3D models were more stable, and the Dice and IoU values of the model proposed 

in this paper were greater than those of the other models. The proposed model not only was more stable 

during training but also outperformed the other segmentation models. 
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Figure 7. Box plots of the Dice coefficients and IoU values produced by the method 

proposed in this paper and the open-source 3D segmentation models. 

Figure 8 shows the loss plots induced by the training results of the proposed method and the open-

source 3D segmentation methods. This figure shows that the Vnet model had the slowest convergence 

speed, the loss indices of the CENet and Med3D models were relatively turbulent during training, and 

the PCAM_Net and SCA-Vnet models exhibited fast convergence speeds and stable loss indices 

during training. 
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Figure 8. Training loss curves of the proposed method and the open-source 3D segmentation models. 
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4.4.5. Segmentation results 

Figure 9. Comparison among the segmentation results of different segmentation models. 

Figure 9 shows the obtained segmentation results, from which it can be seen that each model had 

a strong effect on segmenting isolated and calcified nodules. The backgrounds of the isolated nodules 

were relatively simple, and compared with other types of features, they were more obvious and easier 

to segment. Additionally, the edges of the calcified nodules had more obvious contours and were easier 

to segment. The segmentation result graph shows that only the method proposed in this paper 

segmented all the nodes in the multimode graph, and all the other models yielded missed detections. 

The segmentation results of the Vnet model and the proposed model were better than those of the 

CENet, Med3D, and PCAM_Net models. PCAM_Net and the proposed model outperformed the other 

models in terms of segmenting specular nodules. When segmenting partial solid nodules, the detection 

effects of PCAM_Net and the proposed method were better than those of the other three models. In 

general, the segmentation effect of the segmentation method proposed in this paper was better than 

those of the other segmentation models, and the edge contour segmentation results of the proposed 

model were more accurate. 
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5. Conclusions and ideas for future work 

The SCA-VNet segmentation model proposed in this paper combines the Sobel edge detection 

operator with a residual edge enhancement module. This method can not only fully use the edge 

information contained in lung CT images but also replace part of the information-redundant data with 

edge-enhanced data during the input phase, which can mitigate the information redundancy problem 

encountered when splicing the input data of the model from a channel perspective. Ablation 

experiments showed that the proposed method and module achieved improved lung nodule 

segmentation accuracy. A 3D CA-Net module is used to enhance the performance of the convolutional 

neural network so that the model can focus on pulmonary nodule-related channels and spatial locations 

in the input image. The improved ASPP module has receptive fields with different scales and 

effectively extracts nodule information at these different scales. Experiments showed that the 

segmentation results of the model were significantly improved after adding the 3D CA-Net module 

and the improved ASPP module. A comparison with a variety of lung nodule segmentation methods in 

the literature and several open-source 3D segmentation models revealed that the proposed method is 

superior to the existing lung nodule segmentation methods. This study improves the automation level 

of the existing computer-aided diagnosis systems and more effectively assists radiologists in clinical 

practice. The algorithm in this paper has room for improvement and was only analyzed based on the 

training data. In the experiment, LIDC-IDRI was selected as the training dataset for the model. 

Although the scale of the training data was large, only a single input image (a CT image) was used. 

Segmentation methods based on transformer technology have received extensive attention in the 

medical segmentation domain. Subsequent research can use a combination of transformer technology 

and convolutional neural networks. 
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