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Abstract: Running time analysis of evolutionary algorithms for continuous optimization is one 
research challenge in the field of evolutionary algorithms (EAs). However, the theoretical analysis 
results have rarely been applied to evolutionary algorithms for continuous optimization in practice, let 
alone their variants for evolution strategy. In this paper, we regarded the first hitting time of evolution 
strategy as the stopping time of the renewal process on the basis of the renewal process and in 
combination with Wald’s inequality and stopping time theory. Afterwards, to demonstrate the 
application of the proposed model in the first hitting time analysis of (1 + 1) ES, we analyzed it with 
different mutation operators on the sphere function. First, we significantly improved the lower bound 
on the first hitting time of (1 + 1) ES with a uniform mutation operator, i.e., from ( )n  to ( )cne . Next, 

2( )O n n  was the upper bound on the first hitting time of (1 + 1) ES with a Gaussian mutation operator 

from the initial distance R to half of the initial distance R/2. The numerical experimental results showed 
that the theoretical calculation was consistent with the actual running time, which provides a novel 
method for analyzing the first hitting time of EAs. 

Keywords: evolutionary algorithms for continuous optimization; renewal process; stopping time 
theory; first hitting time; sphere function 
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1. Introduction 

Evolutionary algorithms (EAs) are a class of adaptive, global search algorithms inspired by 
natural evolutionary processes, mainly including genetic algorithms (GA), evolution strategy (ES), 
genetic programming (GP), and evolution programming (EP) [1]. EAs have been widely applied to the 
practical application domains, such as black box optimization and combinatorial optimization, yet a 
number of theoretical analysis results are relatively limited. As a commonly used indicator to measure 
the computational time, the first hitting time is the number of generations when EAs find the optimal 
solution or a satisfactory solution for the first time [2]. Moreover, the expected first hitting time is the 
average number of evaluations of the fitness function when EAs obtain the optimal or satisfactory 
solution for the first time, which evaluates the performance of EAs [3]. 

In the past few years, most theoretical approaches of the first hitting time have focused on discrete 
search spaces. Drift analysis, combined with Markov chains in the analysis of computation time 
complexity of EAs, was first introduced by He and Yao [4]. As drift analysis was being developed, 
multiplicative drift [5,6] and variable drift [7–9] have shown that the lower bound of the first hitting 
time is stronger than its upper bound. Sarker et al. [10] considered the first hitting time of EAs as a 
random variable and derived its time on a pseudo-Boolean function. Yu et al. [11] proposed a switch 
analysis method for estimating the time bound of EAs by combining two Markov chains, one of which 
served as a reference chain. Qian et al. [12] transformed the bit-by-bit noise into one-bit noise and 
discussed the first hitting time of EAs on the OneMax and LeadingOnes functions. Wegener et al. [13] 
analyzed the running time of EAs on the pseudo-Boolean function using tail inequalities. In these works, 
however, there have been few theoretical analyses in EAs for continuous optimization. Huang et al. [14] 
combined statistical methods with the average gain model to obtain an empirical distribution function 
for the expected gain and derived the upper bound closed expression. Feng et al. [15] established an 
equivalent relationship to analyze the effect of selection operators on the computation time of EAs. To 
generalize the drift analysis model, Morinaga et al. [16] introduced   -algebraic flow stochastic 
process into the model. Jägersküpper [17] combined drift analysis with Markov chains, treating drift 
as a Markov chain, and analyzed the first hitting time of EAs on the linear function. Many important 
theoretical analysis results of them primarily focus on simplified versions rather than the (1 + 1) ES, 
which stems from the difficulties posed by population-based characteristics and the intricate adaptive 
selection strategies involved. 

Agapie et al. [18] combined the transition kernel with the success region where each generation 
of (1 + 1) ES arrives and obtained the cumulative distribution function of success probability, which was 
estimated as the upper and lower bounds of the first hitting time for (1 + 1) ES with a uniform mutation 
operator on the sphere function. However, when the gap between the population fitness value and the 
optimal fitness value was substantial, they approximated the intersection of the fitness sphere and the 
mutation sphere as half of the mutation sphere. These approximations resulted in an inflated expected 
progress rate, ultimately causing significant looseness between the lower bound of the first hitting time 
of (1 + 1) ES on the sphere function and its actual running time. Morinaga et al. [19] proved that the expected 
hitting time of (1 + 1) ES on the convex quadratic functions was (exp( 1/ ))d  . Zhang et al. [20] analyzed 

the upper bound of the expected hitting time of (1 + 1) ES on the sphere function by combining 
martingale theory with the Lebesgue-dominated convergence theorem, but they did not provide a 
corresponding theoretical lower bound analysis. Agapie et al. [21] combined the reduction of distance 
from the t-1 generation population to the optimal solution with differential equations and analyzed the 
lower bound of the hitting time of (1 + 1) ES with a Gaussian mutation operator on the sphere function 
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as 0( log( ))
R

n


   . Doerr et al. [22] established a dynamic drift model to analyze the relationship 

between the evolutionary strategy parameter selection and the first hitting time and obtained the expected 
first hitting time ( / log / log )n n n    on the OneMax function. Akimoto et al. [23] improved additive 

drift by treating the progress rate as a monotonic decreasing function, and analyzed that the convergence 
rate of the 1/5 success rule (1 + 1) ES solving sphere function was (1/ )d  . Jägersküpper [24] 

hypothesized that individuals were generated through anisotropic mutation and further obtained the 
asymptotical running time of (1 + 1) ES with a Gaussian mutation operator solving sphere function. 
Although many achievements have been made in the analysis of the first hitting time of (1 + 1) ES on 
the sphere function, few theoretical research results pay attention to its upper bound with a Gaussian 
mutation operator. Meanwhile, due to the simplified relationship between the sphere objective function 
and the mutation sphere, its lower bound with a uniform mutation operator is not tighter. 

The main innovations and contributions of this paper can be outlined as follows: 
1) The proposed method is based on a non-negative progress rate stochastic process, which is 

conducive to separating specific cases and algorithms, making the model more general. 
2) The intersection of the fitness sphere and the mutation sphere is considered the success region 

where each generation of (1 + 1) ES arrives, and its lower bound with a uniform mutation operator is 
obtained for a tighter first hitting time. 

3) The effectiveness of the 1/5 success rule of the (1 + 1) ES is verified, and its upper bound with 
a Gaussian mutation operator is obtained. 

The structure of this paper is as follows. Some preliminary knowledge on the renewal theorem and 
stopping time is introduced, and then the renewal model is proposed in Section 2. The lower bound of 
the expected first hitting time of (1 + 1) ES with a uniform mutation operator is analyzed in Section 3. 
The upper bound of the expected first hitting time of (1 + 1) ES with a Gaussian mutation operator is 
analyzed in Section 4. Numerical experiments and results are reported in Section 5. Finally, Section 6 
draws the conclusion. 

2. Preliminaries 

In this section, we introduce the general process framework of (1 + 1) ES, renewal process, 
stopping time, and mathematical modeling of the algorithm. 

2.1. Problem description and algorithm introduction 

We consider minimizing the sphere function in this paper. Its corresponding mathematical 
expression is as follows: 

2

1

( ) ,

. . ,

n

i
i

n
i

f x x

s t x R





 




         (1) 

where ( )f x   is the fitness function and    is the search space. Let 1 2{ , ,..., }t t t t
n       be the t-

generation population of EAs and n  represents the problem size. The process description of (1 + 1) ES 
can be described as follows [23]: 



    2997 

Electronic Research Archive  Volume 32, Issue 5, 2994–3015. 

Algorithm 1: (1 + 1) ES with 1/5 success rule 
1. Input: Initialize solution  and step size 0 ; 

2. while t = 1,2,…, until some stopping criterion is fulfilled do 
3. mutation: 

1t t t G t      ： ; 
4. evaluate solution t ; 
5. selection: if 1( ) ( )t tf f   , then 
6. 1:t t   ; 
7. 

1:t t A    ; 

8. else 
9. 1: { , }t t tmin    ; 

10. end while 
11. output the satisfactory solution. 

In this paper, Algorithm 1 includes the use of mutation and selection. t  uses a uniform mutation 

operator or Gaussian mutation operator; election is elite selection, that is, one individual is selected 
from the parent and offspring individuals as the population individual of the next generation. Within a 
certain range of iteration times G  , the successful iteration times G    is the iteration number that 

satisfies the condition of 1( ) ( )t tf f   . Let s

G
p

G


 , if 1 / 5sp  , the mutation strength reduces, i.e.,

A  ; if 1 / 5sp  , the mutation strength increases, i.e., 1/ 4A   . Otherwise, it remains unchanged. 

Generally speaking, 0.85 1    [25]. However, the main results presented in this paper, i.e., 
Theorem 3, are independent of such a specific implementation and can be applied to almost any 
stochastic search algorithm. 

2.2. A renewal model of EAs 

We consider the gradual process of EAs from their initial position to a satisfactory solution as a 
renewal process to establish a renewal model, which is different from the theoretical results on 
intelligent optimization algorithms [26,27]. Before establishing the model, the following theorem 
needs to be given. 

Definition 1 (fitness difference function). Let ( )t
optd   , 0t    be a random variable, then 

( ) ( )t t
opt opt optd f f     is called the fitness difference function, where t

opt   represents the optimal 

individual of the t generation, and optf  represents the target fitness value, which measures the distance 

of the t generation population to the optimal solution. 
Definition 2 (progress rate) [28]. During the running of EAs, the progress rate represents the 

decrease in the optimal distance between the 1t    to t  generation populations, i.e., 
1( ) ( ),t t

t opt optX d d  
 

t=1,2,...  , and quality gain represents the decrease in fitness between 1t   

generation and t  generation populations, which reflects the convergence time of EAs. The larger the 
progress rate, the faster the distance reduction from the optimal solution changes, and the faster the 
convergence time. It is obvious that 0{ }t tX 

  is a non-negative stochastic process, and the definition is 

as follows. 
Definition 3 (renewal process of progress rate). Let 0{ }t tX 

  be a non-negative stochastic process. 

If there exists 01
( ) ( )

t t
t n optn

Y X d d 


    for any t=1,2,...,  then tY  is referred to as the renewal process 

of the progress rate of EAs in the t generation. 

0
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In stochastic algorithms, the first hitting time is an effective way to characterize its performance, 
i.e., the number of generations when EAs find a satisfactory solution for the first time. It can be 
described by the stopping time of the renewal process, and the definition of stopping time is defined. 

Definition 4 (stopping time of renewal process). Let 0{ }t tX 
  be a non-negative stochastic 

process, if 
1

0 01
{ ( ) , ( ) }k kk k

T X d X d


 
    

 

 
       is satisfied, then T  is described as a stopping 

time of tX , where   is a non-negative random variable. 

The stopping time of the renewal process is an important concept in stochastic processes, which 
is described as independent of the state of the progress rate stochastic process { }t t TX




  after time T  

and related to the state of the progress rate stochastic process 0{ }t T
tX   before that time. 

Theorem 1 (Wald’s equation). If 0{ }t tX 
  are random variables with independent and identically 

distributed X   having finite expectations ( )E X   , and T   is a stopping time for 0{ }t tX 
  such that 

( )E T   , then 

1
( ) ( ) ( )

T

tt
E X E T E X


 .        (2) 

Proof. Let: 
1,   

=
0,   .t

if T t
I

if T t





 

；
 . Because 1{ 1} { } { }t

t kI T t T k        and the progress rate stochastic 

process { }t t TX



  are independent of each other, it can be concluded that { 0}tI   and { }t t TX




  are also 

independent of each other. Therefore, 

1 1
1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
T

t t t t tt t
t t

E X E X I E X E I E X P T t E X E T

 

 


 
 

        . 

In Theorem 1, it holds true that the expectation of the renewal process of the progress rate is equal 
to the expected first hitting time multiplied by the expected progress rate. 

Inference 1 (Wald’s inequation). According to Theorem 1, in the running of EAs, if T  is the 
stopping time of 0{ }t tX 

  and there are two functions 1M  and 2M  that make 1 2( )tM E X M   hold, then 

1
( )

T

tt
E X

  satisfies: 

1 21
( ) ( ) ( )

T

tt
M E T E X M E T

 
   .       (3) 

We can derive the renewal theory theorem for the expected first hitting time based on Inference 1, 
as shown in Theorem 2. 

Theorem 2 (renewal theorem). If 0{ }t tX 
  are random variables with independent and identically 

distributed X  having 1 2( )M E X M   and T  is a stopping time for 0{ }t tX 
  such that ( )E T   , then 

2 1

( )1 1

T

E T

M d M


  .         (4) 

Proof. For the lower bound proof, the stopping time 
1

01
{ ( ) ,k kk k

T X d X


 
  

 

 
     0( ) }d    in 

Definition 4 is equivalent to 
1

0 01 1
{ ( ) , ( ) },k kk k

T X d X d
 

     


 
       it follows from Inference 1 

that the equation 21
( ) ( )

T

T nn
d E X M E T

 
   holds. Thereby, 

2

( ) 1
.

Td
T

E T
lim inf

d M





  Now, we prove its 

upper bound. Let us fix a constant a  and define another renewal process, i.e., 
,  

,  .
=r

t

t t

t

X if X a

a if X a
X









；

 ,
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1{ , ( )}r
a tmin M infE X  . Since 0 <r

t tX X  and 20 ( )< ,r
a tE X M   for all t, it follows that

1 1
( ) ( )r tT T

n nn n
E X E X

 
  , i.e., ( ) ( )r tE T E T . Due to Inference 1, this yields 

1
( ) ( )< ( )rT

a t a r n Tn
E T E T E X d a


 


   , i.e., 

1

( ) 1
Td

T

E T
lim sup

d M





 , thus 

2 1

( )1 1

T

E T

M d M


  . 

In the running of EAs, due to the difficulty in finding the optimal solution, when the fitness 
difference function value of the parent individual to the optimal solution is equal to  , the algorithm 

terminates, that is, it reaches a specific stopping distance of 01
( ) ( )

T

t tt
Y E X d  


    , and then 

Theorem 3 represents the stochastic process model of the expected first hitting time analysis. 
Theorem 3 (renewal model). According to Theorem 2, in the running of EAs, if T  is the 

stopping time of 0{ }t tX 
  and there exist two functions 1M  and 2M , such that 1 2( )tM E X M  , when 

EAs pass through the interval 0[ , ( )]d  , then it holds for T  that 

0 0

2 1

( ) ( )
( )

d d
E T

M M
    

  .        (5) 

Theorem 3 can be obtained from the proof of the additive drift theorem of Kötzing [29], which is a 
continuous space adaptation of the original discrete space drift result of He and Yao [30]. In Theorem 3, 
the upper and lower bounds on the expected progress rate vary as a function of 1M  and 2M , which 

result in tighter upper and lower bounds on the first hitting time. Sections 3 and 4 analyze the expected 
first hitting time on the sphere function using the uniform and Gaussian mutation operators as a basis. 

3. Sphere function and uniform distribution  

In this section, we prove that there is an exponential lower bound on the expected first hitting 
time when the (1 + 1) ES with a uniform mutation operator is used to solve the sphere function 
minimization problem, which will be given in Theorem 4. 

Theorem 4. In the running of the (1 + 1) ES with elitist selection, when the radius of the sphere 
function of the n-dimensional Euclidean space goes from fitness difference function value / 2R  to  , 
then the lower bound of the first hitting time T  is satisfied: 

( ) ( )cnE T e   .         (6) 

Due to the symmetry of the sphere, we assume that the current individual is located on the ox  
axis, the distance from the center of the fitness hypersphere is R , the state of the individual is o , and 
the n  dimensional sphere with o  as the center and   as the radius is the mutation sphere 1E , which 

contains the next generation of individuals that are likely to reach the set. At the same time, fitness 
hypersphere 2E  contains all possible solution space sets of the next-generation individual better than 

the current individual, as shown in Figure 1. However, during the running of (1 + 1) ES, not all the 
next-generation individuals generated by the mutation operator are superior to the previous-generation 
individuals. Therefore, we regard the fitness spherical cap 2A  and mutation spherical cap 1A  as the 

reached region 0 1 2 1 2S E E A A    by the next generation individuals, and the two spherical caps 

can be regarded as the cut-off of the same hyperplane P , i.e., the success region. The region is irregular 
and the calculation of the volume is relatively complicated, so we will calculate the volume of the 
spherical cap by means of the spherical sector and the spherical cone. Next, we will give some 
important conclusions. 
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Figure 1. Success region of elitist ES on sphere. 

3.1. The uniform distribution inside the sphere 

Suppose that in the n-dimensional sphere, the uniform mutation operator is uniformly distributed 
in the sphere with radius  , then, its corresponding volume is denoted as 

2

( ) , ( ) { ,|| || }
( 1)
2

n

n
n n

n
Vol D R

n
      
 

x x ,     (7) 

and the probability density function of the sphere with radius   is 

( )

2

( 1)1 2( ) ( )
( ) nDn

n

n

f I
Vol n

  

 
 x x ,       (8) 

where ( ) ( )
nDI  x  is the indicator function. When the uniform mutation operator is evenly distributed in 

the radius   sphere, the corresponding value is 1; otherwise, the value is 0. For more details, see [31]. 

Lemma 1. Let the radius of the hypersphere containing the spherical cap be r  and its height be 
h . Then, the volume of the spherical sector is 
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1
( )s

n capVol r S r
n

 ,         (9) 

where capS  is the area of the spherical cap and n represents the dimension of the hypersphere. 

Lemma 2. Let the radius of the hypersphere containing the spherical cap be r  and its height be 
h , 3n  . Then, the area of the spherical cap is 

1 3
2 22 2

2
1

1 1 12
1 1 22 2 2

2
22

2 1

1

2 ( 3)!! (2 1)!! 2
( ) ( ) even;

1 ( 2)!! (2 )!!( )
2

2
( arccos( ) ( )

(2 2)!! 2 2 ( 3)!!
( ) )

1(2 1)!! ( 2)!!( )
2

n n
n

m

m

n n n
n n n
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n

m

m

r n m h h
h r h n

n n m r r

rh h
S r r r r h

r

m rh h n
nm r n



  

 




  
  







 
   

 


    

  
 





[ ],

,  odd.n










 



   

   (10) 

Lemma 3. Let the radius of the bottom surface of the spherical cap be capr  and its height be h . 

Then, the volume of the spherical cone is 

1

2
11

( ) ( ) ( )
1

( 1)
2

n

c n
n cap capVol r r r h

nn




 


 
.      (11) 

Theorem 5. Let the radius of the hypersphere containing the spherical cap be r , its radius of the 
bottom surface be capr , and its height be h . Then, the volume of the spherical cap is 

1

2
11 1

( ) ( ) ( ) ( )
1

( 1)
2

n

s c n
n n cap cap capVol Vol r Vol r S r r r h

nn n




    


 
.    (12) 

To calculate the volume of the fitness spherical cap, it is necessary to calculate not only the area 

fcapS   of the fitness spherical cap, but also the bottom radius fcapr  , its heights 2h   and 1h  , and the 

simultaneous equations: 

2

1

2 2
1

2

( ) + .

n

i
i

n

i
i

x R

x R x 











  






= ；

        (13) 

We get it by solving 

2
1

1
(1 ( ) )

2
x R

R


  ,         (14) 
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where 1x  denotes the abscissa of the common hyperplane of the fitness and mutation spherical cap. 

Let the heights of the corresponding spherical caps be 2h  and 1h . The association with Eq (14) yields 

2

2 1

1 1

;
2

( ) (1 ).
2

h R x
R

h R x
R



 


  


     


       (15) 

From Eq (15), we can obtain 2h  and 1h . Next, we compute the bottom radius of the common 

hyperplane of the fitness and mutation spherical cap, and it is useful to assume that the height of the 
spherical cap is 1 20 ,h h R  . Then, the bottom radius fcapr  is 

2
2 2

1 2
( ) 1

4capr R x
R

      .      (16) 

3.2. The volume of the fitness spherical cap 

Before calculating the volume of the fitness spherical cap, its area is calculated without loss of 
generality. Assume that the radius of the mutation sphere where the fitness sphere cap intersects with 
the mutation sphere is  , the radius of the fitness sphere is R , its heights are 2h R  and 3n  , and 

the bottom radius is capr ; then the volume of the fitness spherical cap is discussed in two cases: 

ⅰ) When n  is odd: 

1 3
2 2 2 2 42 2

2 4
1

2 ( 3)!! (2 1)!!
( )

1 ( 2)!! 2 2 (2 )!! 4( )
2

n n
n

m
fcap

m

R n m
S R

n n R R m R R

    
 





 
 

 
[ -( - ) ].   (17) 

We substitute Eqs (14)–(16) into 

1

2
1

2

1 1
( ) ( )

1
( 1)

2

n

n
fcap capVol S R r R h

nn n




  


 
  to obtain the 

volume of the fitness spherical cap as: 

4

2

2

1 3
2 2 2 2 42 2

2 4
1

1
22

1

1
2 22

1 2 ( 3)!! (2 1)!!
( )

1 ( 2)!! 2 2 (2 )!! 4( )
2

1
( ) ( )

1 4 2( 1)
2

1 ( 3)!!
           < .

1 ( 2)!!( )
2

n n
n

fcap m
n

m

n

n

n
n

R n m
Vol R R

nn n R R m R R

R
nn R R

R n
nn n

    

  

 

 











 
  

 

 
 


 

[ -( - ) ]

 (18) 

ⅱ) When n  is even: 
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4 4
22 2
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Similarly, we substitute Eqs (14)–(16) into Eq (12) to obtain the volume of the fitness spherical 
cap as: 

4
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3.3. The volume of the mutation spherical cap 

Assume that the radius of the fitness sphere where the mutation spherical cap intersects with the 
fitness sphere is R , the radius of the mutation sphere is  , its heights are 1h   and 3n  , and the 

bottom radius is capr . Then the volume of the mutation spherical cap is discussed in two cases: 

ⅰ) When n  is odd: 

2 2
1 3 2

2 2 22 2

2
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2 2 2 22 2
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Inserting Eqs (15), (16), and (20) in 

1

2
1

1

1 1
( ) ( )

1
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2

n
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mcap capVol S r h

nn n

 



  


 
 , we obtain the 

volume of the mutation spherical cap as: 
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ⅱ) When n  is even: 
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Inserting Eqs (15), (16), and (22) in 
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, we obtain the 

volume of the mutation spherical cap as: 
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Since the expected progress rate probability density function is not easy to accurately calculate [32], 
it is difficult to calculate the expected first hitting time of the (1 + 1) ES on the sphere function. 
Therefore, we estimate by calculating the sum of the volume of the mutation spherical cap and the 
volume of the fitness spherical cap, which provides a theoretical basis for improving the estimation of 
the lower bound of the first hitting time of (1 + 1) ES on the sphere function. 

3.4. Expected first hitting time of (1 + 1) ES 

The position of the next generation of individuals generated by (1 + 1) ES during the running of 
the sphere function is the gray part of Figure 1, i.e., the intersection of the irregular successful regions 
is the union of spherical caps 1A  and 2A : 
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By Definition 2, we get the expected progress rate: 
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ⅰ) When n  is even: 
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According to Eqs (24) and (25), we can obtain: 
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In order to calculate 1G , we reduce the dimension of the integral to make 
2

w v . Thus, we obtain: 
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Because the integrand function of this integral contains the radical 2( )R x w  , it is difficult 

to solve the integral. By taking into account the idea of substitution that regards 2( )R x   as the 

common factor of 2( )R x w    under the radical sign, where 2( )w u R x   , then 2( )dw R x du   ,

2( ) ( ) 1R x w R x u       and 21 1
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. Hence, we obtain: 
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Similarly, 
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According to Eqs (26)–(29), we can draw the following conclusions: 
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ⅱ) When n  is odd: 
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By Eqs (24) and (30), we can draw the following conclusions: 
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Also, from Eqs (27)–(29), the following asymptotic expressions can be approximated: 
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(32) 

Obviously, when the dimension of the sphere function is odd or even, we find that the upper bound 
on the expected progress rate is exponential. By Theorem 3, the expected first hitting time ( )E T  from 

the fitness difference function value R   to / 2R    in the running of the sphere function with a 
uniform mutation operator is: 

/ 2
( ) (( ) )

(( ) )

n

n

R R
E T

R RO


 



 
   . 

Let ln( )c
R


 , thus ( ) ce

R


 , then we can get that ( ) ( )cnE T e    is the expected first hitting 

time of the elitist selection (1 + 1) ES with a uniform mutation operator solving sphere function. 
Therefore, Theorem 4 holds. 

Theorem 4 has significantly improved the current lower bound ( )n , which has a significant 

effect on reducing the time complexity of analyzing the 1/5 success rule of (1 + 1) ES. 
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4. The sphere function and Gaussian mutation operator 

Without loss of generality, the Gaussian mutation operator is different from the uniform mutation 
operator. It is assumed that independent offspring individuals are generated through the mutation 
vector (0, )n N Im  and obey Gaussian distribution (see Figure 1). 

Theorem 6. Let 1 2( , , , )nx x x x  be an individual from the population (0, )n N I . Then 

2 2 2 2
1 2 nk x x x    ,         (33) 

which obeys the chi-square distribution with degree of freedom n , and is denoted as 2 2 ( )k n . The 

probability density function of 2 2 2
1 2 nk x x x     is 
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These results are a simplified form of [32]. For a more detailed proof, see [33]. Its mathematical 
expectations are as follows: 
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When n, then 

lim ( )
n

k E y n


  .         (36) 

The validity of relation 2 2 2 2( )l k m R m     is evident based on the observations from Figure 1. 

Since offspring individuals t
opt  are generated by the mutation vector (0, )n N Im  and 1( )t

optd    is a 

constant, 1( ) ( )t t
opt optd d    is a random variable that depends on the mutation vector, and the specific 

form of ( )t
optd   is as follows [33]:  
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The 1( ) ( )t t
opt optd d    probability density function is 
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1
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m
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Thus, we can get the expected progress rate ( )tE X : 
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where 
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1
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k
m
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  and 2 . m k n   

By normalizing the expected progress rate ( )tE X  and the mutation strength   [32]: 
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And we can get the normalized expected progress rate *( )tE X : 
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Since (1 + 1) ES is adopted as the elitist selection strategy, * *
0( )

2
( )tE E R

R
X X     holds 

for (0, )t   . By Theorem 3, when running (1 + 1) ES on the sphere function, the first hitting time 

( )E T  from the fitness difference function value 
2

R
 to   with a Gaussian mutation operator holds: 

2
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1
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R
R

E T O n n

n n



 
 


       (42) 

which implies that we obtain the upper bound of the first hitting time. The above analysis shows that 
we can consider that each individual follows an independent isotropic distribution. Jägersküpper [24] 
adopted a similar approach to analyzing the first hitting time of (1 + 1) ES on the sphere function and 
obtained the lower bound of the first hitting time, while the upper bound was not given the relevant 
theoretical analysis. It is shown that the proposed method is valuable for the first hitting time analysis 
of population-based algorithms. 
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5. Numerical experiments and result analysis 

The purpose of the experiments in this section is to verify the upper and lower bounds on the 
theoretical accuracy of the expected first hitting time for (1 + 1) ES with uniform and Gaussian 
mutation operators solving sphere functions. 

5.1. Experimental parameter setting 

In this section, we mainly set the following experimental parameters: 

0 1 2( ) ( , ,..., ) (5,0,...,0) 5nR d x x x    , 1  , 0.001  , and [1,100]n . For each given problem size n , 
we conduct 100 runs for Algorithm 1 on the sphere function. We define iT  to denote the i-th run first 

hitting time of Algorithm 1 and 
100

1( )
100

ii
T

E T



  to denote the actual running average first hitting time, 

i.e., ( )E T t  . 

5.2. (1 + 1) ES with a uniform mutation operator 

Theorem 4 gives the expected first hitting time of (1 + 1) ES with a uniform mutation operator 
from the previous ( )n  to ( )cne . We arbitrarily take [20,100]n  to verify that its lower bound is 

exponentially related to the problem size n . To verify the exponential time of the first hitting time, we 
only need to verify the linear relationship between log t  and the problem size n , thus verifying our 

theoretical results. MATLAB simulation results are shown in Figure 2. 

  

Figure 2. Problem size n  and log t of (1 + 1) ES with a uniform mutation operator. 
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We can see from Figure 2 that log t  increases with increasing problem size n , showing a linear 

relationship. Consequently, we have derived a tighter lower bound for the time complexity, which is 
consistent with the theoretical lower bound for the analysis time. 

5.3. (1 + 1) ES with a Gaussian mutation operator 

In Section 4, 2( )O n n  is given as the upper bound of the expected first hitting time of (1 + 1) 

ES with a Gaussian mutation operator. The first hitting time of a polynomial is acceptable in real-world 
optimization problems. MATLAB simulation results are shown in Figure 3. 

 

Figure 3. Problem size n and the first hitting time of (1 + 1) ES with a Gaussian mutation operator. 

We can see from Figure 3 that when about 20n  , the first hitting time increases as problem size 
n  increases, which is faster than that of about 20n  . We think that the first hitting time is a 
polynomial when n  is large enough. 

6. Conclusions 

In this paper, it is difficult to estimate the upper and lower bounds of (1 + 1) ES in the first time-
solving sphere function, and the renewal model is proposed to solve it. The proposed method does not 
aim to directly determine the first hitting time, but views the individual population as a special renewal 
process, by introducing the stopping time of the special renewal process and combining Wald’s 
inequality with the renewal theorem. The model is independent of the specific implementation of the 
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algorithm and presents a gradual convergence process of EAs on a continuous search space, showing 
the gradual convergence process of (1 + 1) ES in a continuous search space. To verify the validity of 
the proposed method, we analyze the expected first hitting time of (1 + 1) ES on the sphere function. 
We obtain the lower bound of exponential time ( )cne  with a uniform operator (1 + 1) ES and the 

upper bound of polynomial time 2( )O n n   with a uniform operator (1 + 1) ES. Furthermore, the 

proposed method can be applicable to other intelligent optimization algorithms, such as differential 
evolution algorithm and particle swarm optimization. 

This will also be further investigated in our future work. Based on the progress rate, statistical 
methods will be used to estimate the first hitting time of EAs, especially in the running time analysis 
with recombination, which will be very challenging. In addition, based on the discussed upper bound 
on the running time of (1 + 1) ES with a Gaussian mutation operator, another direction for further 
research is to analyze the lower bound on the running time of (1 + 1) ES with a Gaussian mutation 
operator. A closed interval can be constructed by upper and lower bounds to estimate the first hitting 
time of EAs, and then the theoretical results can be extended to the practical application of EAs. 
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