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Abstract: In this paper, we propose an analytical approach to estimate the largest Lyapunov exponent
(LLE) of a Rössler chaotic system, leveraging the synchronization method. This research focuses on
establishing an analytical criterion for the synchronization of two identical Rössler chaotic systems
through the linear coupling of state variables. This is crucial because the LLE of such systems can
be estimated based on the critical coupling required for synchronization. Unlike previous studies, we
first transform the synchronization error system between two identical Rössler chaotic systems into a
set of Volterra integral equations by using the Laplace transform and convolution theorem. The crit-
ical coupling for synchronization is analytically derived using integral equation theory to solve the
error system. As compared to the numerical results of the Rössler chaotic system’s LLE, our analyt-
ical estimates demonstrate high accuracy. Our findings suggest that the challenge of estimating the
Rössler chaotic system’s LLE can be simplified to solving a cubic algebraic equation, offering a novel
perspective on the analysis of how parameters influence the LLE’s value in the Rössler chaotic system.

Keywords: largest Lyapunov exponent; Rössler system; chaos synchronization; analytic estimation;
Volterra integral equations

1. Introduction

The Lyapunov exponent (LE), as introduced by Oseledets [1] in the context of his multiplicative
ergodic theorem, serves as a quantifier of the divergence between two proximal trajectories over time
within a dynamical system. In an n-dimensional dynamical system, there are n LEs available, with
their quantity corresponding to the dimensionality of the system’s phase space. Each LE characterizes
the rate of convergence or divergence of the system’s attractor in a specific direction. The spectrum
of LEs offers a metric for assessing the local sensitivity of a system to initial conditions, as well as
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for providing crucial insights into the system’s global dynamics. This spectrum facilitates the effective
description and classification of system attractors based on their LEs. For stable equilibrium points, all
LEs are real and negative; in the case of stable limit cycles, one LE is zero while the remainders are
real and negative. An attractor is identified as a k-torus if the first k LEs are zero and the others are
negative. The presence of positive values within the LEs spectrum signifies a chaotic attractor, which
is further classified as hyperchaotic if two or more LEs are positive [2].

The calculation or estimation of LEs constitutes a core aspect of research into nonlinear dynamical
systems. Notably, the largest LE (LLE) holds particular significance as it directly influences the pre-
dictability of the system in question. Over the past several decades, a diverse array of studies focusing
on the calculation schemes for LEs, especially the LLE, have been published. These studies have pre-
dominantly categorized them into two main methodologies: the determination of LEs from governing
equations [3–7] and the estimation of LEs from time series data [8–11]. Benettin et al. [3] first intro-
duced the method for calculating all LEs of dynamical systems, grounded in Oseledets’s theory [1].
This methodology was later refined by Wolf et al. [8]. Additionally, Briggs [12] explored the calcula-
tion of LEs by using experimental data, proposing that the optimal estimation of Jacobian matrices in
the presence of noisy data is attained through least-squares polynomial fitting. The QR decomposition
(short for “QR factorization” is a process that decomposes a matrix into the product of an orthogonal
matrix (Q) and an upper triangular matrix (R)) and the singular value decomposition (SVD) methods
for determining all LEs of dynamical systems were developed by Von Bremen et al. [13] and Dieci and
Elia [14], respectively. Dabrowski [15] numerically derived the LLE by calculating the LE in the di-
rection of a disturbance, as based on the perturbation vector and its derivative’s dot product. Liao [16]
investigated the sensitivity gradients of the LLE in dynamical systems to address the deficiency of pre-
vious approaches, which were prohibitively time-consuming and resource-intensive for most optimiza-
tion problems of reasonable size. Certain methods described above embody the direct approach, which
quantifies the divergence growth rate between two trajectories that have an infinitesimal discrepancy
in their initial conditions. Conversely, other methods aim to estimate the Jacobian matrices of systems,
addressing the limitations inherent to direct approaches, especially in the context of noise [17]. How-
ever, approaches that rely on linear approximation often fall short of capturing nonlinear growth and
typically necessitate laborious computations. In some instances, they may even result in erroneous LEs
due to ill-conditioned Jacobian matrices [18]. Additionally, if the number of iterations is insufficient,
the outcomes are likely to be imprecise [19]. Zhou et al. [20] introduced a groundbreaking method to
derive the LLE by using two nearby pseudo-orbits, eliminating the need for phase space reconstruction
and Jacobian matrix computation. Utilizing machine learning to forecast LEs from data was an ap-
proach adopted by Pathak et al. [21] and McAllister et al. [22]. The perturbation vectors method [23],
the cloned dynamics approach [24], and the synchronization technique [25–27] have been developed
as strategies to circumvent the direct calculation of Jacobian matrices or the need to solve variational
equations. Recent advancements and applications of LLEs are documented in references [28].

The analytical estimation of LEs within a dynamical system represents a compelling and signifi-
cant topic. According to the definition of LEs, their analytical formulas are readily derivable only for
steady-state solutions, including fixed points in nonlinear systems with a limited number of degrees
of freedom and steady-state, spatially homogeneous solutions in spatially extended systems. Analyti-
cal expressions for LEs have been derived for neural oscillator models [29–31], as well as for certain
simple models of nonlinear oscillators applied for synchronization problems triggered by common ex-
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ternal noise [32–34]. Caponetto and Fazzino [7] introduced a semi-analytical approach, utilizing the
differential transform method, to compute LEs in fractional order systems. Hramov et al. [35] first
presented the analytical formula for the zero LE. A zero LE exists within the spectrum of LEs for flow
systems, characterizing the perturbation evolution along the phase trajectory [36]. To derive the ana-
lytical expression for the zero LE, Hramov et al. analyzed a model system that describes the behavior
of a driven periodic oscillator with noise near the synchronization onset. In chaotic systems, analytical
approximations of LEs typically retain validity within a very narrow range of control parameter values,
despite their derivability [37]. The analytical characterization of LEs for chaotic oscillators remains to
be a formidable challenge.

In this paper, we aim to derive an analytical expression for the LLE of a Rössler chaotic system [38]
by utilizing the synchronization method [25–27,39]. It is established that synchronization between two
diffusively coupled identical chaotic systems is invariably achievable with a sufficiently large coupling
parameter [40]. A linear relationship exists between the synchronization threshold of the coupling
parameter in two identical systems and the value of the LLE of the coupled systems. Consequently,
the LLE can be estimated based on the critical coupling required for synchronization [39]. This paper
focuses on the analytical criteria for synchronization between two identical Rössler chaotic systems
from the perspective of the linear coupling of state variables. Unlike previous studies [41–43], we
initially transform the synchronization error system between two identical Rössler chaotic systems into
a set of Volterra integral equations, utilizing the Laplace transform and the convolution theorem. The
critical coupling required for synchronization can be derived by applying the successive approximation
method [44] within the framework of integral equation theory to resolve the error system’s solution.
Numerical simulations have been conducted to confirm the efficacy of our analytical estimation of the
LLE for the Rössler chaotic system. Furthermore, this analytical estimation remains valid across a
broad range of parameter variations.

The remainder of the paper is structured as follows. Section 2 introduces the theoretical foundation
of the estimation procedure for the LLE based on the synchronization method. Section 3 details the
analytical estimation of the LLE for a Rössler system. Section 4 validates the analytical findings
through numerical simulations. Finally, Section 5 provides the conclusions.

2. Theoretical background of estimation procedure for LLE based on the synchronization
method

2.1. The definition of LEs

Consider a set of ordinary differential equations

ẋ =
dx
dt
= f (x), (2.1)

where x ∈ Rn represents the state variables and f : Rn → Rn is a smooth vector function. Assume
that st(x0) is the solution of Eq (2.1) with the initial condition x = x0 which has the components
(x10, x20, · · · , xn0); one has

dst(x0)
dt

= f [st(x0)], s0(x0) = x0. (2.2)
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Taking the variation with respect to x0 on both sides of Eq (2.2) yields

dJt(x0)
dt

=
∂ f [st(x0)]
∂x

Jt(x0), (2.3)

where ∂ f [st(x0)]
∂x =

∂ f (x)
∂x

∣∣∣∣
x=st(x0)

, Jt(x0) = ∂st(x0)
∂x0

. Clearly, Jt(x0) can be obtained by solving Eq (2.3), which

describes the influence of infinitesimal disturbance ∆x0 to the initial condition x0 on the trajectory
st(x0), that is,

∆s(t) ≡ st(x0 + ∆x0) − st(x0) = Jt(x0)∆x0. (2.4)

Thus, the length of vector ∆s(t) can be given as

|∆s(t)| =
√
∆s(t)T∆s(t) =

»
∆xT

0 Jt(x0)T Jt(x0)∆x0, (2.5)

where the notation T denotes the transpose of vectors. Since Jt(x0) is a real matrix, Jt(x0)T Jt(x0) is real
symmetric and positive semi-definite. Assume that ξi(t), i = 1, 2, · · · , n, denotes the eigenvalues of the
matrix Jt(x0)T Jt(x0). Obviously, ξi(t) ≥ 0. Assume that vi(t) is the corresponding eigenvector of ξi(t).
If ∆x0 has the same direction as vi(t), Eq (2.5) becomes

|∆s(t)| =
√
ξi(t) |∆x0|. (2.6)

The definition of LEs denoted by λi, i = 1, 2, · · · , n, in system (2.1) is given as

λi = lim
t→∞

ln
√
ξi(t)

t
= lim

t→∞

ln |ξi(t)|
2t
, i = 1, 2, · · · , n. (2.7)

From Eq (2.7), after long enough one has√
ξi(t) ≈ eλit, i = 1, 2, · · · , n. (2.8)

Substituting Eq (2.8) into Eq (2.6), leads to

|∆si(t)| =
√
ξi(t) |∆xi0| = eλit|∆xi0|, i = 1, 2, · · · , n. (2.9)

The LEs are related to the expanding or contracting nature of different directions in phase space.

2.2. The relation between chaos synchronization and the LLE

Consider a chaotic system in the following form [25]

ẋ = f (x), (2.10)

where x ∈ Rn and f : Rn → Rn is a smooth functional vector. Two such identical oscillators couple to
undergo unidirectional coupling, as follows:

ẋ = f (x),
ẏ = f (y) + k(x − y),

(2.11)
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where x, y ∈ Rn and k ∈ R is the coupling parameter. If k = 0, two separate dynamical systems
are obtained

ẋ = f (x), ẏ = f (y). (2.12)

Assume that each system in Eq (2.12) evolves on an asymptotically stable chaotic attractor X. The
solutions of Eq (2.12) starting from different initial conditions represent two independent trajectories
on the atrractor X. If the two initial conditions are the same the two subsystems will exhibit identical
behaviors (x = y). If the initial conditions for the two subsystems in Eq (2.12) have a small difference,
then a state difference exists between the two subsystems during the time evolution, which is defined
by the expression

z = x − y, (2.13)

where z ∈ Rn.

Theorem 1. Assume that kmin > 0 is the boundary value of the coupling parameter k that is required
to cause synchronization in system (2.11), and that λmax is the LLE of system (2.10) such that λmax ≈

kmin holds.

Proof. To make further considerations easier, the following notations are first introduced:

* λ j denotes the LEs in system (2.10) excluding λmax, j = 1, 2, · · · , n − 1,
* ∆λ j = λmax − λ j denotes the difference between λmax and other LEs λ j, j = 1, 2, · · · , n − 1,
* δ0 is initial distance in the λmax direction,
* δ j0 = m jδ0 denotes the initial distances in the λ j direction, where m j denotes constant values,

j = 1, 2, · · · , n − 1.

The norm of vector z is given by

||z|| =
Å n∑

i=1

z2
i

ã1/2

. (2.14)

Assume that z0 = x0 − y0 is an initial distance between two trajectories of subsystems in sys-
tem (2.12), where z0 has the components (z10, z20, · · · , zn0). Obviously, z0 is the total λ−distance vector,
which is a sum of δ0 and δ j0, j = 1, 2, · · · , n − 1. From Eq (2.9), ||z|| can be written as

||z|| =
Å
δ2

0e2λmaxt +

n−1∑
j=1

δ2
j0e2λ jt

ã1/2

=

ï
δ2

0e2λmaxt
Å

1 +
n−1∑
j=1

m2
je
−2∆λ jt

ãò1/2

. (2.15)

Since ∆λ j < 0 holds for j = 1, 2, · · · , n − 1, the sum in Eq (2.15) finally decreases to zero during
the time evolution; the norm of state difference z between two subsystems in Eq (2.12) approaches
the following:

||z|| = δ0eλmaxt. (2.16)

This implies that the distance associated with the λmax direction becomes dominant after
enough time.

Next, we consider the case of k , 0 in Eq (2.11). For clarity, redefine the norm of the state difference
between two subsystems in Eq (2.11) by Q. Clearly, Q ≥ 0 for any values of x, y and k. From Eq (2.16),
if k > 0 one has

Q̇ = || f (x) − f (y) − k(x − y)|| ≥ || f (x) − f (y)|| − k||x − y||

= λmaxδ0eλmaxt − kQ = (λmax − k)Q.
(2.17)

Electronic Research Archive Volume 32, Issue 4, 2642–2664.



2647

For k < 0,
Q̇ = || f (x) − f (y) − k(x − y)|| ≤ || f (x) − f (y)|| − k||x − y||

= λmaxδ0eλmaxt − kQ = (λmax − k)Q.
(2.18)

Solving Eqs (2.17) and (2.18) yields

Q ≥ Q0e(λmax−k)t, f or k > 0,
Q ≤ Q0e(λmax−k)t, f or k < 0,

(2.19)

where Q0 is a constant determined by the initial conditions given in Eq (2.11). If k > 0 and the
synchronization between two subsystems in Eq (2.11) is achieved, then Q→ 0. From the first relation
in Eq (2.19), it must follow that λmax < k. Assume that kmin > 0 is the boundary value of the coupling
parameter k that is required to cause synchronization in system (2.11); then, the following inequality
should be held: λmax < kmin.

On the contrary, if λmax ≥ kmin, from the first inequality in Eq (2.19), the synchronization cannot be
achieved. Therefore, one can have the following approximation

λmax ≈ kmin. (2.20)

From Eq (2.18) and the second inequality in Eq (2.19), Q → 0 is impossible when λmax > 0 and
k < 0. It implies that two identical chaotic systems in Eq (2.11) cannot synchronize with each other
when k < 0.

3. The analytical estimation for the LLE of a Rössler chaotic system

The Rössler oscillator [38] is described as follows:

u̇ = −v − w,

v̇ = u + av,

ẇ = b + w(u − c),
(3.1)

where u, v, w are state variables, and a, b, c are parameters. For convenience, by moving the equilibrium
(u0, v0,w0) of system (3.1) to the origin, system (3.1) can be rewritten as follows:

ẋ = −y − z − v0 − w0,

ẏ = x + ay + u0 + av0,

ż = (x − c)(z + w0) + u0(z + w0) + b,

(3.2)

where x = u − u0, y = v − v0, z = w − w0. Consider two unidirectionally coupled Rössler systems
as follows:

ẋ1 = −y1 − z1 − v0 − w0,

ẏ1 = x1 + ay1 + u0 + av0,

ż1 = (x1 − c)(z1 + w0) + u0(z1 + w0) + b,

ẋ2 = −y2 − z2 − v0 − w0 + k(x1 − x2),
ẏ2 = x2 + ay2 + u0 + av0 + k(y1 − y2),
ż2 = (x2 − c)(z2 + w0) + u0(z2 + w0) + b + k(z1 − z2),

(3.3)
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where k is a coupling parameter. Synchronization is said to occur in system (3.3) if

||x1 − x2|| → 0, ||y1 − y2|| → 0, ||z1 − z2|| → 0 f or t → ∞. (3.4)

By introducing
e1 = x1 − x2, e2 = y1 − y2, e3 = z1 − z2,

e4 = x1 + x2, e5 = y1 + y2, e6 = z1 + z2,

to system (3.3), the dynamical behavior of errors denoted by ei, i = 1, 2, 3, can be described as follows:

ė1 = −ke1 − e2 − e3,

ė2 = e1 − (k − a)e2,

ė3 = w0e1 − (k + c)e3 + e1e6 + e3e4.

(3.5)

Then the synchronization condition given by Eq (3.4) becomes lim
t→∞
||ei|| = 0, i = 1, 2, 3. Consider

the Laplace transform defined as follows:

Ei(s) = L[ei] =
∫ +∞

0
ei(t)e−stdt,

ei(t) = L−1[Ei] =
1

2π j

∫ σ+ j∞

σ− j∞
Ei(s)estds, i = 1, 2, 3.

(3.6)

By taking the Laplace transform on both sides of system (3.5), we obtain

(sI3 − M)

E1

E2

E3

 =
 e10

e20

e30 +W

 , (3.7)

where e0i, i = 1, 2, 3, denotes the given initial values of system (3.5), I3 is the 3 × 3 real identity
matrix, and

M =

−k −1 −1
1 a − k 0

w0 0 u0 − k − c

 , (3.8)

W is the Laplace transform of the nonlinear parts in the third equation in system (3.5)

W =
∫ +∞

0
[e1e6 + e3e4]e−stdt.

Solving Eq (3.7) by using the Cramer’s rule, one has

E1 =
e10(s + k − a)(s + k + c + u0)

D(s)
−

e20(s + k + c + u0)
D(s)

−
e30(s + k − a)

D(s)
−

(s + k − a)W
D(s)

,

E2 =
e10(s + k + c + u0)

D(s)
+

e20(s + k)(s + k + c + u0)
D(s)

+
e20w0 − e30

D(s)
−

W
D(s)
,

E3 =
e10w0(s + k − a)

D(s)
−

e20w0 − e30

D(s)
+

e30(s + k)(s + k − a)
D(s)

+
(s + k)(s + k − a)W

D(s)
+

W
D(s)
,

(3.9)
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where D(s) = s3 + β1s2 + β2s + β3 is the characteristic polynomial of the matrix of Eq (3.8), and

β1 = 3k + c − a − u0,

β2 = 3k2 + 2(c − a − u0)k + 1 + w0 − ac + au0,

β3 = k3 + (c − a − u0)k2 + (1 + w0 − ac + au0)k + c − aw0 − u0.

To investigate whether ||ei|| → 0, i = 1, 2, 3, when t → ∞, we take the inverse Laplace transform
on both sides of three equations in system (3.9) and consider the convolution theorem in the Laplace
transform, which yields

e1 = e10γ5(t) − e20γ2(t) − e30γ1(t) −
∫ t

0
γ1(t − τ)[e1e6 + e3e4]dτ,

e2 = e10γ2(t) + e20γ4(t) + (e20w0 − e30)γ6(t) −
∫ t

0
γ6(t − τ)[e1e6 + e3e4]dτ,

e3 = e10w0γ1(t) − (e20w0 − e30)γ6(t) + e30γ3(t) +
∫ t

0
(γ3(t − τ) + γ6(t − τ))[e1e6 + e3e4]dτ,

(3.10)

where γ1 = L−1[ s+k−a
D(s) ], γ2 = L−1[ s+k+c+u0

D(s) ], γ3 = L−1[ (s+k)(s+k−a)
D(s) ], γ4 = L−1[ (s+k)(s+k+c+u0)

D(s) ], γ5 =

L−1[ (s+k−a)(s+k+c+u0)
D(s) ], γ6 = L−1[ 1

D(s) ].

Theorem 2. The necessary condition for e1,2,3 → 0 with t → ∞ in Eq (3.10) is that all eigenvalues of
the matrix of Eq (3.8) have negative real parts.

Proof. Without loss of generality, consider the inverse Laplace transform of the following true fraction

A1s2 + A2s + A3

D(s)
,

where D(s) is the characteristic polynomial of the matrix of Eq (3.8) and Ai, i = 1, 2, 3, denotes
constants. There exist the following four cases:

• D(s) has 3 single real roots: s1, s2, s3
A1 s2+A2 s+A3

D(s) = B1
s−s1
+ B2

s−s2
+ B3

s−s3
,

where Bi =
A1 s2+A2 s+A3

D(s) (s − si)
∣∣∣∣

s=si

, i = 1, 2, 3.

L−1[ A1 s2+A2 s+A3
D(s) ] = B1es1t + B2es2t + B3es3t

• D(s) has a pair of conjugate complex roots s1,2 = ω1 ± jω2 and a real root s3 = ω3
A1 s2+A2 s+A3

D(s) = A1 s2+A2 s+A3
(s−ω1− jω2)(s−ω1+ jω2)(s−ω3) =

B1
s−ω1− jω2

+ B2
s−ω1+ jω2

+ B3
s−ω3

,

where B1,2 =
A1 s2+A2 s+A3

D′(s)

∣∣∣∣
s=ω1± jω2

, B3 =
A1 s2+A2 s+A3

D(s) (s − ω3)
∣∣∣∣

s=ω3

,

L−1[ A1 s2+A2 s+A3
D(s) ] = B1e(ω1+ jω2)t + B2e(ω1− jω2)t + B3eω3t

• D(s) has 2 repeated real roots s = s0 and a single real root s = sk
A1 s2+A2 s+A3

D(s) = B1
s−s0
+ B2

(s−s0)2 +
B3

s−sk
,

where B1 =
1
2

d2

ds2 [ A1 s2+A2 s+A3
D(s) (s − s0)2]

∣∣∣∣
s=s0

, B2 =
A1 s2+A2 s+A3

D(s) (s − s0)2

∣∣∣∣
s=s0

,
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B3 =
A1 s2+A2 s+A3

D(s) (s − sk)
∣∣∣∣

s=sk

,

L−1[ A1 s2+A2 s+A3
D(s) ] = (B1 + B2t)es0t + B3eskt

• D(s) has 3 repeated real roots: s = s0
A1 s2+A2 s+A3

D(s) = B1
s−s0
+ B2

(s−s0)2 +
B3

(s−s0)3 ,

where B(3−i) =
1
i!

di

dsi [ A1 s2+A2 s+A3
D(s) (s − s0)3]

∣∣∣∣
s=s0

, i = 1, 2,

B3 = [ A1 s2+A2 s+A3
D(s) (s − s0)3]

∣∣∣∣
s=s0

,

L−1[ A1 s2+A2 s+A3
D(s) ] = (B1 + B2t + B3t2)es0t

It is evident that for ||ei|| to approach zero (i = 1, 2, 3) in system (3.10), a necessary condition is that
γ j tends toward zero as time approaches infinity ( j = 1, 2, 3, 4, 5, 6). This condition is satisfied if all
roots of the equation D(s) = 0 possess negative real parts, implying that all eigenvalues of the matrix
of Eq (3.8) also have negative real parts.

Under the condition given in Theorem 2, when t → ∞ system (3.10) becomes as follows:

e1 = −

∫ t

0
γ1(t − τ)[e1e6 + e3e4]dτ,

e2 = −

∫ t

0
γ6(t − τ)[e1e6 + e3e4]dτ,

e3 =

∫ t

0
(γ3(t − τ) + γ6(t − τ))[e1e6 + e3e4]dτ.

(3.11)

Theorem 3. e1,2,3 = 0 represents the unique continuous solutions to Eq (3.11).

Proof. System (3.11) is a set of Volterra integral equations that can be solved by using the successive
approximation method [44]. Consider the integral equation of the following form

h(t) = Ψ(t) +
∫ t

0
g(t − τ)H(τ, h(τ))dτ, (3.12)

where g is an n × n matrix and Ψ(t) and H(t, h(t)) are vectors with n components. If the following
conditions are satisfied

• |h| < ∞;

• Ψ and h are continuous for 0 < t < t0, where 0 < t0 < +∞;

• |g| ∈ L[0, ϵ] holds for any 0 < ϵ < t0;

• For any η > 0, if |h1 − h2| < η there must exist a constant κ > 0 such that |H(t, h1) − H(t, h2)| < κ,

from the successive approximation method [44], Eq (3.12) has a unique continuous solution. Moreover
the successive approximations given by

ω0(t) = 0, ωn+1(t) = Ψ(t) +
∫ t

0
g(t − τ)H(τ, ωn(τ))dτ, n = 0, 1, 2, · · · (3.13)
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will uniformly converge to the unique continuous solution of Eq (3.12).
Comparing Eq (3.11) with Eq (3.12), it is easy to verify that e1 = e2 = e3 = 0 constitutes the unique

continuous solution of Eq (3.11).
From Theorems 2 and 3, we have the following result:

Theorem 4. The necessary condition for e1,2,3 → 0 in Eq (3.5) is that all eigenvalues of the matrix of
Eq (3.8) have negative real parts.

From the Routh-Hurwitz stability criterion, the necessary condition in Theorem 4 is equivalent to
the following condition:

β1 > 0, β2 > 0, β3 > 0, β1β2 − β3 > 0, (3.14)

where β1,2,3 has been defined in Eq (3.9). Since βi, i = 1, 2, 3, denotes functions of k, from Eq (3.14)
one can determine the boundary value of k.

Theorem 5. The boundary value of k for synchronization in system (3.3) can be given as

kc = max{m1,m2,m3}, (3.15)

where max{·} represents taking the maximum value of elements in the set,

m1 =


−

c − a
3
, a2 + ac + c2 − 3(w0 + 1) ≤ 0,

−
c − a

3
+

√
a2 + ac + c2 − 3(w0 + 1)

3
, a2 + ac + c2 − 3(w0 + 1) > 0,

(3.16)

and m2,3 are the maximum real roots of the equations

β3 = k3 + (c − a)k2 + (1 + w0 − ac)k + c − aw0 = 0,

β1β2 − β3 = k3 + (c − a)k2 +
(c − a)2 + 1 + w0 − ac

4
k +

a2c − (c2 + 1)a + cw0

8
= 0,

(3.17)

respectively.

Proof. βi, i = 1, 2, 3, denotes functions of k; it is easy to check that

dβ1

dk
= 3,

dβ2

dk
= 2β1,

dβ3

dk
= β2.

Therefore, one has

d(β1β2 − β3)
dk

=
d(β1β2)

dk
−

dβ3

dk
=

dβ1

dk
β2 + β1

dβ2

dk
− β2 = 2(β2

1 + β2).

If β1,2 > 0, then β3 and β1β2−β3 are always monotonically increasing functions of k. β1 > 0 leads to

k > −
c − a − u0

3
.
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Solving β2 > 0 yields the following:

I f a2 + ac + c2 − 3(w0 + 1) > 0,

k < −
c − a

3
−

√
a2 + ac + c2 − 3(w0 + 1)

3
, or k > −

c − a
3
+

√
a2 + ac + c2 − 3(w0 + 1)

3
I f a2 + ac + c2 − 3(w0 + 1) = 0,

k , −
c − a

3
I f a2 + ac + c2 − 3(w0 + 1) < 0,

k ∈ (−∞,+∞)

Denote

m1 =


−

c − a
3
, a2 + ac + c2 − 3(w0 + 1) ≤ 0,

−
c − a

3
+

√
a2 + ac + c2 − 3(w0 + 1)

3
, a2 + ac + c2 − 3(w0 + 1) > 0.

If k > m1, β3 and β1β2 − β3 are always monotonically increasing with an increase of k. Assume that
k = m2,3 denotes the maximum real roots of equations β3 and β1β2−β3, respectively, and that Eq (3.14)
holds if and only if k > max{m1,m2,m3}.

Remark. Suppose that system (3.1) has more than one equilibrium point (u01, v01,w01), (u02, v02,w02),
· · · , (u0n, v0n,w0n). For each equilibrium point (u0i, v0i,w0i), one from Eq (3.15) has one ki

c, i =
1, 2, · · · , n. Then the boundary value of k for synchronization in system (3.3) is given by

kmin = min{k1
c , k

2
c , · · · , k

n
c}, (3.18)

where min{·} denotes the minimum value of elements in the set.

4. Numerical verification

In this section, numerical simulations are presented to illustrate the correctness of the result given
by Eq (3.18). If a = 0.15, b = 0.2, and c = 10.0, system (3.1) is chaotic [38]. Under such parameter
conditions, the numerical result for the LLE of system (3.1) is λmax = 0.092 [8, 45], where the initial
conditions are taken as u(0) = −1, v(0) = 1, and w(0) = 1.

4.1. a = 0.15 and b = 0.2 are fixed

Consider that the value of c is allowed to vary between 10.0 and 13.0. Using the numerical method
proposed in [8], the LLEs of system (3.1) for different values of c can be obtained as shown in Figure 1,
where the initial conditions are retained as u(0) = −1, v(0) = 1, and w(0) = 1.

From Theorem 5, under the certain limitation of the parameters, the LLE of system (3.1) is just the
maximum real root of the following equation (obtained from the second equation in Eq (3.17))

H(k) = k3 + h1k2 + h2k + h3, (4.1)
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where

h1 = c − (w0 + 1)a,

h2 =
1
4
{[(w0 + 1)2 + w0]a2 − (2w0 + 3)ac + c2 + w0 + 1},

h3 = −
1
8
{[ac2 − (w0 + (1 + 2w0)a2)c + a3w0(w0 + 1) + a(w2

0 + 1)]},

w0 =
1

2 a

Ä
c −
√
−4 ab + c2

ä
,

a = 0.15, b = 0.2 and c varies in the range of 10 to 13.

(a) c = 10.0 (b) c = 11.0

(c) c = 12.0 (d) c = 13.0

Figure 1. The LLE λmax versus t for system (3.1) with a = 0.15, b = 0.2, and (a) c = 10.0
(b) c = 11.0 (c) c = 12.0, and (d) c = 13.0. The initial conditions were taken as u(0) = −1,
v(0) = 1, and w(0) = 1.

From Appendix, the analytic expression of the LLE of system (3.1) can be given as

λmax = k =
3√Y1 +

3√Y2 − h1

3
, (4.2)
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where

Y1 =
3B − 2h1A + 3

√
∆

2
, Y2 =

3B − 2h1A − 3
√
∆

2
A = h2

1 − 3h2, B = h1h2 − 9h3,

C = h2
2 − 3h1h3, ∆ = B2 − 4AC.

Figure 2 illustrates the comparisons between the analytical results from Eq (4.2) and the numerical
results obtained by using the method described in [8]. The numerical results exhibit minor differences
relative to the analytical results as the value of c increases. Figure 3 displays the time series for x1,2,
y1,2, and z1,2 in system (3.3) with varying c values to identify the critical synchronization conditions for
k. The analytical estimation based on Eq (4.2) for the LLE of system (3.1) is confirmed to be valid and
highly accurate, as evidenced by the data in Figures 2 and 3.

(a)

Figure 2. The values of the LLE λmax of system (3.1) with a = 0.15, b = 0.2, and c ∈ [10, 13].
The red line denotes the analytical results obtained by using Eq (4.2). The blue line represents
the numerical results obtained by using the method given in [8], where the initial conditions
were taken as u(0) = −1, v(0) = 1, and w(0) = 1.
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(a) c = 10, k = 0.083 (b) c = 10, k = 0.085

(c) c = 11, k = 0.083 (d) c = 11, k = 0.085

(e) c = 12, k = 0.08 (f) c = 12, k = 0.083

Continued on next page
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(g) c = 13, k = 0.08 (h) c = 13, k = 0.086

Figure 3. The time series of x1,2, y1,2 and z1,2 in system (3.3) with a = 0.15, b = 0.2, and
(a) c = 10, k = 0.083; (b) c = 10, k = 0.085; (c) c = 11, k = 0.083; (d) c = 11, k = 0.085;
(e) c = 12, k = 0.08; (f) c = 12, k = 0.083; (g) c = 13, k = 0.08; and (h) c = 13,
k = 0.086. x1, y1, z1 and x2, y2, z2 are denoted by blue solid lines (−) and red dashed lines
(−−), respectively. The initial conditions were applied as x1(0) = −1, y1(0) = 1, z1(0) = 1,
x2(0) = −1.1, y2(0) = 1.1, and z2(0) = 1.1.

(a) c = 10.0 (b) c = 11.0

(c) c = 12.0 (d) c = 13.0

Figure 4. The LLE λmax versus t for system (3.1) with b = 0.2, c = 10.0 and (a) a = 0.16
(b) a = 0.17 (c) a = 0.18, and (d) a = 0.2. The initial conditions were applied as u(0) = −1,
v(0) = 1, and w(0) = 1.
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4.2. b = 0.2 and c = 10.0 are fixed

Consider that the value of a changes in the range of 0.15 to 0.2. Applying the numerical method
in [8], one can obtain the LLEs of system (3.1) for different values of a, as depicted in Figure 4. The
initial conditions were applied as u(0) = −1, v(0) = 1, and w(0) = 1.

For the parameter values considered in this section, the analytical expression of the LLE of sys-
tem (3.1) is still given by Eq (4.2). The comparisons between the analytical results obtained based on
Eq (4.2) and the numerical results derived by using the method in [8] are depicted in Figure 5.

(a)

Figure 5. The values of the LLE λmax of system (3.1) with b = 0.2, c = 10.0 and a ∈
[0.15, 0.2]. The red line denotes the analytical results obtained by using Eq (4.2). The blue
line represents the numerical results obtained by using the method given in [8], where the
initial conditions were taken as u(0) = −1, v(0) = 1 and w(0) = 1.

(a) a = 0.16, k = 0.083 (b) a = 0.16, k = 0.089

Continued on next page
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(c) a = 0.17, k = 0.085 (d) a = 0.17, k = 0.09

(e) a = 0.18, k = 0.1 (f) a = 0.18, k = 0.108

(g) a = 0.2, k = 0.11 (h) a = 0.2, k = 0.112

Figure 6. The time series of x1,2, y1,2 and z1,2 in system (3.3) with b = 0.2, c = 10.0 and (a)
a = 0.16, k = 0.083; (b) a = 0.16, k = 0.089; (c) a = 0.17, k = 0.085; (d) a = 0.17, k = 0.09;
(e) a = 0.18, k = 0.1; (f) a = 0.18, k = 0.108; (g) a = 0.2, k = 0.11; and (h) a = 0.2,
k = 0.112. x1, y1, z1 and x2, y2, z2 are denoted by blue solid lines (−) and red dashed lines
(−−), respectively. The initial conditions were applied as x1(0) = −1, y1(0) = 1, z1(0) = 1,
x2(0) = −1.1, y2(0) = 1.1, and z2(0) = 1.1.

Figure 5 demonstrates that the analytical results linearly increase as the value of a rises. The numer-
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ical results, however, display slight fluctuations before reaching their peak. Figure 6 depicts the time
series for x1,2, y1,2 and z1,2 in system (3.3) for various values of a and k. A comparison of Figures 5
and 6 reveals that the analytic approach outlined in Eq (4.2) is both effective and highly accurate as
a tool to determine the LLE of system (3.1), especially when the value of a varies within the range
of 0.15 to 0.2.

4.3. b = 0.2 is fixed

Considering that the values of a and c vary within the ranges of 0.15 to 0.2 and 10 to 13, respectively,
Figure 7 was constructed based on the calculated results of Eq (4.2) to illustrate the variation in the
LLE of system (3.1) as a and c change. Equation (4.2) facilitates the examination of how wide-ranging
parameter values influence the LLE in system (3.1).

(a)

Figure 7. The values of the LLE λmax of system (3.1) with b = 0.2, a ∈ [0.15, 0.2], and
c ∈ [10.0, 13.0] according to Eq (4.2).

5. Conclusions

Although a linear relationship exists between the synchronization threshold of the coupling co-
efficient in two identical chaotic systems and their LLE, previous studies have primarily derived the
boundary value of the coupling parameter by employing numerical methods to estimate the LLE, to the
best of our knowledge. This paper has presented an approach to analytically estimate the LLE of the
Rössler chaotic system by using the synchronization method. Unlike previous studies, this approach
transforms the synchronization error system into a set of Volterra integral equations. The stability of
these equations was then examined through the application of the successive approximation method in
accordance with the theory of integral equations. Compared to the numerical results for the LLEs of
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Rössler chaotic systems, our analytical estimates demonstrate high accuracy. Moreover, these analyti-
cal estimates remain valid across a wide range of parameter variations.

Our findings reveal that the value of the LLE for the Rössler chaotic system corresponds to the
maximum real root of a cubic algebraic equation. This insight simplifies the challenge associated with
analytically determining the LLE to solve such an equation. Our research introduces a novel approach
for the analysis and management of the impact of parameter variations on the LLE value in the Rössler
chaotic system.

Use of AI tools declaration

The authors declare that they have not used artificial intelligence tools in the creation of this article.

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foun-
dation of China grant numbers 11672185 and 11972327.

Conflict of interest

The authors declare that there is no conflict of interest.

References

1. V. I. Oseledets, A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical
systems, (1968), 197–231. Available from: https://api.semanticscholar.org/CorpusID:117573994.

2. J. L. Kaplan, J. A. Yorke, Chaotic behavior of multidimensional difference equations, in Func-
tional Differential Equations and Approximation of Fixed Points, Springer, Berlin, (1979), 204–
227. https://doi.org/10.1007/BFb0064319

3. G. Benettin, L. Galgani, A. Giorgilli, J. M. Strelcyn, Lyapunov characteristic exponents for smooth
dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1:
Theory, Meccanica, 15 (1980), 9–20. https://doi.org/10.1007/BF02128236

4. E. N. Lorenz, The local structure of a chaotic attractor in four dimensions, Physica D, 13 (1984),
90–104. https://doi.org/10.1016/0167-2789(84)90272-0

5. S. Habib, R. D. Ryne, Symplectic calculation of Lyapunov exponents, Phys. Rev. Lett., 74 (1995),
70. https://doi.org/10.1103/PhysRevLett.74.70

6. R. Franzosi, R. Gatto, G. Pettini, M. Pettini, Analytic Lyapunov exponents in a classical non-
linear field equation, Phys. Rev. E: Stat. Nonlinear Biol. Soft Matter Phys., 61 (2000), R3299.
https://doi.org/10.1103/PhysRevE.61.R3299

7. R. Caponetto, S. Fazzino, A semi-analytical method for the computation of the Lyapunov ex-
ponents of fractional-order systems, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 22–27.
https://doi.org/10.1016/j.cnsns.2012.06.013

Electronic Research Archive Volume 32, Issue 4, 2642–2664.

http://dx.doi.org/https://doi.org/10.1007/BFb0064319
http://dx.doi.org/https://doi.org/10.1007/BF02128236
http://dx.doi.org/https://doi.org/10.1016/0167-2789(84)90272-0
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.74.70
http://dx.doi.org/https://doi.org/10.1103/PhysRevE.61.R3299
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2012.06.013


2661

8. A. Wolf, J. B. Swift, H. L. Swinney, J. A. Vastano, Determining Lyapunov exponents from a time
series, Physica D, 16 (1985), 285–317. https://doi.org/10.1016/0167-2789(85)90011-9

9. P. Bryant, R. Brown, H. D. Abarbanel, Lyapunov exponents from observed time series, Phys. Rev.
Lett., 65 (1990), 1523. https://doi.org/10.1103/PhysRevLett.65.1523

10. X. Zeng, R. Eykholt, R. Pielke, Estimating the Lyapunov-exponent spectrum from short time series
of low precision, Phys. Rev. Lett., 66 (1991), 3229. https://doi.org/10.1103/PhysRevLett.66.3229

11. Y. Perederiy, Method for calculation of Lyapunov exponents spectrum from data series, Izvestiya
VUZ. Appl. Nonlinear Dyn., 20 (2012), 99–104.

12. K. Briggs, An improved method for estimating Liapunov exponents of chaotic time series, Phys.
Lett. A, 151 (1990), 27–32. https://doi.org/10.1016/0375-9601(90)90841-B

13. H. F. von Bremen, F. E. Udwadia, W. Proskurowski, An efficient QR based method for the com-
putation of Lyapunov exponents, Physica D, 101 (1997), 1–16. https://doi.org/10.1016/S0167-
2789(96)00216-3

14. L. Dieci, C. Elia, SVD algorithms to approximate spectra of dynamical systems, Math. Comput.
Simul., 79 (2008), 1235–1254. https://doi.org/10.1016/j.matcom.2008.03.005

15. A. Dabrowski, Estimation of the largest Lyapunov exponent from the perturbation vector and its
derivative dot product, Nonlinear Dyn., 67 (2012), 283–291. https://doi.org/10.1007/s11071-011-
9977-6

16. H. Liao, Novel gradient calculation method for the largest Lyapunov exponent of chaotic systems,
Nonlinear Dyn., 85 (2016), 1377–1392. https://doi.org/10.1007/s11071-016-2766-5

17. L. Escot, J. E. Sandubete, Estimating Lyapunov exponents on a noisy environment by
global and local Jacobian indirect algorithms, Appl. Math. Comput., 436 (2023), 127498.
https://doi.org/10.1016/j.amc.2022.127498

18. S. Zhou, X. Y. Wang, Simple estimation method for the second-largest Lyapunov ex-
ponent of chaotic differential equations, Chaos, Solitons Fractals, 139 (2020), 109981.
https://doi.org/10.1016/j.chaos.2020.109981

19. J. He, S. Yu, J. Cai, Numerical analysis and improved algorithms for Lyapunov-exponent
calculation of discrete-time chaotic systems, Int. J. Bifurcation Chaos, 26 (2016), 1650219.
https://doi.org/10.1142/S0218127416502199

20. S. Zhou, X. Wang, Z. Wang, C. Zhang, A novel method based on the pseudo-orbits to cal-
culate the largest Lyapunov exponent from chaotic equations, Chaos, 29 (2019), 033125.
https://doi.org/10.1063/1.5087512

21. J. Pathak, Z. X. Lu, B. R. Hunt, M. Cirvan, E. Ott, Using machine learning to replicate
chaotic attractors and calculate Lyapunov exponents from data, Chaos, 27 (2017), 121102.
https://doi.org/10.1063/1.5010300

22. A. McAllister, M. McCartney, D. H. Glass, Stability, collapse and hyperchaos
in a class of tri-trophic predator-prey models, Physica A, 628 (2023), 129146.
https://doi.org/10.1016/j.physa.2023.129146

Electronic Research Archive Volume 32, Issue 4, 2642–2664.

http://dx.doi.org/https://doi.org/10.1016/0167-2789(85)90011-9
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.65.1523
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.66.3229
http://dx.doi.org/https://doi.org/10.1016/0375-9601(90)90841-B
http://dx.doi.org/https://doi.org/10.1016/S0167-2789(96)00216-3
http://dx.doi.org/https://doi.org/10.1016/S0167-2789(96)00216-3
http://dx.doi.org/https://doi.org/10.1016/j.matcom.2008.03.005
http://dx.doi.org/https://doi.org/10.1007/s11071-011-9977-6
http://dx.doi.org/https://doi.org/10.1007/s11071-011-9977-6
http://dx.doi.org/https://doi.org/10.1007/s11071-016-2766-5
http://dx.doi.org/https://doi.org/10.1016/j.amc.2022.127498
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2020.109981
http://dx.doi.org/https://doi.org/10.1142/S0218127416502199
http://dx.doi.org/https://doi.org/10.1063/1.5087512
http://dx.doi.org/https://doi.org/10.1063/1.5010300
http://dx.doi.org/https://doi.org/10.1016/j.physa.2023.129146


2662

23. M. Balcerzak, A. Dabrowski, O. B. Blazejczyk, A. Stefanski, Determining Lyapunov exponents
of non-smooth systems: perturbation vectors approach, Mech. Syst. Signal Process., 141 (2020),
106734. https://doi.org/10.1016/j.ymssp.2020.106734

24. D. C. Soriano, F. I. Fazanaro, R. Suyama, J. R. de Oliveira, R. Attux, M. K. Madrid,
A method for Lyapunov spectrum estimation using cloned dynamics and its application to
the discontinuously-excited FitzHugh-Nagumo model, Nonlinear Dyn., 67 (2012), 413–424.
https://doi.org/10.1007/s11071-011-9989-2

25. A. Stefanski, T. Kapitaniak, Using chaos synchronization to estimate the largest Lya-
punov exponent of nonsmooth systems, Discrete Dyn. Nat. Soc., 4 (1999), 207–215.
https://doi.org/10.1155/S1026022600000200

26. A. Stefanski, Estimation of the largest Lyapunov exponent in systems with impacts, Chaos, Soli-
tons Fractals, 11 (2000), 2443–2451. https://doi.org/10.1016/S0960-0779(00)00029-1

27. B. Kharabian, H. Mirinejad, Synchronization of Rossler chaotic systems via hybrid
adaptive backstepping/sliding mode control, Results Control Optim., 4 (2021), 100020.
https://doi.org/10.1016/j.rico.2021.100020

28. B. Kharabian, H. Mirinejad, Fuzzy Lyapunov exponents placement for chaos stabilization, Physica
D, 445 (2023), 133648. https://doi.org/10.1016/j.physd.2023.133648

29. J. Ritt, Evaluation of entrainment of a nonlinear neural oscillator to white
noise, Phys. Rev. E: Stat. Nonlinear Biol. Soft Matter Phys., 68 (2003), 041915.
https://doi.org/10.1103/PhysRevE.68.041915

30. K. Pakdaman, D. Mestivier, Noise induced synchronization in a neuronal oscillator, Physica D,
192 (2004), 123–137. https://doi.org/10.1016/j.physd.2003.12.006

31. D. S. Goldobin, A. S. Pikovsky, Antireliability of noise-driven neurons, Phys. Rev. E: Stat. Non-
linear Biol. Soft Matter Phys., 73 (2006), 061906. https://doi.org/10.1103/PhysRevE.73.061906

32. J. N. Teramae, D. Tanaka, Robustness of the noise-induced phase synchronization
in a general class of limit cycle oscillators, Phys. Rev. Lett., 93 (2004), 204103.
https://doi.org/10.1103/PhysRevLett.93.204103

33. D. S. Goldobin, A. S. Pikovsky, Synchronization of self-sustained oscillators by common white
noise, Physica A, 351 (2005), 126–132. https://doi.org/10.1016/j.physa.2004.12.014

34. D. S. Goldobin, J. N. Teramae, H. Nakao, G. B. Ermentrout, Dynamics of limit-
cycle oscillators subject to general noise, Phys. Rev. Lett., 105 (2010), 154101.
https://doi.org/10.1103/PhysRevLett.105.154101

35. A. E. Hramov, A. A. Koronovskii, M. K. Kurovskaya, O. I. Moskalenko, Analytical expression
for zero Lyapunov exponent of chaotic noised oscillators, Chaos, Solitons Fractals, 78 (2015),
118–123. https://doi.org/10.1016/j.chaos.2015.07.016

36. A. E. Hramov, A. A. Koronovskii, M. K. Kurovskaya, Zero Lyapunov exponent in the vicinity of
the saddle-node bifurcation point in the presence of noise, Phys. Rev. E: Stat. Nonlinear Biol. Soft
Matter Phys., 78 (2008), 036212. https://doi.org/10.1103/PhysRevE.78.036212

Electronic Research Archive Volume 32, Issue 4, 2642–2664.

http://dx.doi.org/https://doi.org/10.1016/j.ymssp.2020.106734
http://dx.doi.org/https://doi.org/10.1007/s11071-011-9989-2
http://dx.doi.org/https://doi.org/10.1155/S1026022600000200
http://dx.doi.org/https://doi.org/10.1016/S0960-0779(00)00029-1
http://dx.doi.org/https://doi.org/10.1016/j.rico.2021.100020
http://dx.doi.org/https://doi.org/10.1016/j.physd.2023.133648
http://dx.doi.org/https://doi.org/10.1103/PhysRevE.68.041915
http://dx.doi.org/https://doi.org/10.1016/j.physd.2003.12.006
http://dx.doi.org/https://doi.org/10.1103/PhysRevE.73.061906
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.93.204103
http://dx.doi.org/https://doi.org/10.1016/j.physa.2004.12.014
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.105.154101
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2015.07.016
http://dx.doi.org/https://doi.org/10.1103/PhysRevE.78.036212


2663

37. A. Politi, F. Ginelli, S. Yanchuk, Y. Maistrenko, From synchronization to Lyapunov exponents and
back, Physica D, 224 (2006), 90–101. https://doi.org/10.1016/j.physd.2006.09.032
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Appendix

In the Appendix, expressions of real roots of a cubic equation are provided according to the Cardano
formula. Consider the following cubic equation:

f (x) = ax3 + bx2 + cx + d = 0, (A1)

where a, b, c, d are real constants and a , 0. Denote

A = b2 − 3ac, B = bc − 9ad, C = c2 − 3bd,

∆ = B2 − 4AC, Y1,2 =
3aB − 2Ab ± 3a

√
∆

2
.

(A2)

• If ∆ > 0, there is only one real root:
x =

3√Y1+
3√Y2−b

3a .

• If ∆ = 0 and A = 0, there are three equal real roots:
x1 = x2 = x3 = −

b
3a .
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• If ∆ = 0 and A > 0, there are three real roots, where two roots are equal:
x1 =

B
A −

b
a , x2 = x3 = −

B
2A .

• If ∆ < 0 and A > 0, there are three different real roots:
xi =

2
√

A cos( ϕ+2(i−1)π
3 )−b

3a , ϕ = arccos(3aB−2Ab
2A
√

A
), i = 1, 2, 3.
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