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Abstract: Multi-label feature selection, an essential means of data dimension reduction in multi-
label learning, has become one of the research hotspots in the field of machine learning. Because
the linear assumption of sample space and label space is not suitable in most cases, many scholars
use pseudo-label space. However, the use of pseudo-label space will increase the number of model
variables and may lead to the loss of sample or label information. A multi-label feature selection
scheme based on constraint mapping space regularization is proposed to solve this problem. The model
first maps the sample space to the label space through the use of linear mapping. Second, given that
the sample cannot be perfectly mapped to the label space, the mapping space should be closest to the
label space and still retain the space of the basic manifold structure of the sample space, so combining
the Hilbert-Schmidt independence criterion with the sample manifold, basic properties of constraint
mapping space. Finally, the proposed algorithm is compared with MRDM, SSFS, and other algorithms
on multiple classical multi-label data sets; the results show that the proposed algorithm is effective on
multiple indicators.

Keywords: multi-label learning; feature selection; Hilbert-Schmidt independence criterion; manifold
learning; linear mapping

1. Introduction

Feature selection is one of the important dimensionality reduction methods to deal with dimensional
disasters [1, 2], whether in single-label clustering, classification, or multi-label classification. It is also
a hot topic in research on machine learning and data analysis [3].

As a type of dimensionality reduction technology, feature selection methods select the most
representative feature subset from the original features of the sample by applying a certain strategy or
model to remove redundant and irrelevant features and thus achieve the task of reducing data
dimensionality [4]. In addition, feature selection, as a common dimensionality reduction technique,
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has a several advantages, such as the ability to reduce the calculation and storage pressure of the
learning algorithm and improve its robustness and interpretability. Based on the interaction with the
learning system, multi-label feature selection can be divided into filter [5–7], wrapper [8, 9], or
embedded methods [10–12]. The embedded method is different from the filter method, which
completely ignores the learning algorithm’s influence on feature selection. The embedded method is
also different from the wrapper method, which completely relies on a learning algorithm to guide
feature selection. The embedded method embeds the feature selection process in the learning
algorithm and makes it complete feature selection in the learning process.

By reviewing the research on the existing embedded models, we know that most of the existing
models are based on linear mapping and information theory and are often combined with manifold
learning and sparse regular terms to construct multi-label feature selection models. In linear mapping-
based approaches, either a linear mapping is directly from samples to real labels, or a linear mapping
is constructed by using pseudo-labels instead of real labels. However, the binary nature of real labels
contradicts the nature of the continuous type of variables of linear mapping. In addition, the use
of pseudo-labels increases the number of variables of the model, thus increasing the computational
burden of the model. Fortunately, we demonstrate here that constraining the mapping space of linear
mappings directly in the model can alleviate this problem well. Specifically, we construct a novel sparse
multi-label feature selection model by introducing the Hilbert-Schmidt independence criterion [13]
and sample manifold learning and combining the L21 norm as a sparse constraint. Relative to the
existing state-of-the-art models, the proposed model alleviates the problem of real label space being
non-applicable to linear mapping by constraining the mapping space, it also more effectively reduces
the computational burden of the model and improves the stability of the model.

The main research work of this paper is as follows:

1) We introduce the HSIC and sample manifold, which jointly constrain the fundamental properties of
the mapping space in terms of both real-label and sample structure.

2) We introduce the L21 norm as a sparse constraint, which allows for the construction of a sparse multi-
label feature selection model for constrained mapping spaces, and an optimization algorithm with
convergence has been designed to optimize the proposed method.

3) A comparative experiment was conducted with eight highly influential multi-label feature selection
algorithms. Experimental results show that the proposed method is effective and feasible.

The rest of the paper is summarized as follows: in Section 2, notations and a brief overview of
existing models are given. In Section 3, the model establishment, optimization, and convergence proofs
for the proposed algorithm are introduced. In Section 4, the results of comparative tests are presented
and analyzed, and the proposed algorithm’s parameter sensitivity, convergence, and time complexity
are tested and analyzed. Finally, the summary of this paper and the direction of future research are
given in Section 5.

2. Related work

2.1. Notations of this paper

For any matrix A ∈ Rc×d, AT is the transpose of A; Ai j is a member of the ith row and jth column of
A; the ith row vector of A is denoted by Ai∗; the jth column vector of A is denoted by A∗ j; the L21 norm
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of A is ∥A∥21; the Frobenius norm of A is ∥A∥F; S A is the similarity matrix with respect to the matrix A;
LA is the Laplacian matrix of the similar matrix S A; n, d and m represent the number of samples, the
number of features, and the number of labels, respectively. X ∈ Rn×d is the sample matrix; Y ∈ Rn×m is
the label matrix; Q ∈ Rd×m is the weight matrix; H ∈ Rn×n is the center matrix.

2.2. A review of multi-label learning

In this subsection, we briefly review the research status of embedded multi-label feature selection
techniques by discussing many works of literature on multi-label feature selection.

Among the multi-label feature selection models based on information theory, the classic
representative models include SCLS [14], MDMR [15], PMU [16], and FIMF [17]. Among them,
MDMR, PMU, and FIMF use mutual information to quantify the importance of features and select
features for their importance. However, these models may lose important information when
processing higher-order label data. Moreover, the computational cost of high-order multivariate
mutual information is prohibitive. However, SCLS has poor algorithm performance due to a
combination of excessive labels and features, making feature selection impractical [18, 19]. In
addition, a multi-label feature selection method considering maximum correlation was proposed
in [20]. In order to ensure the correlation between the selected features and different label groups, the
model integrates the maximum correlation of high-order label correlation into the feature selection
model. In addition, Gao et al. [21] designed a multi-label feature selection method that includes three
low-order information theory terms and unified the framework of multi-label information theory
methods.

In linear mapping-based multi-label feature selection models, some models directly apply a linear
mapping between samples to real labels. For example, Li et al. [22] combined this penalty term with
the low-dimensional labeled manifold and proposed a multi-label feature selection method based on
robust, flexible, and sparse regularization (RFSFS). Similarly, Li et al. [23] devised a highly sparse
paradigm and combined it with a linear mapping between samples to real labels, as well as low
redundancy constraints. Thus, a multi-label feature selection technique with high-sparsity,
personalized and low-redundancy shared common features is proposed. However, since the duality of
real labels does not apply in linear mapping, most scholars have constructed pseudo-label space that is
suitable for linear mapping through the use of samples or real labels. In addition, due to the rapid
development of manifold learning, it has been widely applied in many fields, such as cooperative
clustering [24], feature selection algorithms, and dimensionality reduction [25–27]. In a feature
selection model, manifold learning can constrain the consistency of topological structures between
two spaces, and scholars often introduce manifold learning into multi-label feature selection models
to improve the performance of the models.

By combining linear mapping and manifold learning, Zhang et al. [28] developed a manifold
regularized discriminative feature selection technique for multi-label learning (MDFS). The model
utilizes the manifold structure of the sample manifold and the low dimensional manifold of the label.
The Frobenius norm distance between the real-label matrix and the pseudo-label matrix is used to
ensure that the pseudo-label does not lose the properties of the real label. Finally, the sparsity of the
feature weight matrix is constrained by the L21 norm. Huang et al. [29] constrained pseudo-label
learning by combining the HSIC and sample manifold methodology in the linear mapping. A
multi-label feature selection technique (MRDM) was proposed based on manifold regularization and
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dependence maximization.
Hu et al. [30] constructed the common structure of sample space and label space by utilizing

multiple linear maps and a proposed multi-label feature selection technique (SCMFS) with a shared
common mode. The model maps sample space and label space to pseudo-label space by using linear
mapping technique to obtain pseudo-label space through the use of a common structure of sample
space and label space; furthermore, combining this with the L21 norm sparse constraint, multi-label
feature selection is realized. The specific formula of this model is as follows:

min
W,V,Q,B

∥XW − V∥2F + α∥X − VQ∥2F + β∥Y − VB∥2F + γ∥W∥2,1, (2.1)

where V is the pseudo-label matrix. Q and B are the corresponding coefficient matrices, respectively.
W is the feature weight matrix. α, β and γ are the regularized parameters.

Similar to SCMFS, to improve the model’s performance, Gao et al. [31] introduced sample
manifolds into the shared structure model to strengthen the constraints on pseudo-labels through the
sample manifolds when the pseudo-label matrix and the sample matrix have the same geometric
manifold structure. A multi-label feature selection technique (SSFS) with a constrained latent
structure shared term is proposed. The specific formula of this model is as follows:

min
V,M,Q
∥X − VQT ∥2F + α∥Y − V M∥2F+

βtr(VT LV) + γ∥Q∥2,1,
s.t.V,M,Q ≥ 0.

(2.2)

where V is the pseudo-label matrix; L is the Laplacian matrix of X; Q and M are the corresponding
coefficient matrices.

In addition, Zhang and Ma [32] proposed a multi-label feature selection technique (NMDG) that
utilizes dynamic graph constraints to improve the model’s performance and generalization ability. In
this model, the learning of pseudo-labels is constrained by linear maps and the label manifold, and
the learning of the feature weight matrix is constrained by the feature manifold and low-dimensional
dynamic manifold of the pseudo-labels to realize feature selection. The objective function of this model
is as follows:

min
W,b,F
∥XW + 1T

n b − F∥2F + αtr(FT LY F)+

βtr(WLFT WT ) + γtr(WT LXT W),
s.t. (W, F) ≥ 0.

(2.3)

where F is the pseudo-label matrix; b is the bias vector. LY , LFT , and LXT are the Laplacian matrices
of the label similarity matrix, the dynamic Laplacian matrix of the pseudo-label low-dimensional
similarity matrix, and the Laplacian matrix of the feature similarity matrix, respectively.

In summary, RFSFS and ERSFS directly apply a linear mapping of samples to real labels to
construct the model. However, the performance of the model is degraded by the fact that the binary
nature of real labels does not apply to linear mapping methodology. To address this problem, models
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such as MRDM and SSFS models use pseudo-labels instead of real labels to construct linear maps,
which increases the computational burden of the model and reduces the stability of the model. Unlike
the state-of-the-art models described above, we mitigate the problem of real labels not being
applicable to linear maps by constraining the mapping space of linear maps. This also avoids the
problems of large computational burden and instability that the use of pseudo-labels imposes on the
model. The specific technical details of the proposed model will be given in Section 3.

3. Proposed method

This section presents a sparse multi-label feature selection technique (CRMFS) based on a
constrained mapping space and manifold regularization. Moreover, the optimization solution and
convergence proof of the model are also given in this section.

3.1. Problem description

Let XT = [X1∗, X2∗, · · · , Xn∗, ] be the transpose of the sample matrix X ∈ Rn×d and Xi∗ ∈ R1×d

represent the ith row sample vector of X. The label matrix of X is Y = [Y∗1,Y∗2, · · · ,Y∗m, ], Y ∈ Rn×m,
and Y∗i ∈ Rn×1 is the jth column label vector of Y . X and Y jointly form multi-label data set D =
{(Xi∗,Yi∗)|i = 1, 2, · · · , n}, where Yi∗ ∈ R1×m is the ith row vector of Y and represents the label vector
corresponding to the ith sample. In addition, Yi j ∈ {0, 1} is the ith row, jth column member of Y . When
Yi j = 1, it means that the ith sample Xi∗ belongs to the jth label Y∗ j. When Yi j = 0, sample Xi∗ does not
belong to the label Y∗ j. Multi-label data set D is used to construct the corresponding model to realize
feature selection.

3.2. CRMFS

The brief review in subsection 2.2 shows that both the MRDM model and the SSFS model are
types of multi-label feature selection sparse models. Sparse models are generally constructed by
combining linear mapping methodology and sparse constraints because of the simplicity of least
squares calculation and strong interpretability. The specific formula of the objective function of the
sparse model is as follows:

min
Q
∥XQ − Y∥2F + αR(Q), (3.1)

where α is the penalty parameter and ∥ ∗ ∥F represents the Frobenius norm. Q ∈ Rd×m is the coefficient
matrix for the linear mapping. Since Qi∗ can represent the importance of its corresponding feature Xi∗,
Q is also called the feature weight matrix. R(∗) is the penalty function of ∗.

In sparse models, the L1 norm and L21 norm are often used as penalty functions. Different penalty
functions have different properties, leading to different properties of the constrained variables. For
example, the L1 norm can simultaneously guide the inter-line and intra-line sparsity of the constrained
variables. The L21 norm can guide the constrained variable inter-row sparsity and intra-row stability.
In multi-label feature selection, it is more suitable to use L21 norm constraint Q sparsity than the L1

norm to better distinguish the importance of features. Let R(Q) = ∥Q∥2,1 and construct a sparse model
that is suitable for feature selection:
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min
Q
∥XQ − Y∥2F + α∥Q∥2,1, (3.2)

where ∥Q∥2,1 =
∑d

i=1(
∑m

j=1 Q2
i j)

1
2 represents the norm of Q.

Considering that the linear mapping has a specific deviation, in order to improve the generalization
ability of the model, we introduce a bias vector b ∈ Rm×1 into the linear mapping scheme and
reconstruct the sparse model to be as follows:

min
Q,b
∥XQ + vbT − Y∥2F + α∥Q∥2,1, (3.3)

where bT is the transpose of b and v ∈ Rn×1 is the column vector of all ones.
In addition, since label space is binary and unsuitable for linear mapping, many scholars tend to

construct non-binary pseudo-label space instead of real-label space to realize feature selection.
However, the use of pseudo-label space will increase the number of variables in the model, affecting
the model’s efficiency, and may lead to the loss of important label information in the process of
pseudo-label construction, which affects the performance of the model. In order to avoid the adverse
effects of learning pseudo-label space, we try to solve the aforementioned problem by constraining
the properties of the mapping space XQ.

As can be ascertained from Eq (3.3), linear mapping takes sample space as the initial mapping
space, so in an ideal state, mapping space XQ should retain the basic geometric structure of sample
space X and maintain the consistency of the topological structure with sample space X. According to
the hypothesis, if Xi∗ and X j∗ have a high degree of similarity, Xi∗Q and Xi∗Q should also have a high
degree of similarity. Mapping space XQ and sample space X should have the same basic manifold
structure.

1
2

n∑
i=1

n∑
j=1

∥Xi∗Q − X j∗Q∥22(S X)i j = tr(QT XT (DX − S X)XQ) = tr(QT XT LXXQ), (3.4)

where LX ∈ Rn×n is the Laplacian matrix of S X ∈ Rn×n and LX = DX − S X. DX ∈ Rn×n is the diagonal
matrix and (DX)ii =

∑n
j=1(S X)i j. (S X)i j is the ith row jth column element of the sample similarity matrix

S X. In this study, we chose to use the Gaussian function to learn S X:

(S X)i j =

exp(− ∥Xi∗−X j∗∥
2
2

δ
), i f Xi∗ ∈ Nk(X j∗) or X j∗ ∈ Nk(Xi∗),

0, others
(3.5)

where the parameter δ ∈ R. Nk(∗) represents the k-nearest neighbor of ∗, and k is the nearest neighbor
threshold.

Combining Eqs (3.3) and (3.4), we can obtain a sparse multi-label feature selection model with
manifold constraints:

min
Q,b
∥XQ + vbT − Y∥2F + α∥Q∥2,1 + βtr(QT XT LXXQ), (3.6)
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where β is the manifold regular term parameter.
In addition, it can be ascertained from Eq (3.3) that the target space of a linear mapping is label

space, but due to the binarity of label space, sample space cannot be well mapped to label space.
However, considering that the use of pseudo-label space will increase the model complexity and reduce
the robustness of the model, the mapped space should have the primary information of the label space.
It can remove irrelevant or redundant interference information. To solve this problem, the HSIC [13]
is adopted to constrain the correlation between mapping space and label space. The specific formula is
as follows:

max
Q

tr(HXQ(XQ)T HYYT ), s.t. (XQ)T XQ = Vn. (3.7)

where H ∈ Rn×n is the center matrix and V∗ ∈ R∗×∗ is the identity matrix.
Combining Eqs (3.6) and (3.7), we can obtain the objective function of the CRMFS model:

min
Q,b
∥XQ + vbT − Y∥2F + α∥Q∥2,1 + βtr(QT XT LXXQ) − γtr(HXQ(XQ)T HYYT ), (3.8)

where γ is the regularization parameter. Since Eq (3.7) does not converge without any constraint and in
Eq (3.8), the other terms have become the constraints of the fourth term, it is not required for constraint
(XQ)T XQ = V to be added in Eq (3.8).

In addition, for any matrix A, ∥A∥2F = tr(AT A). In addition, due to the non-smoothness of the L21

norm, tr(QT MQ) is used here to replace the L21 norm and obtain the approximate solution of Eq (3.8);
thus, the objective function of the CRMFS model can be rewritten as follows:

min
Q,b

tr[(XQ + vbT − Y)T (XQ + vbT − Y)] + αtr(QT MQ)+

βtr(QT XT LXXQ) − γtr(HXQ(XQ)T HYYT ),
(3.9)

where M ∈ Rd×d is the diagonal matrix and Mii =
1

2∥Qi∗∥2
.

3.3. Optimal solution

According to Eq (3.9), in the CRMFS model, the function of b is given by

Φ(b) = min
Q,b

tr[(XQ + vbT − Y)T (XQ + vbT − Y)]

= tr(QT XT XQ) + tr(bvT vbT ) + tr(YT Y) − 2tr(QT XT bvT ) − 2tr(bvT Y) − tr(QT XT Y).
(3.10)

Take the partial derivative of the above equation with respect to b:

∂Φ(b)
∂b

= 2bvT v + 2QT XT v − 2YT v. (3.11)

Let ∂Φ(b)
∂b = 0; then, we have
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b =
1
n

(YT v − QT XT v). (3.12)

Combining Eqs (3.9) and (3.12), the objective function of the CRMFS model can be transformed as
follows:

Φ(Q) = min
Q

tr[(XQ − Y)T H(XQ − Y)] + αtr(QT MQ)+

βtr(QT XT LXXQ) − γtr(HXQ(XQ)T HYYT ),
(3.13)

where H = Vn −
1
nvvT is the center matrix.

It is easy to prove that the above equation is convex with respect to Q, so we find the optimal
solution for Q by taking its derivative. The derivative function of the above equation with respect to Q
is given by

∂Φ(Q)
∂Q

= 2XT HXQ − 2XT HY + 2αMQ + 2βXT LXXQ − 2γXT HYYT HXQ. (3.14)

Let ∂Φ(Q)
∂Q = 0; then, we can get the update formula for Q:

Q = [M−1(XT HX + βXT LXX − γXT HYYT HX) + αVd]M−1XT HY. (3.15)

According to the solution process of appeal optimization, we designed and present the algorithm of
the CRMFS model, as shown in Table 1.

Table 1. CRMFS algorithm.
Input: Multi-label data set D. Regularization parameters α, β, and γ.

The number of selected features k.
Output: The result I of feature selection.
1) Initialize H = V − 1

n vvT .
2) Initialize t = 0, and set Mt to be the identity matrix.
3) Calculate S X and LX from Eqs (3.4) and (3.5).
4) Repeat:

Update Qt+1,
Qt+1 = [(Mt)−1(XT HX + βXT LX X − γXT HYYT HX) + αVd](Mt)−1XT HY .
Update Mt+1, Mt+1

ii =
1

∥Qt
i∗∥2

.

Update bt+1, b = 1
n (YT v − (Qt+1)T XT v).

t = t + 1.
5) Until convergence.
6) Compute ∥Qt

i∗∥2, (i = 1, 2, · · · , d), and sort it, assigning the first k largest to I

3.4. Proof of convergence

In this subsection, we give the theoretical proof of convergence of the CRMFS algorithm; however,
before proving convergence, we need to know the following lemma:
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Lemma 1 [33]: For any non-zero vectors a ∈ Rl×m and c ∈ Rl×m, both make the following formula
true:

∥a∥2 −
∥a∥22
2∥c∥2

⪯ ∥c∥2 −
∥c∥22

2∥c∥2
. (3.16)

In combination with Eq (3.12), Eq (3.8) can be transformed to be as follows:

Φ(Q) = min
Q
∥H1/2(XQ − Y)∥2F + α∥Q∥2,1 + βtr(QT XT LXXQ) − γtr(HXQ(XQ)T HYYT ). (3.17)

According to Lemma 1, in iteration t, we have

∥(Qi∗)t+1∥2 −
∥(Qi∗)t+1∥22

2∥(Qi∗)t∥2
⪯ ∥(Qi∗)t∥2 −

∥(Qi∗)t∥22

2∥(Qi∗)t∥2
. (3.18)

The sum of Eq (3.18) can be derived as follows:

d∑
i=1

(∥(Qi∗)t+1∥2 −
∥(Qi∗)t+1∥22

2∥(Qi∗)t∥2
) ⪯

d∑
i=1

(∥(Qi∗)t∥2 −
∥(Qi∗)t∥22

2∥(Qi∗)t∥2
). (3.19)

Further transformation yields

α∥Qt+1∥2,1 − α

d∑
i=1

(
∥(Qi∗)t+1∥22

2∥(Qi∗)t∥2
) ⪯ α∥Qt∥2,1 − α

d∑
i=1

(
∥(Qi∗)t∥22

2∥(Qi∗)t∥2
). (3.20)

By combining Eqs (3.17) and (3.20), we can derive the following:

Φ(Qt+1) ⪯ Φ(Qt). (3.21)

In conclusion, the convergence of the CRMFS algorithm is proved.

4. Experiment

This section discusses a comparative experiment between CRMFS and seven advanced multi-label
feature selection algorithms (RFSFS [22], SSFS [31], MRDM [29], SCLS [14], MDMR [15], PMU
[16], FIMF [17], MFS-MCDM [34]). The experiment was conducted on ten classical real multi-label
data sets. In the experiment, five indicators, including hamming loss, ranking loss, one-error, coverage,
and average precision, were used as evaluation indicators, and the ML-KNN algorithm [35] was used
as the representative algorithm for classification.

4.1. Experimental settings

Ten classic multi-label data sets were collected from five fields of research, including biology,
images, and text. These multi-label data sets were all taken from Mulan Library
(http://mulan.sourceforge.net/datasets.html). In Table 2, we give the total number of samples, number
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Table 2. Data set descriptions.
NO. Data set Instances Features Labels Domain Card Training Test
1 Yeast 2417 103 14 biology 4.237 1500 917
2 Emotion 593 72 6 music 1.869 391 202
3 Birds 645 260 19 audio 1.014 322 323
4 Scene 2407 294 6 images 1.047 1211 1196
5 Image 600 294 5 images 1.236 400 200
6 Enron 1702 1001 53 text 3.378 1123 579
7 Flags 194 19 7 images 3.392 129 65
8 Medical 978 1449 45 text 1.245 645 333
9 Genbase 662 1185 27 biology 1.252 463 199
10 CAL500 502 68 174 audio 26.044 335 167

of features, number of labels, domain, cardinality (Card), and other parameters for each experimental
data set.

Experimental environment: All relevant experimental experiments included a Microsoft Windows
10 system; processor: ADM Ryzen 5 3600 6-core Processor 3.59 GHz; memory: 16.00 GB; and
programming software: Matlab R2016a.

First, we discretized [36] all experimental data to have equal-width intervals. The smoothing and
nearest-neighbor parameters in the ML-KNN algorithm were set to 1 and 10, respectively. Meanwhile,
the parameters of the FIMF algorithm were also set to their default values: b = 2 and Q = 10.
Second, since the Gaussian function is used in CRMFS, SSFS, MRDM, and other algorithms to learn
the basic manifolds of samples or labels, the nearest neighbor parameter was set to 5; also, the label
nearest-neighbor parameter for Image data was set to 3, and δ = 1 was set. Additionally, we set
the selected feature range to [5, 10, 15, 20, 25, 30, 35, 40, 45, 50] and expressly set the selected feature
range to 2 ∼ 18 for the Flags data set. Finally, we applied the grid search strategy to set all experimental
algorithms’ adjustment range of the regularization parameter to be [0.001, 0.01, 0.1, 1, 10, 100, 1000].

4.2. Evaluation metric

In this subsection, we give the detailed meanings and formulas for hamming loss, ranking loss, one-
error, coverage, and average precision measures in five multi-label classification indexes, where “↓”
means that the smaller the value of relevant indexes, the better the algorithm performance; “↑” means
that the larger the value of relevant indexes, the better the algorithm performance.

Let D ∈ Rn×d be the sample data of the training set and Y ∈ Rn×m be the corresponding label set data.
h(Di∗) represents the binary label vector, and ranki∗(q) represents the rank of the label prediction Yq∗.

1) Hamming loss (↓): Represents the percentage of misclassified labels.

HL(D) =
1
n

n∑
i=1

1
m
∥h(Di∗) △ Yi∗∥1, (4.1)

where HL ∈ [0, 1] and △ is the symbol of symmetry difference.
2) Ranking loss (↓): Measure the gap between the predicted list and the actual sorted list.

RL(D) =
1
n

n∑
i=1

1

1T
mYi∗1T

mYi∗

∑
q:Yq

i∗=1

∑
q′ :Yq′

i∗ =0

(P), (4.2)
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where RL ∈ [0, 1]. P = δ(ranki∗(q) ≥ ranki∗(q
′

)). δ(z) is the indicator function and Yi∗ is the
complement of Yi∗ on Y .

3) One-error (↓): Represents that there is no sample proportion of the predicted most relevant
predicted label among the real labels.

OE(D) =
1
n

n∑
i=1

δ(Yqi
i∗ = 0), (4.3)

where OE ∈ [0, 1] and qi = argminq∈[1,m]ranki∗(q).
4) Coverage (↓): Represents the average number of steps required for the sorted labels to cover the

real-label correlation set.

CV(D) =
1
n

n∑
i=1

argmaxq:Yq
i∗=1ranki∗(q) − 1, (4.4)

where CV ∈ [0,m − 1].
5) Average precision (↑): Represents the percentage of labels in the ranking that are more relevant

than a particular label.

AP(D) =
1
n

n∑
i=1

1
1T

mYi∗

∑
q:Yq

i∗=1

∑
q′ :Yq′

i∗ =1
(P)

ranki∗(q)
, (4.5)

where AP ∈ [0, 1].

4.3. Results and discussion

In Tables 3–7, we show the optimal results of each experimental algorithm under the optimal
parameters in the experimental range. Among them, SSFS, MRDM, and other algorithms contain
multiple variables, so these algorithms results are presented as the mean values of 10 runs.
Meanwhile, in Tables 3–7, we use bolding to mark the optimal results under the same index on the
same data set, indicating that the experimental algorithm with the bolded results on the data has the
optimal algorithm performance under this index. In addition, we denote its performance ranking
under this indicator on this data set by including “()” next to each result in Tables 3–7; finally, in the
last two rows of Tables 3–7, we also added two rows , i.e., “Rank” and “Average”, where “Rank”
represents the average ranking of the overall performance of each experimental algorithm under this
index. “Average” means that on all data sets, each value is the mean value of the optimal result of the
algorithm under this index.

As can be ascertained from Tables 3–7, although the performance of the CRMFS algorithm on
the Scene data set is slightly inferior to that of the MRDM algorithm, the average and rank of the
CRMFS algorithm are optimal under each index, which also indicates that the overall performance of
the CRMFS algorithm is better than that of all comparison algorithms.
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Table 3. Average precision (↑) comparison for different algorithms on each data set.
Algorithms CRMFS MRDM MFS-MCDM SCLS MDMR PMU FIMF SSFS RFSFS
Yeast 0.7617 (1.5) 0.7617 (1.5) 0.7551 (7) 0.7563 (4) 0.7579 (3) 0.7562 (5) 0.7552 (6) 0.7312 (9) 0.7411 (8)
Emotion 0.8071 (1) 0.8036 (2) 0.7815 (3) 0.7496 (8) 0.7551 (6) 0.7143 (9) 0.7510 (7) 0.7584 (5) 0.7665 (4)
Birds 0.5632 (1) 0.5026 (5) 0.5302 (2) 0.4435 (6.5) 0.4158 (8) 0.4435 (6.5) 0.4074 (9) 0.5143 (4) 0.5145 (3)
Scene 0.8367 (2) 0.8390 (1) 0.8058 (4) 0.8163 (3) 0.7633 (8) 0.8034 (5) 0.6906 (9) 0.7727 (7) 0.7799 (6)
Image 0.7725 (1) 0.7633 (2) 0.7288 (5) 0.7437 (3) 0.7058 (7) 0.7002 (8) 0.6791 (9) 0.7208 (6) 0.7376 (4)
Enron 0.6686 (1) 0.6613 (2) 0.6103 (9) 0.6589 (3) 0.6566 (5) 0.6483 (7) 0.6548 (6) 0.6585 (4) 0.6331 (8)
Flags 0.8519 (1) 0.8436 (3) 0.8425 (4) 0.8024 (9) 0.8462 (2) 0.8411 (5.5) 0.8410 (7) 0.8372 (8) 0.8411 (5.5)
Medical 0.8570 (1) 0.7415 (6.5) 0.8539 (2) 0.4431 (9) 0.8242 (4) 0.6992 (8) 0.8349 (3) 0.7415 (6.5) 0.8082 (5)
Genbase 0.9939 (1) 0.9899 (6) 0.7071 (7) 0.6882 (8) 0.9919 (2) 0.9907 (4) 0.9915 (3) 0.6044 (9) 0.9904 (5)
CAL500 0.5015 (1) 0.4979 (3) 0.4966 (4) 0.4942 (8) 0.4959 (5.5) 0.4930 (9) 0.4959 (5.5) 0.4945 (7) 0.4986 (2)
Average 0.7614 0.7404 0.7112 0.6596 0.7213 0.7090 0.7101 0.6834 0.7311
Rank 1.15 3.2 4.7 6.15 5.05 6.7 6.45 6.55 5.05

Table 4. Hamming loss (↓) comparison for different algorithms on each data set.
Algorithms CRMFS MRDM MFS-MCDM SCLS MDMR PMU FIMF SSFS RFSFS
Yeast 0.1940 (1) 0.1965 (2) 0.2014 (6) 0.2006 (4.5) 0.1999 (3) 0.2006 (4.5) 0.2021 (7) 0.2137 (9) 0.2091 (8)
Emotion 0.1988 (2) 0.1972 (1) 0.2302 (5) 0.2500 (8) 0.2409 (6) 0.2673 (9) 0.2252 (4) 0.2418 (7) 0.2248 (3)
Birds 0.0464 (1) 0.0479 (3.5) 0.0471 (2) 0.0499 (6) 0.0505 (8) 0.0504 (7) 0.0520 (9) 0.0495 (5) 0.0479 (3.5)
Scene 0.1045 (2) 0.1027 (1) 0.1066 (3) 0.1073 (4) 0.1348 (8) 0.1137 (5) 0.1587 (9) 0.1290 (7) 0.1260 (6)
Image 0.1970 (1) 0.2030 (2) 0.2050 (3) 0.2110 (5) 0.2240 (7) 0.2270 (8) 0.2340 (9) 0.2164 (6) 0.2108 (4)
Enron 0.0487 (1) 0.0499 (4) 0.0544 (9) 0.0495 (2) 0.0505 (6.5) 0.0505 (6.5) 0.0501 (5) 0.0498 (3) 0.0522 (8)
Flags 0.6000 (5) 0.6154 (6) 0.5802 (1) 0.6330 (7) 0.5934 (3) 0.5934 (3) 0.5934 (3) 0.6413 (8) 0.6462 (9)
Medical 0.9803 (1) 0.9846 (6.5) 0.9806 (2) 0.9998 (9) 0.9825 (4) 0.9883 (8) 0.9810 (3) 0.9846 (6.5) 0.9831 (5)
Genbase 0.0020 (1) 0.0030 (4.5) 0.0342 (8) 0.0326 (7) 0.0024 (2) 0.0056 (6) 0.0030 (4.5) 0.0428 (9) 0.0029 (3)
CAL500 0.9643 (2) 0.9648 (3.5) 0.9655 (6) 0.9651 (5) 0.9657 (7.5) 0.9667 (9) 0.9657 (7.5) 0.9648 (3.5) 0.9638 (1)
Average 0.3336 0.3365 0.3405 0.3499 0.3445 0.3464 0.3465 0.3534 0.3467
Rank 1.7 3.4 4.5 5.75 5.5 6.6 6.1 6.4 5.05

Table 5. One-error (↓) comparison for different algorithms on each data set.
Algorithms CRMFS MRDM MFS-MCDM SCLS MDMR PMU FIMF SSFS RFSFS
Yeast 0.2127 (1) 0.2268 (2.5) 0.2356 (4) 0.2268 (2.5) 0.2366 (6) 0.2366 (6) 0.2366 (6) 0.2508 (9) 0.2414 (8)
Emotion 0.2574 (1) 0.2673 (2) 0.3119 (4) 0.3614 (8.5) 0.3564 (7) 0.3614 (8.5) 0.3515 (6) 0.3455 (5) 0.3020 (3)
Birds 0.5116 (1) 0.5523 (4) 0.5465 (2) 0.6454 (7) 0.6744 (8) 0.6395 (6) 0.7035 (9) 0.5872 (5) 0.5488 (3)
Scene 0.2692 (2) 0.2634 (1) 0.3169 (4) 0.2977 (3) 0.3905 (8) 0.3904 (7) 0.4983 (9) 0.3661 (6) 0.3532 (5)
Image 0.3600 (1) 0.3650 (2) 0.4200 (5) 0.4000 (4) 0.4450 (7) 0.4700 (8) 0.5000 (9) 0.4300 (6) 0.3980 (3)
Enron 0.2263 (1) 0.2349 (2) 0.3472 (9) 0.2470 (6) 0.2435 (3.5) 0.2694 (7) 0.2453 (5) 0.2435 (3.5) 0.2846 (8)
Flags 0.1094 (1) 0.1250 (2.5) 0.1406 (4.5) 0.2031 (9) 0.1563 (7) 0.1719 (8) 0.1250 (2.5) 0.1500 (6) 0.1406 (4.5)
Medical 0.1682 (1) 0.3243 (6.5) 0.1772 (2) 0.6727 (9) 0.2072 (4) 0.3664 (8) 0.2012 (3) 0.3243 (6.5) 0.2252 (5)
Genbase 0 (2.5) 0.0050 (6) 0.4221 (7) 0.4472 (8) 0 (2.5) 0 (2.5) 0 (2.5) 0.5477 (9) 0.0030 (5)
CAL500 0.0838 (3.5) 0.0838 (3.5) 0.0838 (3.5) 0.0898 (7.5) 0.0898 (7.5) 0.0898 (7.5) 0.0898 (7.5) 0.0838 (3.5) 0.0790 (1)
Average 0.2199 0.2448 0.3002 0.3591 0.2800 0.2995 0.2951 0.3329 0.2576
Rank 1.5 3.2 4.5 6.45 6.05 6.85 5.95 5.95 4.55

Specifically, Table 3 shows the optimal performance comparison for each experimental algorithm
under the average precision index. As ascertained from Table 3, although, for the Scene data set, the
performance of the CRMFS algorithm decreases by 0.023 relative to that of the MRDM algorithm,
it is still superior to comparison algorithms such as SSFS and MFS-MCDM. In addition, the optimal
performance of the CRMFS algorithm on other experimental data sets was always in first place, and
the overall performance of the CRMFS algorithm under this index was improved by 3.2% ∼ 15.84%
relative to other comparison algorithms.

Table 4 shows the optimal performance of each experimental algorithm under the hamming loss
index. As seen in Table 4, although the overall performance of the CRMFS algorithm was only
improved by 0.86% ∼ 5.6%, it was still greatly improved on some data sets. For example, compared
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Table 6. Ranking loss (↓) comparison for different algorithms on each data set.
Algorithms CRMFS MRDM MFS-MCDM SCLS MDMR PMU FIMF SSFS RFSFS
Yeast 0.1673 (1) 0.1674 (2) 0.1742 (5) 0.1745 (6) 0.1710 (3) 0.1723 (4) 0.1747 (7) 0.1925 (9) 0.1851 (8)
Emotion 0.1680 (1.5) 0.1680 (1.5) 0.1864 (3) 0.2056 (8) 0.1994 (5) 0.2570 (9) 0.2012 (7) 0.2010 (6) 0.1981 (4)
Birds 0.1875 (1) 0.2226 (5) 0.1944 (2) 0.2655 (9) 0.2591 (8) 0.2585 (6) 0.2586 (7) 0.2138 (4) 0.2070 (3)
Scene 0.0977 (2) 0.0959 (1) 0.1201 (4) 0.1129 (3) 0.1444 (7) 0.1290 (5) 0.1994 (9) 0.1463 (8) 0.1422 (6)
Image 0.1896 (1) 0.1921 (2) 0.2258 (5) 0.2167 (3) 0.2550 (8) 0.2483 (7) 0.2662 (9) 0.2477 (6) 0.2189 (4)
Enron 0.0890 (1) 0.0903 (2) 0.1034 (9) 0.0921 (4) 0.0944 (6) 0.0949 (7) 0.0935 (5) 0.0913 (3) 0.0954 (8)
Flags 0.1784 (1) 0.1898 (5) 0.1823 (3.5) 0.2482 (9) 0.1813 (2) 0.1977 (6) 0.1823 (3.5) 0.2078 (7) 0.2102 (8)
Medical 0.0445 (1) 0.0638 (6.5) 0.0468 (3) 0.1326 (9) 0.0522 (4) 0.0693 (8) 0.0466 (2) 0.0638 (6.5) 0.0534 (5)
Genbase 0.0062 (1) 0.0079 (4.5) 0.0480 (7) 0.0653 (8) 0.0066 (2) 0.0080 (6) 0.0078 (3) 0.0869 (9) 0.0079 (4.5)
CAL500 0.1804 (1) 0.1822 (6) 0.1823 (7) 0.1833 (9) 0.1818 (4) 0.1818 (4) 0.1818 (4) 0.1831 (8) 0.1817 (2)
Average 0.1309 0.1380 0.1464 0.1697 0.1545 0.1617 0.1612 0.1634 0.1500
Rank 1.15 3.55 4.85 6.8 4.9 6.2 5.65 6.65 5.25

Table 7. Coverage (↓) comparison for different algorithms on each data set.
Algorithms CRMFS MRDM MFS-MCDM SCLS MDMR PMU FIMF SSFS RFSFS
Yeast 6.2617 (1) 6.2999 (2) 6.4569 (7) 6.4482 (6) 6.3642 (3) 6.3708 (4) 6.3740 (5) 6.6772 (9) 6.5767 (8)
Emotion 1.9059 (2) 1.8614 (1) 1.9851 (3) 2.1139 (8) 2.0891 (7) 2.3614 (9) 2.0545 (4) 2.0842 (6) 2.0564 (5)
Birds 2.2043 (1) 2.7028 (5) 2.2755 (2) 3.2012 (9) 3.0495 (6) 3.0526 (7.5) 3.0526 (7.5) 2.5542 (4) 2.4582 (3)
Scene 0.5870 (2) 0.5828 (1) 0.7032 (4) 0.6681 (3) 0.8253 (7) 0.7492 (5) 1.0953 (9) 0.8329 (8) 0.8144 (6)
Image 1.0350 (2) 1.0300 (1) 1.1750 (5) 1.1650 (4) 1.3200 (8) 1.2900 (7) 1.3550 (9) 1.2520 (6) 1.1630 (3)
Enron 12.7720 (1) 12.8860 (2) 13.9260 (9) 13.0415 (4) 13.1606 (5) 13.4128 (8) 13.2038 (6) 12.8950 (3) 13.3762 (7)
Flags 3.6308 (2.5) 3.6462 (4) 3.6769 (5) 4.0462 (9) 3.6308 (2.5) 3.7231 (6) 3.6000 (1) 3.8400 (8) 3.7692 (7)
Medical 2.9580 (1) 3.9429 (6.5) 3.0631 (2) 7.1291 (9) 3.3934 (5) 4.2943 (8) 3.1171 (3) 3.9429 (6.5) 3.3574 (4)
Genbase 0.5729 (1) 0.5879 (3) 1.6181 (7) 2.1809 (8) 0.5930 (4.5) 0.6080 (6) 0.5930 (4.5) 2.7236 (9) 0.5809 (2)
CAL500 127.4400 (1) 128.0500 (4) 127.9900 (3) 129.3700 (9) 128.9900 (6) 128.9900 (6) 128.9900 (6) 129.3000 (8) 127.7293 (2)
Average 15.9368 16.1590 16.2870 16.9364 16.3416 16.4852 16.3435 16.6102 16.1882
Rank 1.45 2.95 4.7 6.9 5.4 6.65 5.5 6.75 4.7

with the FIMF algorithm, the performance of the CRMFS algorithm on the Birds and Image data sets
was improved by 10.76% and 15.81%, respectively. Even on the Genbase data set, the performance of
the comparison algorithm was improved by 16.67% ∼ 95.33%.

Tables 5 and 6 respectively show the optimal performance of each experimental algorithm under
the one-error and ranking loss indicators. As shown in Tables 5 and 6, among the ten experimental
data sets, the optimal results of the CRMFS algorithm are bolded for 8 data sets in Table 5 and 9
data sets in Table 6. From Table 6 only on the Scene data set was the performance slightly inferior to
that of the MRDM algorithm. In addition, relative to that of other comparison algorithms, the overall
performance of the CRMFS algorithm under the one-error and ranking loss indexes was improved by
10.17% ∼ 38.76% and 5.14% ∼ 22.86%, respectively.

Table 7 compares the optimal performance of each experimental algorithm under the coverage
index. As shown in Table 7, although the performance of the CRMFS algorithm was slightly worse
than that of the MRDM algorithm on the Scene, Image, and Emotion data sets and slightly worse than
that of the FIMF algorithm on the Flags data set, the optimal performance of the CRMFS algorithm
consistently ranked first on other data sets. In addition, the overall performance of the CRMFS
algorithm was improved by 1.38% ∼ 5.9% for each comparison algorithm.

In order to more intuitively show the performance of each experimental algorithm in terms of the
number of selected features and the performance comparison results when the same number of features
is selected, we constructed plots, with the number of selected features as the abscissa and the value of
each indicator as the ordinate. Figures 1–5 show the results for each evaluation metric.

Figures 1–5 show the performance comparison results for the indicators of average precision,
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Figure 1. Performance comparison results for average precision (↑) index.
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Figure 2. Performance comparison results for hamming loss (↓) index.

hamming loss, one-error, ranking loss, and coverage. From the overall view of Figures 1–5, first, the
CRMFS algorithm effectively solves the problem of multi-label feature selection. Second, when the
number of selected features was 5, the performance of the CRMFS algorithm was in the optimal
position in most cases. In addition, the performance curve for the CRMFS algorithm was always in
the best or second-best position. Therefore, compared with MRDM, SSFS, and other comparison
algorithms, the CRMFS algorithm has certain advantages and more effective at solving the problem of
multi-label feature selection.

Specifically, it can be seen in Figure 1 that, in the cases of the data sets of Birds, Yeast, and Enron,
the performance curves for the CRMFS algorithm are obviously above those for the MRDM and SSFS
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Figure 3. Performance comparison results for one-error (↓) index.
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Figure 4. Performance comparison results for ranking loss (↓) index.

comparison algorithms. According to Figures 2–5, it can be seen that, in the cases of the data sets
of Birds, Yeast, Image, and Enron, the performance curves for the CRMFS algorithm are lower than
those for the MRDM and SSFS comparison algorithms. In addition, as shown in Figures 1–5, although
the performance of the CRMFS algorithm was slightly inferior to that of the MRDM algorithm on the
Scene data set, the performance of the CRMFS algorithm was still optimal on other data sets.

In conclusion, although the performance improvement of the CRMFS algorithm differed for
different experimental data sets, in terms of the overall performance, the CRMFS algorithm is
superior to MRDM, SSFS, and the other comparative algorithms.
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Figure 5. Performance comparison results for coverage (↓) index.

4.4. Statistical test and analysis

To further analyze and compare the overall performance of each experimental algorithm, the
Bonferroni-Dunn test (α = 0.01) [37] was adopted to conduct a significant difference analysis and
comparison of each experimental algorithm. The comparison results are visually shown in Figure 6.

In Figure 6, the horizontal axis represents the overall performance ranking of all experimental
algorithms. From left to right, the overall performance of the algorithm is getting better and better. A
red line links the algorithms with no significant difference for convenience. There is a significant
difference if the difference in the average ranking reaches the difference threshold (CD), where

CD = qα
√

K(K+1)
6N . In this study, qα = 3.590 (K = 9, a = 0.01), and CD = 4.3968 (K = 9,N = 10). As

shown in Figure 6, we can see that, although the CRMFS algorithm has no significant difference from
the MRDM, MDMR, and MFS-MCDM algorithms, it is significantly different from other advanced
comparison algorithms. Indeed, the CRMFS algorithm consistently ranked first on the far right in the
overall performance ranking.

In addition, Friedman’s non-parametric statistical test (α = 0.05) [38] was used to analyze the
experimental results of each algorithm on ten classical multi-label data sets, and the quantitative results
were obtained. The specific formula of the Friedman test is as follows:

FF =
(N − 1)χ2

F

N(K − 1) − χ2
F

(4.6)

where K and N represent the number of algorithms and data sets in the experiment, respectively;
χ2

F =
12N

K(K+1) (
∑K

i=1 R2
i −

K(K+1)2

4 ); Ri is the sorting value of the ith algorithm.
The quantitative results of the Friedman test are shown in Table 8. Friedman statistics and critical

values for each indicator are given in Table 8. As seen in Table 8, Friedman’s statistics for all indicators
were far higher than the critical value, rejecting the null hypothesis of each evaluation indicator. It also
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Figure 6. The Bonferroni-Dunn test results in the form of a mean rank plot.

shows that the overall performance of the CRMFS algorithm under different indicators is better than
MRDM, SSFS, and the other advanced comparison algorithms.

Table 8. The Friedman statistics and the critical value results for each evaluation metric.

Evaluation metric FF Critical value (α = 0.05)
Average precision 7.3574
Hamming loss 4.6475
One-error 6.5242 2.070
Ranking loss 6.4338
Coverage 7.3487

In summary, the experimental results of the Bonferroni-Dunn test and Friedman test show that
the overall performance of the CRMFS algorithm is superior to SSFS, MRDM, and the other seven
advanced comparison algorithms for either a single indicator or all indicators.

4.5. Ablation studies

In this subsection, we discuss some ablation studies that we conducted to explore the effectiveness
of the modules in CRMFS. In this experiment, we set one parameter in CRMFS to 0, indicating that
the module is not used; we also performed a grid search with the other two parameters in the range
[0.001, 0.01, 0.1, 1, 10, 100, 1000] to capture the optimal results of CRMFS for the average precision
metric when the first 50 features are selected. The experimental results are shown in Figure 7.
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Figure 7. Results of ablation studies on four data sets.
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It can be seen that applying the L21 norm constraint on the Flags data set led to a slight performance
degradation of CRMFS. Upon analysis, we believe that this was caused by the fact that applying the L21

norm constraint on the Flags data set does not result in satisfactory handling of the feature redundancy
problem. In addition, we found that the performance of CRMFS under the average precision metric
was significantly degraded when a module was not used, which suggests that all modules in CRMFS
can effectively manage the multi-label feature selection problem.

4.6. Parameter sensitivity analysis

After the analysis in subsections 4.3 and 4.4, we know that the CRMFS algorithm has certain
advantages and better effectiveness than the seven advanced multi-label feature selection algorithms.
In order to more comprehensively analyze the influence of parameter changes on the CRMFS
algorithm, we designed and conducted parameter sensitivity analysis experiments on the CRMFS
algorithm on the Scene data set. In the experiment, we set the range of the number of feature
selections to be [14, 28, 42, 56, 70, 84, 98]. For the parameters α, β, and γ in the CRMFS algorithm,
We fixed two of the parameters to equal one and made the third parameter search within the range of
[0.001, 0.01, 0.1, 1, 10, 100, 1000] to observe the performance changes of the CRMFS algorithm for
the average precision index. The experimental results are shown in Figure 8.
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Figure 8. Experimental results of parameter sensitivity analysis for the CRMFS algorithm
on the Scene data set.

In Figure 8, # represents the number of features selected. According to Figure 8, we can see that
the CRMFS algorithm’s value for the average precision index increases with the number of selected
features, so feature selection is practical. Second, we can see the optimal value range of each parameter
in the CRMFS algorithm on the Scene data set, where the optimal value range of α was [0.1, 0.01],
the optimal value range of β was [0.01, 0.1, 1, 10], and the optimal value range of γ was [10, 100]. In
addition, the optimal range of parameters varies from data set to data set.

In conclusion, the CRMFS algorithm demonstrated strong robustness on the Scene data set, and the
optimal value range of each parameter indicates that the constraint mapping space has a positive effect
on the CRMFS algorithm.

4.7. Convergence and time complexity

In order to analyze the effective convergence of the CRMFS algorithm, although we have provided
the theoretical proof of the convergence of the CRMFS algorithm in Subsection 3.4, we have conducted
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a convergence analysis experiment for the CRMFS algorithm for more intuitive analysis.
The experiment was conducted by using six data sets: Emotion, Birds, Scene, Genbase, Image,

and Enron. In the experiment, we set the value of all parameters in the CRMFS algorithm to equal
1. Additionally, we set the number of iterations to equal 50. We observed changes in the value of the
objective function in each iteration. The experimental results are shown in Figure 9.
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Figure 9. Convergence of CRMFS algorithm on different data sets.

As shown in Figure 9, the CRMFS algorithm converges on all experimental data sets and proves
the correctness of Section 3.4. In addition, for all experimental data sets, the convergence rate of the
CRMFS algorithm was very fast, generally within ten iterations.

Finally, we performed time complexity analysis of the CRMFS algorithm. In general, on the multi-
label data set m < d and m < n. According to Table 1, in an iteration of the CRMFS algorithm, the
time complexity of updating Q is O(d2n); the time complexity of updating M is O(d2). So the total
time complexity of the CRMFS algorithm is O(td2n + td2). It can be seen in Figure 9 that the CRMFS
algorithm has a fast convergence speed and requires a small number of iterations. Therefore, it can be
seen that the number of features d and the number of samples n of multi-label data sets significantly
influence the time complexity of the CRMFS algorithm.

5. Conclusions and future research

Regarding the multi-label feature selection model based on linear mapping, we have developed a
multi-label feature selection model (CRMFS) based on constrained mapping space to solve the
problem of poor algorithm performance; it is possible because the duality of labels does not apply to
linear mapping. The sample manifold and HSIC constrain this model’s mapping space. Among them,
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the sample manifold ensures the consistency of the mapping space and the topological structure of the
sample space, and HSIC ensures high correlation between the mapping space and the label space. In
addition, an optimization algorithm has been designed for the model, and the algorithm’s convergence
analysis, parameter sensitivity analysis, and time complexity analysis were performed. Finally, a
comparative experiment comparing the CRMFS algorithm with seven advanced multi-label feature
selection algorithms such as SSFS and MRDM, was conducted on ten classical multi-label data sets.
Experimental results on five multi-label indexes prove the proposed algorithm’s effectiveness and
superiority.

In addition, it is known from the ablation studies that CRMFS has some limitations in terms of
ability to manage feature redundancy or label redundancy. Therefore, in the next step of this research,
we will address the redundancy problem in multi-label learning by using dynamic manifold learning
and combining it with subspace learning to enhance the learning capability of the local sample
structure and local label structure of the model in order to improve the generalization ability and
overall performance of the model.
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